CN106216747A - 一种整体叶轮五轴联动数控刀轨路径加工方法 - Google Patents

一种整体叶轮五轴联动数控刀轨路径加工方法 Download PDF

Info

Publication number
CN106216747A
CN106216747A CN201610583278.5A CN201610583278A CN106216747A CN 106216747 A CN106216747 A CN 106216747A CN 201610583278 A CN201610583278 A CN 201610583278A CN 106216747 A CN106216747 A CN 106216747A
Authority
CN
China
Prior art keywords
cutter
cutting
blade
cutter rail
surplus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610583278.5A
Other languages
English (en)
Inventor
刘春利
吴立勋
范庆林
刘胜永
罗云龙
郝龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Normal University
Original Assignee
Hebei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Normal University filed Critical Hebei Normal University
Priority to CN201610583278.5A priority Critical patent/CN106216747A/zh
Publication of CN106216747A publication Critical patent/CN106216747A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers

Abstract

本发明公开了一种整体叶轮五轴联动数控刀轨路径加工方法。包括以下步骤:(1)顶部定轴开粗;(2)整体叶轮开粗;(3)顶部精加工;(4)主叶片精加工;(5)分流叶片精加工;(6)叶毂精加工;(7)主叶片圆角清根;(8)分流叶片圆角清根。本发明相对于以往的叶轮加工刀路设计,刀轨轨迹不仅思路明确,刀轨工艺简便可行,避免了干涉情况。尤其是经优化的精加工工序,选择了不同的刀具进行两步工序的加工方法,即大刀加工叶片,小刀加工根部圆角。这样不会因为刀具的负载过大而产生损坏,不仅达到整体叶轮的加工精度,而且提高了整体叶轮的加工效率,保证了刀具的安全性。

Description

一种整体叶轮五轴联动数控刀轨路径加工方法
技术领域
本发明涉及一种机械加工方法,具体是一种整体叶轮五轴联动数控刀轨路径加工方法。
背景技术
在制造业全球范围内竞争更加激烈的背景下,当前五轴联动数控加工技术,因其加工效率与加工精度高,机床可以实现的功能强大等特点,得到业内人士的普遍青睐。但是,由于五轴联动数控机床所使用的刀具运动轨迹非常复杂,路径工艺和参数设置因加工的工件不同差别较大,所以数控编程也比较困难。整体叶轮是航空、航天、航海发动机的关键核心部件。随着科学技术的迅速发展,整体叶轮的形状日趋复杂,其加工难度越来越高,使用五轴联动数控机床加工整体叶轮时,由于叶轮表面曲率变化复杂,可能出现的干涉情况多种多样。目前数控加工中主要的刀具干涉分为过切干涉、碰撞干涉和超程干涉三种类型。所谓过切干涉,是指在加工叶轮的过程中,刀具切到不该切到的零件部位。所谓碰撞干涉是指加工叶轮的过程中,刀刃在切削曲面的同时刀杆碰到曲面的某处,使刀具与曲面产生相互碰撞现象。所谓超程干涉是指加工叶轮的过程中,刀位点的坐标值和相位角超出了数控机床的工作行程。无论是哪种干涉都将影响整体叶轮的加工精度。同时刀具在加工中也因干涉现象而磨损,刀具寿命缩短,增加了刀具成本,降低了加工效率。
发明内容
本发明的目的在于提供一种整体叶轮五轴联动数控刀轨路径加工方法,使用五轴联动机床加工整体叶轮时能够避免刀具干涉,提高加工效率,提高叶轮表面质量,并降低刀具的使用成本。
本发明的构思是这样的。使用UG NX软件在进行刀路轨迹的生成过程避免干涉所采取的加工方法,这样会大大减少加工程序的检测与反复修改,简化加工步骤。其特征在于:由传统的普通刀轨开粗、精加工两步走的加工方式优化成刀轨开粗、精加工和圆角清根三步走的加工方式。为什么将精加工增加了一步呢?在精加工时,普遍加工方法一般采用比根部圆角半径要小一点的铣刀直接进行叶片与根部圆角的加工。这时半径较小的铣刀进行精加工时,会产生刀具路径安排死板、加工效率低、刀具强度差等问题。优化后,将根据整体叶轮叶片与根部圆角的具体情况,选择两种不同半径的铣刀分别进行叶片与根部圆角的加工。两种不同半径的铣刀刀具路径加工方法的设置使精加工增加了一步。具体的采用开粗的刀轨轨迹加工方式有顶部定轴开粗+叶轮整体开粗加工工步,采用精加工的刀轨轨迹加工方式有顶部精加工+主叶片精加工+分流叶片精加工+叶毂精加工工步,采用圆角清根的刀轨轨迹有主叶片圆角清根+分流叶片圆角清根加工工步。
具体的,本发明所述整体叶轮五轴联动数控刀轨路径加工方法包括以下步骤:
(1)顶部定轴开粗:使用UG NX软件在相对开阔的顶部定轴开粗时创建型腔铣加工程序时,选用D16R0.2的端铣刀,这样会大大提高加工效率,设置外圆角为修剪边界,切削层顶部为叶轮顶部,底部至叶片前缘圆角处,选任一叶片外端为有效进刀点,设置好必要的切削参数,自动生成刀轨轨迹;
(2)整体叶轮开粗:选用D10mm的球型铣刀,使用UG NX软件设置好驱动方法,前缘沿叶片方向相切延伸6mm,径向延伸4mm,后缘与前缘一样,设置好切削层参数,刀轨光顺度30%,叶片余量0.3mm,叶毂余量0.3mm,自动生成刀轨轨迹,然后进行绕点旋转,复制出剩余几处的刀轨路线;
(3)顶部精加工:选用D8mm球型铣刀,使用UG NX软件指定顶部外缘角为修剪边界,设置切削层,切削范围同粗加工时一致,设置切削参数,切削方向顺铣,切削顺序深度优先,勾选在边缘滚动刀具,余量为0mm,内外公差0.01mm,自动生成刀轨路线;
(4)主叶片精加工:选用D8mm的球型铣刀,使用UG NX软件经测量叶片根圆角半径为3.3mm,选用D8mm球型铣刀,一是为了提高加工效率,二是为了避免使用小直径球型铣刀的刀具强度不够,后期有单独的清根工序,按经验进行驱动设置,要加工的几何体选择主叶片,要切削的面选择左右面+前缘的方式,起点为后缘,切削层设置为从包覆插补至叶毂,切削层参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长为0.5mm,自动生成刀轨路线,然后进行绕点旋转,复制出剩余几个主叶片的刀轨路线;
(5)分流叶片精加工:采用和主叶片精加工相同的D8mm球型铣刀,使用UG NX软件按经验进行驱动设置,选择要加工的几何体为分流叶片,要切削的面选择左右面+前缘的方式,起点为后缘,切削层设置为从包覆插补至叶毂,切削层参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长为0.5mm,自动生成刀轨路线,然后进行绕点旋转,复制出剩余几个分流叶片的刀轨路线;
(6)叶毂精加工:同样采用D8mm球型铣刀,使用UG NX软件按经验进行驱动设置,前缘沿叶片方向,相切延伸4mm,径向延伸2mm,后缘相切延伸1mm,径向延伸1mm,步距恒定最大距离0.35mm,切削参数设置,叶毂余量0mm,内外公差为0.01mm,自动生成刀轨,然后绕点旋转,复制出剩余几个叶毂的刀轨路线;
(7)主叶片圆角清根:选用D6mm的球型铣刀,原因是根部圆角为R3.3mm,用D6的球型铣刀能够完全清根,使用UG NX软件根据经验进行驱动方法设置,要加工的几何体选主叶根圆角,要切削的面选用左右面+前缘的方式,驱动模式为参考刀具,参考刀具直径设置为9mm,刀轨上的重叠与叶片上的重叠量为0.5mm,起点为后缘。切削参数余量设置为0mm,自动生成刀轨,然后绕点旋转,复制出剩余几个主叶片根部圆角的刀轨路线;
(8)分流叶片圆角清根:同样选用D6mm的球型铣刀,使用UG NX软件参数设定同主叶片圆角清根相同,驱动方法设置时要加工的几何体选为分流叶片圆角,自动生成刀轨,然后绕点旋转,复制出剩余几个分流叶片圆角的刀轨路线。
本发明所使用的UG NX软件是由美国UGS公司开发的功能强大的三维CAD/CAM/CAE系统软件,是数控加工领域常用的软件,是国内外公开销售的软件。
本发明取得的有益效果是:本发明相对于以往的叶轮加工刀路设计,刀轨轨迹不仅思路明确,刀轨工艺简便可行,没有出现干涉情况。尤其是经优化的精加工工序,选择了不同的刀具进行两步工序的加工方法,即大刀加工叶片,小刀加工根部圆角。这样不会因为刀具的负载过大而产生损坏,不仅仅达到整体叶轮的加工精度,而且提高了整体叶轮的加工效率,保证了刀具的安全性。
附图说明
图1是整体叶轮综合示意图。
图2是顶部定轴开粗铣刀走刀轨迹。
图3是整体叶轮开粗铣刀走刀轨迹。
图4是顶部精加工铣刀走刀轨迹。
图5是主叶片精加工铣刀走刀轨迹。
图6是分流叶片精加工铣刀走刀轨迹。
图7是叶毂精加工铣刀走刀轨迹。
图8是主叶片圆角清根精加工铣刀走刀轨迹。
图9是分流叶片圆角清根精加工铣刀走刀轨迹。
图10是R4mm铣刀加工R3.3mm圆弧效果示意图。
图11是R3mm铣刀加工R3.3mm圆弧效果示意图。
附图标记:1、顶部定轴 2、主叶片 3、分流叶片 4、铣刀 。
具体实施方式
以下实施例使用UG NX软件结合具体附图图示,进一步说明本发明。
图1为整体叶轮综合示意图,此叶轮有六个主叶片与六个分流叶片相间环形排列而成,叶轮基本尺寸为:顶部外圆直径45mm,底部外圆直径176mm,中心孔径17.6mm,叶轮总高82mm,顶部至主叶片前缘9mm,主叶片与分流叶片最小距离3.6mm,叶片根部圆角最小曲率半径R3.3mm。叶片最薄处0.8mm。
此整体叶轮五轴联动数控刀轨路径加工过程如下:
(1)顶部定轴开粗:因为叶轮叶片部分形状复杂,而顶部却相对开阔,所以我们首先进行顶部定轴开粗,这样可以大大提高加工效率。我们不采用传统直接五轴开粗方法,因为叶轮的顶部比较空旷,传统直接五轴采用的刀具直径往往较小(比如D3~D6),所以会浪费时间,效率低下,并且因为进刀量大,容易损坏刀具。因此使用UG NX软件在相对开阔的顶部定轴开粗时创建型腔铣加工程序时,我们选用D16R0.2的端铣刀,这样会提高顶部定轴开粗加工效率。设置顶部外圆角为修剪边界。切削层顶部为叶轮顶部,底部至叶片前缘圆角处,选任一叶片外端为有效进刀点。切削模式为跟随周边,每刀切削深度选为恒定,最大距离为0.3mm,切削方式为顺铣,切削顺序为深度优先,刀路方向向内,部件侧面余量为0.3mm,毛坯余量为0.5mm,检查余量于修建余量均为0mm,内外公差设置及0.03mm,进刀类型选螺旋进刀,刀具转速4000rpm~6000rpm,切削进给速1000mmpm~3000mmpm,进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmpm~10000mmpm,设置好所有必要的切削参数,自动生成刀轨轨迹如图2所示。
(2)整体叶轮开粗:我们创建多叶片粗加工程序,选用D8mm的球头铣刀。使用UG NX软件设置好驱动方法,前缘沿叶片方向相切延伸6mm,径向延伸4mm,后缘与前缘一样,切削模式为往复上升,切削方式为顺铣,步距恒定,最大距离为刀具的35%。设置切削层,深度模式为从包覆插补至至叶毂,每刀深度恒定,距离为刀具直径的30%,设置切削层参数,刀轨光顺度30%,叶片余量0.3mm,叶毂余量0.3mm,毛坯余量和包覆余量均为0mm,内外公差均为0.03mm,最大步长为刀具直径的30%。非切削移动参数设置,开放区域进刀为圆弧—平行于刀具,半径为刀具直径的50%,圆弧角度30°,旋转角度0°,根据部件/检查设置进刀类型插削,进刀位为距离,高度为刀具直径的200%,刀具转速4000rpm~6000rpm,切削进给速1000mmpm~3000mmpm,进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmp~m10000mmpm,自动生成刀轨如图3所示,然后进行绕点旋转,复制出剩余五处的刀轨路线。
(3)顶部精加工:我们创建顶部深度精加工轮廓程序,选用D8mm的球形铣刀。使用UG NX软件指定顶部外圆角为修剪边界。设置切削层,切削范围同粗加工时一致,陡峭空间范围选无,合并距离3mm,最小切削长度1mm,没到的公共深度为恒定,最大距离0.3mm。设置切削参数,切削方向顺铣,切削顺序深度优先,勾选在边缘滚动刀具,部件侧面余量、检查余量和修剪余量均为0mm,内外公差0.01mm。主轴转速为4000rpm,进给速率为1200mmpm,自动生成刀轨如图4所示。
(4)主叶片精加工:我们创建主叶片精加工程序,选用D8mm球形铣刀。使用UG NX软件经测量叶片根圆角半径为3.3mm,选用D8mm的球形铣刀为宜,一是为了提高加工效率,二是为了避免使用D6mm球形铣刀的刀具强度不够,后期我们会对叶片根部圆角单独进行清根。继续进行驱动设置,要加工的几何体选择主叶片,要切削的面选择左右面+前缘的方式,起点为后缘。切削层设置为从包覆插补至叶毂。切削参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长0.5mm,内外公差均为0.01mm。进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmpm~10000mmpm,主轴转速为4000rpm,进给速率为1200mmpm。自动生成刀轨如图5所示,然后进行绕点旋转,复制出剩余五个叶片的刀轨路线。
(5)分流叶片精加工:分流叶片加工与主叶片加工基本一致,我们创建分流叶片精加工程序,同样选用D8mm球形铣刀。使用UG NX软件继续进行驱动设置,要加工的几何体选择分流叶片,要切削的面选择左右面+前缘的方式,起点为后缘。切削层设置为从包覆插补至叶毂。切削参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长0.5mm,内外公差均为0.01mm。进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmpm~10000mmpm,主轴转速为4000rpm,进给速率为1200mmpm,自动生成刀轨如图6所示,然后进行绕点旋转,复制出剩余五个叶片的刀轨路线。
(6)叶毂精加工:叶毂也叫流道,我们创建叶毂精加工程序,选用D8mm的球头铣刀。使用UG NX软件继续进行驱动方法设置,前缘沿叶片方向,相切延伸4mm,径向延伸2mm,后缘相切延伸1mm,径向延伸1mm,步距恒定最大距离0.35mm。切削参数设置,叶片余量叶毂余量均为0mm,内外公差0.01mm。进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmpm~10000mmpm,主轴转速为4000rpm,进给速率为1200mmpm,自动生成刀轨如图7所示,然后绕点旋转,复制出剩余五个流道的刀轨路线。
(7)主叶片圆角清根:我们创建主叶片圆角清根程序,选用D6mm的球形铣刀,原因是根部圆角为R3.3mm。使用UG NX软件继续进行驱动方法设置,要加工的几何体选主叶根圆角,要切削的面选用左右面+前缘的方式,驱动模式为参考刀具,参考刀具直径设置为9mm,刀轨上的重叠与叶片上的重叠为0.5mm,起点为后缘。切削参数设置余量为0mm,内外公差均为0.01mm。进刀速率800mmpm~1500mmpm,退刀速率2000mmpm~4000mmpm,转移速率6000mmpm~10000mmpm,主轴转速为4000rpm,进给速率为1200mmpm,自动生成刀轨如图8所示,然后绕点旋转,复制出剩余五个主叶片根部圆角的刀轨路线。
(8)分流叶片圆角清根:同样选用D6mm的球型铣刀。使用UG NX软件参数设定同主叶片圆角清根基本相同,只是驱动方法设置时要加工的几何体选为分流叶片圆角即可。自动生成刀轨如图9所示,然后绕点旋转,复制出剩余五个分流叶片圆角的刀轨路线。
特别说明在圆角清根时我们不采用传统R4mm的圆弧铣刀,而是采用R3mm的圆弧铣刀。原因在于用R4mm铣刀加工R3.3mm圆弧时,由于受刀具半径限制,有未加工的部分,即清根未彻底,效果示意图见图10所示。但如果用R3mm铣刀加工R3.3mm圆弧时,由于刀具半径小于圆弧半径,能够做到完全切削,即清根能够彻底,效果示意图见图11所示。
通过以上数控刀轨路径加工方法的具体实施,我们会总结出该加工方法在使用五轴联动机床加工整体叶轮时能够避免刀具干涉,提高加工效率,提高叶轮表面质量,并降低刀具的使用成本。

Claims (1)

1.一种整体叶轮五轴联动数控刀轨路径加工方法,其特征在于包括以下步骤:
(1)顶部定轴开粗:使用UG NX软件在相对开阔的顶部定轴开粗时创建型腔铣加工程序时,选用D16R0.2的端铣刀,设置外圆角为修剪边界,切削层顶部为叶轮顶部,底部至叶片前缘圆角处,选任一叶片外端为有效进刀点,设置好必要的切削参数,自动生成刀轨轨迹;
(2)整体叶轮开粗:选用D10mm的球型铣刀,使用UG NX软件设置好驱动方法,前缘沿叶片方向相切延伸6mm,径向延伸4mm,后缘与前缘一样,设置好切削层参数,刀轨光顺度30%,叶片余量0.3mm,叶毂余量0.3mm,自动生成刀轨轨迹,然后进行绕点旋转,复制出剩余几处的刀轨路线;
(3)顶部精加工:选用D8mm球型铣刀,使用UG NX软件指定顶部外缘角为修剪边界,设置切削层,切削范围与粗加工时一致,设置切削参数,切削方向顺铣,切削顺序深度优先,勾选在边缘滚动刀具,余量为0mm,内外公差0.01mm;
自动生成刀轨路线;
(4)主叶片精加工:选用D8mm的球型铣刀,使用UG NX软件经测量叶片根圆角半径为3.3mm,选用D8mm球型铣刀,按经验进行驱动设置,要加工的几何体选择主叶片,要切削的面选择左右面+前缘的方式,起点为后缘,切削层设置为从包覆插补至叶毂,切削层参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长为0.5mm,自动生成刀轨路线,然后进行绕点旋转,复制出剩余几个主叶片的刀轨路线;
(5)分流叶片精加工:采用和主叶片精加工相同的D8mm球型铣刀,使用UG NX软件按经验进行驱动设置,选择要加工的几何体为分流叶片,要切削的面选择左右面+前缘的方式,起点为后缘,切削层设置为从包覆插补至叶毂,切削层参数设置,叶片余量为0mm,叶毂余量为0.5mm,最大步长为0.5mm,自动生成刀轨路线,然后进行绕点旋转,复制出剩余几个分流叶片的刀轨路线;
(6)叶毂精加工:采用D8mm球型铣刀,使用UG NX软件按经验进行驱动设置,前缘沿叶片方向,相切延伸4mm,径向延伸2mm,后缘相切延伸1mm,径向延伸1mm,步距恒定最大距离0.35mm,切削参数设置,叶毂余量0mm,内外公差为0.01mm,自动生成刀轨,然后绕点旋转,复制出剩余几个叶毂的刀轨路线;
(7)主叶片圆角清根:选用D6mm的球型铣刀,使用UG NX软件根据经验进行驱动方法设置,要加工的几何体选主叶根圆角,要切削的面选用左右面+前缘的方式,驱动模式为参考刀具,参考刀具直径设置为9mm,刀轨上的重叠与叶片上的重叠量为0.5mm,起点为后缘,切削参数余量设置为0mm,自动生成刀轨,然后绕点旋转,复制出剩余几个主叶片根部圆角的刀轨路线;
(8)分流叶片圆角清根:选用D6mm的球型铣刀,使用UG NX软件参数设定同主叶片圆角清根相同,驱动方法设置时要加工的几何体选为分流叶片圆角,自动生成刀轨,然后绕点旋转,复制出剩余几个分流叶片圆角的刀轨路线。
CN201610583278.5A 2016-07-22 2016-07-22 一种整体叶轮五轴联动数控刀轨路径加工方法 Pending CN106216747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610583278.5A CN106216747A (zh) 2016-07-22 2016-07-22 一种整体叶轮五轴联动数控刀轨路径加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610583278.5A CN106216747A (zh) 2016-07-22 2016-07-22 一种整体叶轮五轴联动数控刀轨路径加工方法

Publications (1)

Publication Number Publication Date
CN106216747A true CN106216747A (zh) 2016-12-14

Family

ID=57532457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610583278.5A Pending CN106216747A (zh) 2016-07-22 2016-07-22 一种整体叶轮五轴联动数控刀轨路径加工方法

Country Status (1)

Country Link
CN (1) CN106216747A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052420A (zh) * 2017-01-11 2017-08-18 上海应用技术大学 减小叶轮叶片侧铣加工变形误差的工艺方法
CN107505913A (zh) * 2017-07-10 2017-12-22 西北工业大学 基于整体叶盘通道四轴数控加工的最大适用刀具半径计算方法
CN107831730A (zh) * 2017-10-31 2018-03-23 北京航空航天大学 一种切削力仿真预适应的型腔内拐角数控铣削加工刀轨优化方法
CN107831731A (zh) * 2017-10-31 2018-03-23 北京航空航天大学 一种切削力仿真预适应的型腔外拐角数控铣削加工刀轨优化方法
CN108000082A (zh) * 2017-12-28 2018-05-08 重庆平伟汽车科技股份有限公司 一种对模具型面进行分层清根加工的方法及系统
CN108445841A (zh) * 2018-03-06 2018-08-24 好米动力设备有限公司 一种用于加工单螺杆压缩机螺杆的装置及方法
CN108465854A (zh) * 2018-03-14 2018-08-31 智腾机械设备(上海)有限公司 一种螺杆的粗加工方法
CN108829030A (zh) * 2018-05-30 2018-11-16 昆明理工大学 一种整体叶轮叶根的特征刀轨优化方法
CN109079208A (zh) * 2018-07-20 2018-12-25 沈阳透平机械股份有限公司 基于镗床直角头的离心压缩机叶盘的加工方法及装置
CN109317735A (zh) * 2018-11-22 2019-02-12 重庆江增船舶重工有限公司 一种扩压器加工方法
CN109759791A (zh) * 2019-02-01 2019-05-17 黑龙江省机械科学研究院 一种航空航天发动机精密内腔薄壁整体离心叶轮加工方法
CN111061217A (zh) * 2019-12-30 2020-04-24 枣庄北航机床创新研究院有限公司 一种用于飞机发动机叶片加工的刀轨光顺方法,设备及可读存储介质
CN111069670A (zh) * 2019-12-31 2020-04-28 苏州千机智能技术有限公司 整体叶盘变半径过渡圆角加工方法及系统
CN111390505A (zh) * 2020-04-02 2020-07-10 安徽天航机电有限公司 采用九轴机床加工辊的方法及利用该方法生产的辊
CN111736526A (zh) * 2020-07-02 2020-10-02 无锡航亚科技股份有限公司 一种直纹面叶轮叶片过切的补偿方法
CN111922400A (zh) * 2020-08-13 2020-11-13 哈尔滨汽轮机厂有限责任公司 一种船用汽轮机叶片采用柳叶刀加工汽道圆角及锥面方法
CN112676623A (zh) * 2020-12-18 2021-04-20 重庆江增船舶重工有限公司 一种涡轮增压器叶轮的免干涉定向铣削方法
CN112719373A (zh) * 2020-12-04 2021-04-30 上海航天设备制造总厂有限公司 闭式型腔轮廓内角清角加工方法
CN113976962A (zh) * 2021-11-16 2022-01-28 重庆江增船舶重工有限公司 一种整体式叶轮的定轴开粗方法
CN114406618A (zh) * 2022-01-25 2022-04-29 贵州新安航空机械有限责任公司 一种冷却风扇用整体叶轮加工工艺
CN114576200A (zh) * 2022-02-28 2022-06-03 温州合泰汽车传动系统有限公司 一种基于ug设计而成的新型叶轮
CN114609966A (zh) * 2022-03-11 2022-06-10 深圳数马电子技术有限公司 一种刀具数控磨削中的路径规划方法、装置和计算机设备
CN114714368A (zh) * 2022-03-11 2022-07-08 苏州大学 一种采用机器人的3d打印叶轮加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260304A (en) * 1979-10-10 1981-04-07 Dresser Industries, Inc. Method for machining an impeller cover
US20070272330A1 (en) * 2006-05-11 2007-11-29 Philippe Turcot Spiral profile cutting tool
CN101590587A (zh) * 2008-05-29 2009-12-02 上海电气集团股份有限公司 一种整体叶轮加工方法
CN102107295A (zh) * 2009-12-23 2011-06-29 沈阳鼓风机集团有限公司 一种大直径三元叶轮的铣制方法
CN103056625A (zh) * 2012-12-29 2013-04-24 中国人民解放军总参谋部第六十研究所 基于ug nx系统平台整体叶轮的五轴加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260304A (en) * 1979-10-10 1981-04-07 Dresser Industries, Inc. Method for machining an impeller cover
US20070272330A1 (en) * 2006-05-11 2007-11-29 Philippe Turcot Spiral profile cutting tool
CN101590587A (zh) * 2008-05-29 2009-12-02 上海电气集团股份有限公司 一种整体叶轮加工方法
CN102107295A (zh) * 2009-12-23 2011-06-29 沈阳鼓风机集团有限公司 一种大直径三元叶轮的铣制方法
CN103056625A (zh) * 2012-12-29 2013-04-24 中国人民解放军总参谋部第六十研究所 基于ug nx系统平台整体叶轮的五轴加工方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052420A (zh) * 2017-01-11 2017-08-18 上海应用技术大学 减小叶轮叶片侧铣加工变形误差的工艺方法
CN107505913B (zh) * 2017-07-10 2019-09-24 西北工业大学 基于整体叶盘通道四轴数控加工的最大适用刀具半径计算方法
CN107505913A (zh) * 2017-07-10 2017-12-22 西北工业大学 基于整体叶盘通道四轴数控加工的最大适用刀具半径计算方法
CN107831730A (zh) * 2017-10-31 2018-03-23 北京航空航天大学 一种切削力仿真预适应的型腔内拐角数控铣削加工刀轨优化方法
CN107831731A (zh) * 2017-10-31 2018-03-23 北京航空航天大学 一种切削力仿真预适应的型腔外拐角数控铣削加工刀轨优化方法
CN107831730B (zh) * 2017-10-31 2020-01-03 北京航空航天大学 一种切削力仿真预适应的型腔内拐角数控铣削加工刀轨优化方法
CN108000082A (zh) * 2017-12-28 2018-05-08 重庆平伟汽车科技股份有限公司 一种对模具型面进行分层清根加工的方法及系统
CN108445841A (zh) * 2018-03-06 2018-08-24 好米动力设备有限公司 一种用于加工单螺杆压缩机螺杆的装置及方法
CN108445841B (zh) * 2018-03-06 2020-10-23 好米动力设备有限公司 一种用于加工单螺杆压缩机螺杆的装置及方法
CN108465854A (zh) * 2018-03-14 2018-08-31 智腾机械设备(上海)有限公司 一种螺杆的粗加工方法
CN108465854B (zh) * 2018-03-14 2020-05-05 智腾机械设备(上海)有限公司 一种螺杆的粗加工方法
CN108829030B (zh) * 2018-05-30 2021-08-20 昆明理工大学 一种整体叶轮叶根的特征刀轨优化方法
CN108829030A (zh) * 2018-05-30 2018-11-16 昆明理工大学 一种整体叶轮叶根的特征刀轨优化方法
CN109079208A (zh) * 2018-07-20 2018-12-25 沈阳透平机械股份有限公司 基于镗床直角头的离心压缩机叶盘的加工方法及装置
CN109317735A (zh) * 2018-11-22 2019-02-12 重庆江增船舶重工有限公司 一种扩压器加工方法
CN109317735B (zh) * 2018-11-22 2020-09-04 重庆江增船舶重工有限公司 一种扩压器加工方法
CN109759791B (zh) * 2019-02-01 2020-01-07 黑龙江省机械科学研究院 一种航空航天发动机精密内腔薄壁整体离心叶轮加工方法
CN109759791A (zh) * 2019-02-01 2019-05-17 黑龙江省机械科学研究院 一种航空航天发动机精密内腔薄壁整体离心叶轮加工方法
CN111061217A (zh) * 2019-12-30 2020-04-24 枣庄北航机床创新研究院有限公司 一种用于飞机发动机叶片加工的刀轨光顺方法,设备及可读存储介质
CN111069670A (zh) * 2019-12-31 2020-04-28 苏州千机智能技术有限公司 整体叶盘变半径过渡圆角加工方法及系统
CN111069670B (zh) * 2019-12-31 2021-08-20 苏州千机智能技术有限公司 整体叶盘变半径过渡圆角加工方法及系统
CN111390505A (zh) * 2020-04-02 2020-07-10 安徽天航机电有限公司 采用九轴机床加工辊的方法及利用该方法生产的辊
CN111390505B (zh) * 2020-04-02 2021-10-26 安徽天航机电有限公司 采用九轴机床加工辊的方法及利用该方法生产的辊
CN111736526B (zh) * 2020-07-02 2021-12-14 无锡航亚科技股份有限公司 一种直纹面叶轮叶片过切的补偿方法
CN111736526A (zh) * 2020-07-02 2020-10-02 无锡航亚科技股份有限公司 一种直纹面叶轮叶片过切的补偿方法
CN111922400A (zh) * 2020-08-13 2020-11-13 哈尔滨汽轮机厂有限责任公司 一种船用汽轮机叶片采用柳叶刀加工汽道圆角及锥面方法
CN112719373A (zh) * 2020-12-04 2021-04-30 上海航天设备制造总厂有限公司 闭式型腔轮廓内角清角加工方法
CN112676623A (zh) * 2020-12-18 2021-04-20 重庆江增船舶重工有限公司 一种涡轮增压器叶轮的免干涉定向铣削方法
CN113976962A (zh) * 2021-11-16 2022-01-28 重庆江增船舶重工有限公司 一种整体式叶轮的定轴开粗方法
CN113976962B (zh) * 2021-11-16 2023-12-19 重庆江增船舶重工有限公司 一种整体式叶轮的定轴开粗方法
CN114406618A (zh) * 2022-01-25 2022-04-29 贵州新安航空机械有限责任公司 一种冷却风扇用整体叶轮加工工艺
CN114576200A (zh) * 2022-02-28 2022-06-03 温州合泰汽车传动系统有限公司 一种基于ug设计而成的新型叶轮
CN114609966A (zh) * 2022-03-11 2022-06-10 深圳数马电子技术有限公司 一种刀具数控磨削中的路径规划方法、装置和计算机设备
CN114714368A (zh) * 2022-03-11 2022-07-08 苏州大学 一种采用机器人的3d打印叶轮加工方法
CN114609966B (zh) * 2022-03-11 2023-08-08 深圳数马电子技术有限公司 一种刀具数控磨削中的路径规划方法、装置和计算机设备

Similar Documents

Publication Publication Date Title
CN106216747A (zh) 一种整体叶轮五轴联动数控刀轨路径加工方法
CN103056625B (zh) 基于ug nx系统平台整体叶轮的五轴加工方法
CN104400008B (zh) 一种封严环深腔的数控加工方法
US20080209727A1 (en) Fillet machining without adaptive probing and parts finished thereby
CN1986127A (zh) 整体叶轮叶片的插铣刀加工方法
CN103645674B (zh) 一种整体叶轮叶片的粗-半精-精铣混合路径生成方法
CN105045204B (zh) 正三角网格螺旋型加工轨迹生成方法
CN102806380A (zh) 开式整体叶盘通道复合粗加工方法
CN108145393A (zh) 一种航空发动机压气机叶片及其加工方法
CN103586519A (zh) 梯型槽分层铣削粗加工方法
CN109352048B (zh) 一种整体式钛合金压气叶轮的空间定轴铣削加工方法
CN104475842B (zh) 一种整体叶盘结构型面铣削加工工艺方法
JP4189878B2 (ja) 傘歯車鍛造型の製造方法
CN101763048B (zh) 基于变异Voronoi Mountain的飞机复杂构件粗加工刀具选取方法
CN107544433B (zh) 数控机床加工过程球头铣刀与工件接触区域半解析建模法
CN103286360B (zh) 一种切向偏置正交车铣加工方法
CN107505913A (zh) 基于整体叶盘通道四轴数控加工的最大适用刀具半径计算方法
CN104439468A (zh) 适用于整体叶盘结构型面分层铣削成型工艺的铣刀
CN107052914B (zh) 一种球头铣刀接刀痕迹的高效消除方法
CN108723725A (zh) 一种航空叶片的加工方法
RU2482940C1 (ru) Способ обработки моноколеса газотурбинного двигателя
CN101947722A (zh) 开坯机轧辊孔型加工方法
KR100833112B1 (ko) 임펠러제작을 위한 황삭가공경로 생성방법
RU2476296C2 (ru) Способ обработки заготовки детали с пазами
CN114888702A (zh) 一种压气机叶片数控抛光方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161214