CN106222285B - 与小麦抗白粉病基因Pm48共分离的分子标记 - Google Patents
与小麦抗白粉病基因Pm48共分离的分子标记 Download PDFInfo
- Publication number
- CN106222285B CN106222285B CN201610657312.9A CN201610657312A CN106222285B CN 106222285 B CN106222285 B CN 106222285B CN 201610657312 A CN201610657312 A CN 201610657312A CN 106222285 B CN106222285 B CN 106222285B
- Authority
- CN
- China
- Prior art keywords
- wheat
- primer
- powdery mildew
- gene
- molecular labeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一个与小麦抗白粉病基因Pm48共分离的分子标记,属于农业生物技术范畴。以抗病小麦Tabasco和感病小麦宁糯麦1号杂交构建F1、F2及F2:3家系群体,通过分子标记技术将该抗性基因定位到染色5DS 0.63‑0.67臂中,为了寻找更逼近抗白粉病基因Pm48新的分子标记,用混池后ddRAD测序方法开发出了一个CAPS标记Xmp928,与基因共分离。该标记作为抗白粉病基因Pm48新的分子标记,比以前筛选到的相关标记更有优势应用于小麦白粉病抗病品种的辅助选择上,从而克服常规育种的不足,简化选择方法和提高育种效率,进而加快抗病品种的育种进程。
Description
一、技术领域
本发明涉及与小麦抗白粉病基因Pm48共分离的分子标记,可应用于分子标记辅助育种,属于农业生物技术领域。
二、背景技术
小麦是世界上最主要的粮食作物,它的产量关系到世界粮食安全。由布氏禾白粉病菌(Blumeria graminis f.sp.tritici)引起的白粉病是小麦的重要病害。在白粉病严重流行年份,可以导致小麦减产达34%以上(Johnson等,1979,Effects of powdery mildewon yield and quality of isogenic lines of′Chancellor′wheat,Crop Science 19,349~352)。实践证明,培育和利用抗病品种防治小麦白粉病是最为环保并且经济有效的措施。
随着实验技术的发展,分子标记的类型逐渐丰富,如初期的RFLP(restrictionfragment length polymorphism,限制性片段长度多态性)、AFLP(amplified fragmentlength polymorphism,扩增片段长度多态性)以及根据序列开发的SSR(simple sequencerepeats,简单重复序列)、STS(sequence tagged sites,序列标签位点)、CAPS(cleavedamplifiedpolymorphic sequence,酶切扩增多态性序列)、dCAPS(derived cleavedamplified polymorphic sequence,衍生酶切扩增多态性序列)和SNP(singlenucleotide-acid polymorphism,单核苷酸多态性)等。分子标记的使用极大地推动了新基因的发掘,越来越多的抗白粉病基因通过分子标记得到鉴定,如Pm47(XiaoM等,2013,Identification of the gene Pm47on chromosome 7BS conferring resistance topowdery mildew in the Chinese wheat landrace Hongyanglazi,Theor Appl Genet126,1397~1403)、Pm50(Mohler等,2013,Pm50:a new powdery mildew resistance genein common wheat derived from cultivated emmer,J Appl Gene 54,259~63)和Pm51(Zhan等,2014,Chromosomal Location and Comparative Genomics Analysis ofPowdery Mildew Resistance Gene Pm51in a Putative Wheat-Thinopyrum ponticumIntrogression Line,PLoS One 9,e113455)等。迄今为止,已经在53个位点报道了80多个抗白粉病基因(Xu等,2015,Molecular tagging ofa new broad-spectrum powderymildew resistance allele Pm2c in Chinese wheat landrace Niaomai.Theor ApplGenet128,2077~84),分布在小麦所有染色体上。
由于小麦还没有完整的基因组序列,在特定染色体区域开发标记一般需要借助物理定位的EST、共线性关系、基因组序列、SNP芯片序列信息开发标记。在小麦中,不同倍性小麦的遗传和物理图谱信息、网上公布的水稻、短柄草、大量小麦EST序列信息和小麦基因组序列信息等是用于饱和目标基因区域遗传图谱的重要标记来源。这些信息为开发新的标记奠定了良好的基础。
此外,近年蓬勃发展的高通量测序也是基因型分析的一种新策略。为了降低测序费用,研究者已经提出了若干基于二代测序技术的简化代表文库测序策略(Hyten等,2010,Highthroughput SNP discovery through deep resequencing of a reducedrepresentation library to anchor and orient scaffolds in the soybean wholegenome sequence,BMC Genom,11~38),其中最简单的方法是分离纯化特定片段大小范围的限制性酶切片段。如,利用RAD(restriction site-associated DNA,限制性酶切位点关联DNA)测序方法,利用该法已成功构建了若干高密度遗传图谱(Pfender等,2011,Mappingwith RAD(restriction-site associated DNA)markers to rapidly identify QTL forstem rust resistance in Lolium perenne,Theor Appl Genet 122,1467~1480;Wang等,2012,Construction of a high-density genetic map for grape using nextgeneration restriction-site associated DNA sequencing,BMC Plant Biol,12~148)。而ddRAD(double-digest RAD,双酶切RAD)测序是RAD衍生的一种测序策略(Peterson等,2012,Double digest RADseq:an inexpensive method for de novo SNP discoveryand genotyping in model and non-model species,PLoS One 7,e37135)。ddRAD测序与RAD测序相似,与RAD的单末端测序相比,ddRAD的双末端测序能够增加标记的特异性和准确性。近年,在花生(Davik等,2015,A ddRAD Based Linkage Map of the CultivatedStrawberry,Fragaria xananassa,PLoS One 10,e0137746)、草莓(Zhou等,2014,Construction of a SNP-based genetic linkage map in cultivated peanut based onlarge scale marker development using next-generation double-digestrestriction-site-associated DNA sequencing(ddRADseq),BMC Genomics 15,351)及油菜(Wu等,2016,Evaluation of Linkage Disequilibrium Pattern and AssociationStudy on Seed Oil Content in Brassica napus Using ddRAD Sequencing,PLoS One,11,e0146383)等物种中已经利用该测序方法构建了若干高密度遗传图谱。
在小麦中,得到成功克隆的抗病基因较少,如Lr10(Feuillet等,2003,Map-basedisolation of the leaf rust disease resistance gene Lr10 from the hexaploidwheat(Triticum aestivum L.)genome,Proc Natl Acad Sci U S A 100,15253~8)、Vrn1(Yan等,2003,Positional cloning of the wheat vernalization gene VRN1,Proc NatlAcad Sci U S A100,6263~8)、Yr36(Fu等,2009,A kinase-START gene conferstemperature-dependent resistance to wheat stripe rust,Science 323,1357~60)和Lr34/Yr18/Pm38(Krattinger等,2009,A putative ABC transporter confers durableresistance to multiple fungal pathogens in wheat,Science 323,1360~3)等。在发表的小麦抗白粉病基因中,只有Pm3(Yahiaoui等,2004,Genome analysis at differentploidy levels allows cloning of the powdery mildew resistance gene Pm3b fromhexaploid wheat,Plant J 37,528~538)和Pm21(Cao等,2011,Serine/threonine kinasegene Stpk-V,a key member of powdery mildew resistance gene Pm21,conferspowdery mildew resistance in wheat,Proc Natl Acad Sci USA108,7727~32)被成功克隆。本实验室之前在德国小麦品种Tabasco中鉴定到一个位于小麦染色体5DS上的抗白粉病基因Pm46(Gao等,2012,Genetic analysis and molecular mapping ofa new powderymildew resistant gene Pm46in common wheat,Theor Appl Genet125,967~973),后由于基因重名被重新命名为Pm48(McIntosh等,Catalogue of gene symbols for wheat:2013-2014supplement,http://www.wheat.pw.usda.gov/GG2/pubs.shtml)。目前在小麦5DS染色体上报道的基因都还没有被克隆,开发新的与Pm48紧密连锁的分子标记,将为该基因的分离和有效利用奠定基础。
三、技术方案
技术问题
本发明针对上述研究背景,以高抗白粉病小麦品种Tabasco为抗病材料筛选和寻找新的而且稳定存在与白粉病抗性基因紧密连锁的分子标记及其方法,用于小麦白粉病辅助选择育种,能够克服常规遗传育种周期长等缺点。
技术方案
与小麦抗白粉病基因Pm48紧密连锁的分子标记引物,其特征在于,该引物是与小麦白粉病抗性基因Pm48紧密连锁的CAPS标记Xmp928的引物,标记Xmp928与目标基因共分离,引物序列如下:
左引物:5’-GTAGTACGGCAATTTCTT-3’;
右引物:5’-TCTACCTTTAGCTCCTCA-3’。
所述分子标记引物的应用,其特征在于,用所述与小麦白粉病抗性基因Pm48共分离的CAPS标记Xmp928的引物PCR扩增小麦植株DNA,如果出现Xmp928标记的300bp的带型,则表示该植株中小麦白粉病的抗性基因存在。所述的应用是以Tabasco或其衍生品种为扩增小麦植株DNA对象的。
PCR反应体系10μl:内含模板10~20ng、左右引物各2pmol、MgCl215nmol、0.1U TaqDNA聚合酶与1×PCR缓冲液;
反应循环程序如下:94℃预变性3min,然后按“94℃,30s;44℃,30s;72℃,1min”进行35个循环扩增,最后72℃延伸10min;
酶切反应体系8μl:
内含PCR产物DNA约50ng、1U限制性内切酶AccI、1×酶切缓冲液;酶切混合液在37℃中酶切6小时;
酶切产物用质量比8%的非变性聚丙烯酰胺胶进行电泳分离,并用银染法显色读取分离条带。
有益效果
白粉病是影响小麦生产的一种严重病害,本发明利用分子标记方法开发出一个新的与白粉病抗性基因Pm48共分离的CAPS标记,在小麦育种实践和抗病理论研究上都有很重要的价值。其优点具体归纳为以下两点:
(1)本发明中与小麦抗白粉病基因紧密连锁的CAPS标记,是在对德国引进的小麦品种Tabasco及其抗性稳定的杂交后代单株中获得的新标记,可以用于小麦白粉病品种鉴定和小麦抗病后代的辅助选择育种。
(2)该标记为稳定的CAPS标记,并且与抗白粉病基因共分离。可直接用于小麦抗白粉病分子标记的辅助选择育种,加快育种进程。同时为克隆小麦抗白粉病新基因及其功能研究奠定了良好的基础。
四、附图说明
通过下面的详细描述并结合附图,将更清楚的理解本发明的目的、特征和其他优点,其中:
图1为5DS上Xmp928标记在亲本及抗感池中的分离,泳道M为分子量Marker,泳道1、2、3和4分别为Tabasco、宁糯麦1号、抗池和感池,白色箭头处所示为该标记扩增的多态带型。
图2为抗白粉病基因Pm48的遗传连锁与物理图谱,其中Xmp928与Pm48共分离。
图3为5DS上Xmp1112标记在中国春及其缺失系上的扩增带型,白色箭头所指表明在缺失系中丢失目的条带。
图4为CAPS标记Xmp928在以Tabasco为亲本的杂交组合后代中的表现。泳道M为分子量Marker,泳道1-50为以Tabasco为亲本之一的杂交后代BC1扩增带型,与抗性表型完全一致,白色箭头所示为标记目的条带。
五、具体实施方式
下面实施例中所用方法如无特别说明均为常规方法。
实施例1、与Tabasco小麦抗白粉病基因连锁的分子标记的获得
1、植物材料
苏麦3号(中国作物种质信息网http://icgr.caas.net.cn/统一编号ZM010242)作为感病对照。德国小麦品种Tabasco(Gao等,2012,Genetic analysis and molecularmapping of a new powdery mildew resistant gene Pm46in common wheat,Theor ApplGenet 125,967~973)对小麦白粉病表现抗病。宁糯麦1号(苏审麦200803)是公知公用的糯性小麦品种,对小麦白粉病表现感病。抗病分离群体是由宁糯麦1号和Tabasco杂交而来。
六倍体小麦品种“中国春”及其缺失系del5DS-1、del5DS-2、del5DS-5用于标记的染色体臂定位,其中del5DS-1缺失了染色体5DS末端37%长度的染色体,del5DS-5缺失了染色体5DS末端33%长度的染色体,del5DS-2缺失了染色体5DS末端22%长度的染色体(EndoTR和Gill BS,1996,The deletion stocks of common wheat,J Hered 87,295~307)。
2、抗病性评价方法
白粉病抗性评价根据高海东等(Gao等,2012,Genetic analysis and molecularmapping of a new powdery mildew resistant gene Pm46in common wheat,Theor ApplGenet 125,967~973)报道的评价方法进行。苗期种植在72孔的穴盘,一叶期利用南京地区流行生理小种Bgt18进行接种。每个家系接种15-20棵植株。接种后的麦苗在人工智能气候室中生长,期间每天光照14个小时、温度为18~22℃、相对湿度为80~90%。以苏麦3号作为感病对照,接种7天后调查病情(具体根据感病对照苏麦3号表现出明显病症时进行调查)。抗病性调查采用盛宝钦(盛宝钦,1988,用反应型记载小麦苗期白粉病,植物保护1,14)的0~4级分类方法进行,0~2级归为抗病类型,3~4级归为感病类型。盛宝钦(盛宝钦,1988,用反应型记载小麦苗期白粉病,植物保护1,14)的0~4级标准分类方法如下:0级:免疫,植株无病斑;0;级:坏死反应,叶片有枯死斑;1级:高抗,病斑小(一般直径小于1mm)菌丝层稀薄可见绿色叶面,偶见有直径大于1mm病斑,但仍透绿,产孢量极少;2级:中抗,叶片病斑直径小于1mm,但菌丝层较厚,不透绿,能产生一定量孢子;3级:中感,叶片病斑多,一般直径大于1mm,菌丝层厚,产孢量大,但病斑不连片;4级:高感,叶片病斑直径一般大于1mm,菌丝层厚,产孢量多,病斑连片。
3、标记分析
DNA提取参照Ma等的SDS法(Ma等,1994,RFLP markers linked to powderymildew resistance genes Pml,Pm2,Pm3,and Pm4in wheat,Genome 37,871~875),从嫩叶中提取总DNA,-4℃贮存备用。PCR反应在SENSO仪器上进行,反应体系为10μL,包括DNA模板1ng,左右引物各2pmol,2nmol的dNTPs,15nmol的MgCl,1×PCRbuffer和1U Taq酶。PCR反应程序为94℃预变性5min,然后按“94℃30s/44-60℃45s/72℃50s”进行35个循环扩增,最后72℃延伸7min。扩增产物在8%非变性聚丙烯酰胺凝胶上电泳,银染法显色。
CAPS标记选择特定的限制性内切酶AluI、AccI、MaeII、Hpy188I和TaqI等(TaKaRaBio.Co.Ltd.,Dalian,China)对其进行消化。酶切反应体系、条件依据产商建议进行,反应体系8μl(内含PCR产物DNA约50ng),37℃或者65℃(根据酶的特性)酶切过夜。酶切产物用8%非变性聚丙烯酰胺凝胶电泳分离检测。
4、标记开发
一是基于ddRAD测序获得的序列:根据高海东等(Gao等,2012,Genetic analysisand molecular mapping of a new powdery mildew resistant gene Pm46in commonwheat,Theor Appl Genet 125,967~973)F2:3家系的鉴定结果,从中随机选取50个纯合抗病家系和50个纯合感病家系,每个家系选取8个植株,将其DNA等量混合构建抗池(BR)和感池(BS),进行ddRAD测序并分析。利用软件dCAPS Finder 2.0和Primer 5.0将与抗病基因可能关联的SNP标记转化成CAPS或dCAPS标记。本研究对抗池、感池进行ddRAD测序并进行序列分析,获得了81个可能与Pm48关联的SNP序列。为了进一步确认这81个SNP标记与基因间的位置关系,将其中的14个与基因关联性强的SNP标记转化为CAPS与dCAPS标记。其中4对在抗感亲本与抗感池间被检测到一致多态,包括Xmp928(图1),Xmp930,Xmp931和Xmp936。利用上述4对标记对实验室之前构建的F2:3群体进行基因型检测,均被定位于Pm48的遗传图谱上(图2)。
二是基于粗山羊草基因组序列:利用高海东等(Gao等,2012,Genetic analysisand molecular mapping of a new powdery mildewresistant gene Pm46in commonwheat,Theor Appl Genet 125,967~973)发表的定位在Pm48图谱上的标记Xmp510对应的序列以及ddRAD测序获得的多态标记序列搜索比对粗山羊草标记序列(http://probes.pw.usda.gov/WheatDMarker/phpblast/blast.php)。对相应的粗山羊草基因组序列进行SSR筛查,后用MACVECTORV8.0(Accelrys,UK)进行引物设计,随后进行亲本及抗感池间多态性筛选。利用定位到Pm48上的标记序列信息比对粗山羊草基因组序列,将位于周围的基因组序列进行SSR筛查,开发了71对gSSR标记,其中Xmp1089和Xmp1112在抗病亲本及抗感池间有一致多态,被成功定位到Pm48的遗传图谱上,分别距离抗病基因3.1cM和10.8cM(图2)。
新开发的标记信息见表1.
表1新开发的标记信息
5、小麦抗白粉病基因Pm48的染色体臂定位
为了对抗病基因Pm48进行染色体臂定位,Xmp1112被用于扩增小麦5DS缺失系,结果显示Xmp1112位于小麦5DS 0.63-0.67的臂中(图3)。根据Gao等,2012,Genetic analysisand molecular mapping of a new powdery mildew resistant gene Pm46in commonwheat,Theor Appl Genet 125,967~973的定位结果,Xcfd81也被定位到小麦5DS 0.63-0.67的臂中,由于基因Pm48位于标记Xmp1112和Xcfd81之间,因此将基因Pm48定位于小麦5DS 0.63-0.67的臂中(图2)。
6、Pm48的精确定位
为了精确定位Pm48,我们创建了一个4129个单株的(宁糯麦1号×Tabasco)F2群体,鉴定结果显示其中有1026个感病单株。这些感病单株移栽后完成整个生命周期的有671个家系,经鉴定均为纯合感病家系。利用位于基因两侧的共显性标记Xmp1112和Xcfd81对这671个纯合感病家系进行基因型检测,Xmp1112筛选到了12个重组家系,Xcfd81筛选到了8个重组家系,其中有一株重组体为双交换(表2)。利用位于中间位置的标记Xmp928和Xmp510对这19个重组体进行基因型分析,结果表明Xmp510有5个重组体,Xmp928没有重组体,仍与基因共分离(表2)。
表2 19个纯和感病重组体基因型分析和分类
注:0代表纯合宁糯麦1号基因型,2代表杂合基因型,3代表非纯合宁糯麦麦1号基因型。
实施例2、分子标记Xmp928在以Tabasco为亲本的杂交组合后代中的应用
为了向宁糯麦1号中转移Tabasco中的抗白粉病基因,本研究构建了Tabasco与宁糯麦1号回交群体并利用Xmp928进行筛选,Xmp928扩增结果如图4所示,回交群体包括杂合与纯合感病带型,标记分析结果预测抗感情况与实际抗性检测结果完全吻合,图中含有白色箭头所指的300bp带型的均为抗病植株,证明标记Xmp928可以应用于白粉病的转移,以及含有Tabasco抗白粉病基因的选择育种。
SEQUENCE LISTING
<110> 江苏省农业科学院
<120> 与小麦抗白粉病基因Pm48共分离的分子标记
<130> 0
<160> 12
<170> PatentIn version 3.1
<210> 1
<211> 26
<212> DNA
<213> 1
<220>
<221> Xmp928-F
<222> (1)..(26)
<223>
<400> 1
ccgctcgagg ccaccatgtt tcaact 26
<210> 2
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp928-R
<222> (1)..(18)
<223>
<400> 2
tctaccttta gctcctca 18
<210> 3
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp930-F
<222> (1)..(18)
<223>
<400> 3
tcacaaatct tggagcag 18
<210> 4
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp930-R
<222> (1)..(18)
<223>
<400> 4
ccaaaatacg catagcag 18
<210> 5
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp931-F
<222> (1)..(18)
<223>
<400> 5
ccatcctgct tgtagtga 18
<210> 6
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp931-R
<222> (1)..(18)
<223>
<400> 6
tctgctttga gccatcta 18
<210> 7
<211> 22
<212> DNA
<213> 人工
<220>
<221> Xmp936
<222> (1)..(22)
<223>
<400> 7
tgagatactc tgtcaggtgc tt 22
<210> 8
<211> 18
<212> DNA
<213> 人工
<220>
<221> Xmp936-R
<222> (1)..(18)
<223>
<400> 8
tccgccactt gatttacg 18
<210> 9
<211> 20
<212> DNA
<213> 人工
<220>
<221> Xmp1089-F
<222> (1)..(20)
<223>
<400> 9
tgacccctct agtgcttggt 20
<210> 10
<211> 20
<212> DNA
<213> 人工
<220>
<221> Xmp1089-R
<222> (1)..(20)
<223>
<400> 10
gctgtccgtg actatcctcc 20
<210> 11
<211> 20
<212> DNA
<213> 人工
<220>
<221> Xmp1112-F
<222> (1)..(20)
<223>
<400> 11
atgctgcatc gacatgaatc 20
<210> 12
<211> 20
<212> DNA
<213> 人工
<220>
<221> Xmp1112-R
<222> (1)..(20)
<223>
<400> 12
ttcctttcct tcaggaacca 20
Claims (4)
1.与小麦抗白粉病基因Pm48紧密连锁的分子标记引物,其特征在于,
该引物是与小麦白粉病抗性基因Pm48紧密连锁的CAPS标记Xmp928的引物,引物序列如下:
左引物:5’-GTAGTACGGCAATTTCTT-3’;
右引物:5’-TCTACCTTTAGCTCCTCA-3’。
2.权利要求1所述分子标记引物的应用,其特征在于,用权利要求1所述与小麦抗白粉病基因Pm48紧密连锁的分子标记引物PCR扩增小麦植株DNA,酶切产物用质量比8%的非变性聚丙烯酰胺胶进行电泳分离,并用银染法显色读取分离条带,如果出现Xmp928标记的300bp的带型,则表示该植株中小麦白粉病的抗性基因Pm48存在。
3.根据权利要求2所述分子标记引物的应用,其特征在于,是以Tabasco或其衍生品种为扩增小麦植株DNA对象的。
4.根据权利要求2或3所述分子标记引物的应用,其特征在于,
PCR反应体系10μl:
内含模板10~20ng、左右引物各2pmol、MgCl215nmol、0.1U Taq DNA聚合酶与1×PCR缓冲液;
反应循环程序如下:94℃预变性3min,然后按“94℃,30s;44℃,30s;72℃,1min”进行35个循环扩增,最后72℃延伸10min;
酶切反应体系8μl:
内含PCR产物DNA约50ng、1U限制性内切酶AccI、1×酶切缓冲液;酶切反应在37℃中酶切6小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610657312.9A CN106222285B (zh) | 2016-08-11 | 2016-08-11 | 与小麦抗白粉病基因Pm48共分离的分子标记 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610657312.9A CN106222285B (zh) | 2016-08-11 | 2016-08-11 | 与小麦抗白粉病基因Pm48共分离的分子标记 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106222285A CN106222285A (zh) | 2016-12-14 |
CN106222285B true CN106222285B (zh) | 2019-06-18 |
Family
ID=57548343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610657312.9A Active CN106222285B (zh) | 2016-08-11 | 2016-08-11 | 与小麦抗白粉病基因Pm48共分离的分子标记 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106222285B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107354232A (zh) * | 2017-09-18 | 2017-11-17 | 江苏省农业科学院 | 一种开发与小麦特定染色体区段连锁分子标记的方法 |
CN107653341B (zh) * | 2017-11-21 | 2021-03-23 | 山东农业大学 | 一种检测粗山羊草抗白粉病基因的kasp标记及应用 |
CN110305982B (zh) * | 2019-08-07 | 2022-05-27 | 石河子大学 | 小麦白粉病抗性基因mlxbd跨内含子分子标记及应用 |
CN110923352B (zh) * | 2019-12-02 | 2021-07-23 | 河南大学 | 小麦抗白粉病基因PmDTM的KASP标记及其应用 |
CN112048569B (zh) * | 2020-10-26 | 2022-08-02 | 江苏省农业科学院 | 与小麦低多酚氧化酶活性基因QPpo-5D共分离的分子标记 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1556218A (zh) * | 2003-12-31 | 2004-12-22 | 天津市农业生物技术研究中心 | 与小麦抗白粉病基因紧密连锁的scar分子标记 |
CN102433327A (zh) * | 2011-08-22 | 2012-05-02 | 江苏省农业科学院 | 与小麦Tabasco抗白粉病基因紧密连锁的分子标记 |
CN102533750A (zh) * | 2012-02-20 | 2012-07-04 | 中国科学院成都生物研究所 | 一种小麦抗白粉病基因分子标记引物及其用途 |
-
2016
- 2016-08-11 CN CN201610657312.9A patent/CN106222285B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1556218A (zh) * | 2003-12-31 | 2004-12-22 | 天津市农业生物技术研究中心 | 与小麦抗白粉病基因紧密连锁的scar分子标记 |
CN102433327A (zh) * | 2011-08-22 | 2012-05-02 | 江苏省农业科学院 | 与小麦Tabasco抗白粉病基因紧密连锁的分子标记 |
CN102533750A (zh) * | 2012-02-20 | 2012-07-04 | 中国科学院成都生物研究所 | 一种小麦抗白粉病基因分子标记引物及其用途 |
Non-Patent Citations (2)
Title |
---|
Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat;Haidong Gao,et al;《Theor Appl Genet》;20120604;967-973 * |
与小麦抗白粉病基因Pm48 紧密连锁分子标记的开发;付必胜 等;《作物学报》;20161115;307-312 * |
Also Published As
Publication number | Publication date |
---|---|
CN106222285A (zh) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020223625B2 (en) | Methods and compositions for peronospora resistance in spinach | |
Singh et al. | Chickpea improvement: role of wild species and genetic markers | |
Zhou et al. | Quantitative trait loci mapping for spike characteristics in hexaploid wheat | |
Kelly et al. | The role of RAPD markers in breeding for disease resistance in common bean | |
CN106222285B (zh) | 与小麦抗白粉病基因Pm48共分离的分子标记 | |
Minamiyama et al. | An SSR-based linkage map of Capsicum annuum | |
Patil et al. | Quantitative trait loci associated with anthracnose resistance in sorghum | |
Barbieri et al. | QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L. | |
Yeri et al. | Development of NIL s from heterogeneous inbred families for validating the rust resistance QTL in peanut (A rachis hypogaea L.) | |
Bungartz et al. | Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley | |
BRPI0814342A2 (pt) | métodos para identificar a primeira planta de soja ou germoplasma que apresenta toleráncia, toleráncia melhorada, ou susceptibilidade ao complexo podridão de carvão / seca (crdc), plantas de soja ou germoplasmas introgredidos | |
CN104293900B (zh) | 与玉米抗旱性相关的单体型及其分子标记 | |
Pathania et al. | Marker-assisted selection in disease resistance breeding: A boon to enhance agriculture production | |
KR20220007592A (ko) | 흰가루병 저항성 고추류 식물 | |
AU2014268142B2 (en) | Disease resistance loci in onion | |
US10568280B2 (en) | Loci associated with charcoal rot drought complex tolerance in soybean | |
WO2022056767A1 (zh) | 水稻早穗不减产材料中显性早穗相关基因的分子标记及其应用 | |
Li et al. | Identification of quantitative trait loci for bolting and flowering times in Chinese kale (Brassica oleracea var. alboglabra) based on SSR and SRAP markers | |
Aliakbari Sadeghabad et al. | Phenotypic and genetic diversity of leaf rust resistance in wheat wild relatives | |
Archana et al. | Quantitative trait loci for stay‐greenness and agronomic traits provide new insights into chlorophyll homeostasis and nitrogen use in rice | |
US20200291422A1 (en) | Cucumber Mosaic Virus Resistant Pepper Plants | |
Asare et al. | Identification of New Sources of Rust Resistance in Cowpea (Vigna Unguiculata L. Walp) Germplasm Using Simple Sequence Repeat Markers | |
CA2986894C (en) | Loci associated with charcoal rot drought complex tolerance in soybean | |
Fahliani et al. | Heritability of some morphological and qualitative traits of rice and identification of their related quantitative trait loci (QTLs) using microsatellite marker | |
AU2018312486B2 (en) | Cucumber plants with improved pest resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |