CN106221146A - 石墨烯/pbs复合材料 - Google Patents

石墨烯/pbs复合材料 Download PDF

Info

Publication number
CN106221146A
CN106221146A CN201610688924.4A CN201610688924A CN106221146A CN 106221146 A CN106221146 A CN 106221146A CN 201610688924 A CN201610688924 A CN 201610688924A CN 106221146 A CN106221146 A CN 106221146A
Authority
CN
China
Prior art keywords
graphene
pbs
composite
pbs composite
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610688924.4A
Other languages
English (en)
Other versions
CN106221146B (zh
Inventor
崔春娜
黄继涛
颜桂炀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Normal University
Original Assignee
Ningde Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Normal University filed Critical Ningde Normal University
Priority to CN201610688924.4A priority Critical patent/CN106221146B/zh
Priority to CN201810297923.6A priority patent/CN108659474B/zh
Publication of CN106221146A publication Critical patent/CN106221146A/zh
Application granted granted Critical
Publication of CN106221146B publication Critical patent/CN106221146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Abstract

一种石墨烯/PBS复合材料,所述石墨烯/PBS复合材料为薄片状结构,且具有光滑的表面结构,所述石墨烯/PBS复合材料包括PBS基体以及石墨烯粉体,所述石墨烯粉体均匀分散于所述PBS基体中,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%~2.0%。所述石墨烯/PBS复合材料具有更好的力学性能和耐热性能,其相对于PBS材料均具有更好的断裂伸长率,且杨氏模量显著降低。

Description

石墨烯/PBS复合材料
技术领域
本发明涉及一种石墨烯/PBS复合材料。
背景技术
聚丁二酸丁二醇酯(PBS),也称聚丁烯琥珀酸酯或聚琥珀酸丁二酯,它的主链中含有易水解的酯键,且主链柔顺,是一种具有完全生物降解性能的半晶热塑性树脂,熔点114℃,结晶度在40~60%之间。它的性能介于聚乙烯和聚丙烯之间,可直接作为塑料加工。它具有良好的加工性能,可以在普通的设备上进行成型加工,也可以进行注塑、吹塑、吹膜、吸塑、层压、发泡、纺丝等成型加工。聚丁二酸丁二醇酯具有良好的生物可降解性能,可作为全生物可降解材料,应用于餐饮用具、日杂用品、农用材料、生物医用高分子材料等方面,也可以作为材料玩具、家电、日化、食品、药品的包装材料。
石墨烯(GE)具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由σ键连接,结合方式为sp2杂化,这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。
因此,本发明想要通过石墨烯提高聚丁二酸丁二醇酯的力学性能和耐热性,以扩大其应用范围。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种石墨烯/PBS复合材料。
为解决上述技术问题,本发明采用了以下技术措施:
一种石墨烯/PBS复合材料,所述石墨烯/PBS复合材料为薄片状结构,且具有光滑的表面结构,所述石墨烯/PBS复合材料包括PBS基体以及石墨烯粉体,所述石墨烯粉体均匀分散于所述PBS基体中,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%~2.0%。
作为进一步改进的,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%-0.7%。
作为进一步改进的,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.7%。
作为进一步改进的,所述石墨烯/PBS复合材料的断裂伸长率为20%以上。
作为进一步改进的,所述石墨烯/PBS复合材料的杨氏模量为260MPa。
作为进一步改进的,所述石墨烯/PBS复合材料通过下列方法获得:
S1,将PBS冷冻处理后并快速粉碎;
S2,将石墨烯均匀分散在溶剂中形成混合液;
S3,将粉碎后的PBS加入所述混合液中搅拌均匀,使石墨烯均匀的覆盖在PBS的表面;
S4,将步骤S3所获得的产物干燥;以及
S5,将步骤S4所获得的产物置于120℃的双辊开炼机进行包辊,直到获得表面光滑均匀的样品后逐渐降低辊温到90℃下片,获得石墨烯/PBS复合薄膜。
作为进一步改进的,所述溶剂为易挥发的有机溶剂。
作为进一步改进的,在步骤S1中,所述将PBS冷冻处理后并快速粉碎的步骤包括:
S11,取适量PBS在液氮中冷冻30min;以及
S12,快速在粉碎机中粉碎,并保存于冰箱中待用。
作为进一步改进的,所述薄片状结构的厚度为0.2mm~2mm。
作为进一步改进的,所述石墨烯/PBS复合材料的吸热为75~78℃。
本发明提供石墨烯/PBS复合材料具有以下优点:其一,通过将高分子量的PBS与石墨烯复合可以显著提高所述石墨烯/PBS复合材料力学性能和耐热性能,所述石墨烯/PBS复合材料相对于PBS材料均具有更好的断裂伸长率,且杨氏模量显著降低;其二,所述石墨烯/PBS复合材料相还可以具有良好的导热及导电性能;其三,通过将高分子量的PBS冷冻粉碎,从而可以使PBS共混更均匀。
附图说明
图1为本发明实施例的溶剂-熔融法相结合制备石墨烯/PBS复合材料的方法的流程图。
图2为本发明实施例及对比例提供的石墨烯/PBS复合材料及PBS材料的吸热曲线图。
图3为本发明实施例及对比例提供的石墨烯/PBS复合材料及PBS材料的红外图谱。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
请参见图1,本发明实施例提供一种溶剂-熔融法相结合制备石墨烯/PBS复合材料的方法,包括以下步骤:
S1,将PBS冷冻处理后并快速粉碎;
S2,将石墨烯均匀分散在溶剂中形成混合液;
S3,将粉碎后的PBS加入所述混合液中搅拌均匀,使石墨烯均匀的覆盖在PBS的表面;
S4,将步骤S3所获得的产物干燥;以及
S5,将步骤S4所获得的产物置于120℃的双辊开炼机进行包辊,直到获得表面光滑均匀的样品后逐渐降低辊温到90℃下片,获得石墨烯/PBS复合薄膜。
在步骤S1中,所述将PBS冷冻处理后并快速粉碎的步骤包括:
S11,取适量PBS在液氮中冷冻30min;以及
S12,快速在粉碎机中粉碎,并保存于冰箱中待用。
在步骤S2中,所述将石墨烯均匀分散在溶剂中形成混合液的步骤包括:将石墨烯放入溶剂里进行超声震荡10-36h,使石墨烯均匀的分散在溶剂中。
在步骤S2中,所述溶剂为易挥发的有机溶剂,如,乙醇、甲醇、丙酮等有机溶剂。
在步骤S4中,所述将步骤S3所获得的产物干燥的步骤包括:将步骤S3所获得的产物放入40℃的真空干燥箱内干燥24h使样品完全干燥。
在步骤S5中,所述双辊开炼机中双棍的间距为0.2mm~2.0mm,从而可以获得厚度为0.2mm~2.0mm的石墨烯/PBS复合薄膜。所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%~2.0%。优选的,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.7%~1.0%。更优选的,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.7%~0.9%。
实施例1:
取99.9000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;准确称量0.1000g石墨烯放入无水乙醇中烧杯里进行超声震荡24h,使石墨烯均匀的分散在无水乙醇中;将粉碎的PBS置于烧杯,均匀搅拌6个小时使石墨烯均匀的覆盖在PBS的表面;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS复合材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
实施例2:
取99.7000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;准确称量0.3000g石墨烯放入无水乙醇中烧杯里进行超声震荡24h,使石墨烯均匀的分散在无水乙醇中;将粉碎的PBS置于烧杯,均匀搅拌6个小时使石墨烯均匀的覆盖在PBS的表面;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS复合材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
实施例3:
取99.5000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;准确称量0.5000g石墨烯放入无水乙醇中烧杯里进行超声震荡24h,使石墨烯均匀的分散在无水乙醇中;将粉碎的PBS置于烧杯,均匀搅拌6个小时使石墨烯均匀的覆盖在PBS的表面;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS复合材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
实施例4:
取99.3000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;准确称量0.7000g石墨烯放入无水乙醇中烧杯里进行超声震荡24h,使石墨烯均匀的分散在无水乙醇中;将粉碎的PBS置于烧杯,均匀搅拌6个小时使石墨烯均匀的覆盖在PBS的表面;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS复合材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
实施例5:
取99.1000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;准确称量0.9000g石墨烯放入无水乙醇中烧杯里进行超声震荡24h,使石墨烯均匀的分散在无水乙醇中;将粉碎的PBS置于烧杯,均匀搅拌6个小时使石墨烯均匀的覆盖在PBS的表面;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS复合材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
对比例:
取100.0000gPBS在液氮中冷冻30min,快速在粉碎机中粉碎,保存于冰箱中待用;将粉碎的PBS置于烧杯,均匀搅拌6个小时;将得到的样品放入40℃的真空干燥箱内干燥24h使样品完全干燥;将PBS材料置于120℃的双辊开炼机进行包辊,两辊之间距离为0.5mm,当获得光滑均匀的样品表面后逐渐降低辊温,于90℃下片,获得厚度为0.5mm的样品薄膜。
请参照图2-3及表1,从图2中可以看出,石墨烯/PBS复合材料相对于PBS材料的吸热峰值具有显著的升高,从65℃左右升高到75~78℃左右。从图3可以看出,石墨烯/PBS复合材料与PBS材料的红外曲线基本吻合。从表1可以看出,石墨烯/PBS复合材料相对于PBS材料均具有更好的断裂伸长率,且杨氏模量显著降低,其中,石墨烯的质量含量为0.1%-0.7%变化最为显著。最后,所述石墨烯/PBS复合材料还具有良好的导电性能。
表1为实施例和对比例中获得的样品的物理参数
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

1.一种石墨烯/PBS复合材料,其特征在于,所述石墨烯/PBS复合材料为薄片状结构,且具有光滑的表面结构,所述石墨烯/PBS复合材料包括PBS基体以及石墨烯粉体,所述石墨烯粉体均匀分散于所述PBS基体中,所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%~2.0%。
2.根据权利要求1所述石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.1%-0.7%。
3.根据权利要求2所述的石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合薄膜中石墨烯的质量含量为0.7%。
4.根据权利要求3所述的石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合材料的断裂伸长率为20%。
5.根据权利要求3所述的石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合材料的杨氏模量为260MPa以上。
6.根据权利要求1所述的石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合材料通过下列方法获得:
S1,将PBS冷冻处理后并快速粉碎;
S2,将石墨烯均匀分散在溶剂中形成混合液;
S3,将粉碎后的PBS加入所述混合液中搅拌均匀,使石墨烯均匀的覆盖在PBS的表面;
S4,将步骤S3所获得的产物干燥;以及
S5,将步骤S4所获得的产物置于120℃的双辊开炼机进行包辊,直到获得表面光滑均匀的样品后逐渐降低辊温到90℃下片,获得石墨烯/PBS复合薄膜。
7.根据权利要求6所述的石墨烯/PBS复合材料,其特征在于:所述溶剂为易挥发的有机溶剂。
8.根据权利要求6所述的石墨烯/PBS复合材料,其特征在于:在步骤S1中,所述将PBS冷冻处理后并快速粉碎的步骤包括:
S11,取适量PBS在液氮中冷冻30min;以及
S12,快速在粉碎机中粉碎,并保存于冰箱中待用。
9.根据权利要求1所述的石墨烯/PBS复合材料,其特征在于:所述薄片状结构的厚度为0.2mm~2mm。
10.根据权利要求1所述的石墨烯/PBS复合材料,其特征在于:所述石墨烯/PBS复合材料的吸热为75~78℃。
CN201610688924.4A 2016-08-19 2016-08-19 石墨烯/pbs复合材料 Active CN106221146B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610688924.4A CN106221146B (zh) 2016-08-19 2016-08-19 石墨烯/pbs复合材料
CN201810297923.6A CN108659474B (zh) 2016-08-19 2016-08-19 一种石墨烯/pbs复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610688924.4A CN106221146B (zh) 2016-08-19 2016-08-19 石墨烯/pbs复合材料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810297923.6A Division CN108659474B (zh) 2016-08-19 2016-08-19 一种石墨烯/pbs复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106221146A true CN106221146A (zh) 2016-12-14
CN106221146B CN106221146B (zh) 2018-05-15

Family

ID=57552438

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610688924.4A Active CN106221146B (zh) 2016-08-19 2016-08-19 石墨烯/pbs复合材料
CN201810297923.6A Active CN108659474B (zh) 2016-08-19 2016-08-19 一种石墨烯/pbs复合薄膜的制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810297923.6A Active CN108659474B (zh) 2016-08-19 2016-08-19 一种石墨烯/pbs复合薄膜的制备方法

Country Status (1)

Country Link
CN (2) CN106221146B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317800A (zh) * 2016-10-10 2017-01-11 宁德师范学院 溶剂‑熔融法相结合制备石墨烯/pbs复合材料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604051A (zh) * 2012-01-17 2012-07-25 陕西科技大学 一种聚丁二酸丁二醇酯及其制备方法
CN104062867A (zh) * 2013-03-22 2014-09-24 卡西欧电子工业株式会社 热转印印刷薄板制造装置以及制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604051A (zh) * 2012-01-17 2012-07-25 陕西科技大学 一种聚丁二酸丁二醇酯及其制备方法
CN104062867A (zh) * 2013-03-22 2014-09-24 卡西欧电子工业株式会社 热转印印刷薄板制造装置以及制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIN WANG,ET AL.: "Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites", 《COMPOSITES SCIENCE AND TECHNOLOGY》 *
杜学冲: "分散相诱导聚丁二酸丁二醇酯微观结构变化与水解行为的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317800A (zh) * 2016-10-10 2017-01-11 宁德师范学院 溶剂‑熔融法相结合制备石墨烯/pbs复合材料的方法

Also Published As

Publication number Publication date
CN106221146B (zh) 2018-05-15
CN108659474B (zh) 2020-03-10
CN108659474A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
Bootklad et al. Biodegradation of thermoplastic starch/eggshell powder composites
Łopusiewicz et al. New poly (lactic acid) active packaging composite films incorporated with fungal melanin
Bher et al. Toughening of poly (lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets
Chun et al. Utilization of cocoa pod husk as filler in polypropylene biocomposites: Effect of maleated polypropylene
TWI443140B (zh) 聚丁二酸丁二酯(pbs)及改質聚丁二酸丁二酯(mpbs)製成之熱成形物件
Paszkiewicz et al. Environmentally friendly polymer blends based on post-consumer glycol-modified poly (ethylene terephthalate)(PET-G) foils and poly (Ethylene 2, 5-Furanoate)(PEF): Preparation and characterization
Lim et al. Preparation and characterization of composites based on polylactic acid and beeswax with improved water vapor barrier properties
Kumar et al. Dielectric, mechanical, and thermal properties of bamboo–polylactic acid bionanocomposites
Ilangovan et al. Dehulled coffee husk-based biocomposites for green building materials
Swamy et al. Sodium alginate and poly (ethylene glycol) blends: thermal and morphological behaviors
Paszkiewicz et al. Improved Thermal Conductivity of Poly (trimethylene terephthalate‐block‐poly (tetramethylene oxide) Based Nanocomposites Containing Hybrid Single‐Walled Carbon Nanotubes/Graphene Nanoplatelets Fillers
Hao et al. Thermal, mechanical, and rheological properties of poly (propylene carbonate) cross-linked with polyaryl polymethylene isocyanate
CN106221146A (zh) 石墨烯/pbs复合材料
Gaidukovs et al. Enhanced mechanical, conductivity, and dielectric characteristics of ethylene vinyl acetate copolymer composite filled with carbon nanotubes
Tian et al. Structure and properties of soy protein films plasticized with hydroxyamine
Musioł et al. (Bio) degradable polymeric materials for sustainable future—Part 3: Degradation studies of the PHA/wood flour-based composites and preliminary tests of antimicrobial activity
CN106317800A (zh) 溶剂‑熔融法相结合制备石墨烯/pbs复合材料的方法
Sasimowski et al. Analysis of selected properties of injection moulded sustainable biocomposites from poly (butylene succinate) and wheat bran
Wang et al. Improvement of gas barrier properties for biodegradable poly (butylene adipate-co-terephthalate) nanocomposites with MXene nanosheets via biaxial stretching
Vishnu Chandar et al. Melt compounded polylactic acid-hexagonal boron nitride-aluminum oxide hybrid composites for electronic applications: impact of hybrid fillers on thermophysical, dielectric, optical, and hardness properties
Vishnu Chandar et al. High thermal conductivity, UV-stabilized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hybrid composites for electronic applications: effect of different hybrid fillers on structural, thermal, optical, and mechanical properties
CN106243463B (zh) 一种聚合物/纳米石墨片/二氧化硅复合材料的制备方法
Go et al. Enhanced positive temperature coefficient intensity and reproducibility with synergistic effect of 0-D and 2-D filler composites
Huang et al. Supercritical fluids-assisted processing using CO2 foaming to enhance the dispersion of nanofillers in poly (butylene succinate)-based nanocomposites and the conductivity
JP2010051799A (ja) 食器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant