CN106216412A - 一种利用炉卷机组层流分段冷却控制中厚板相变的方法 - Google Patents

一种利用炉卷机组层流分段冷却控制中厚板相变的方法 Download PDF

Info

Publication number
CN106216412A
CN106216412A CN201610613255.4A CN201610613255A CN106216412A CN 106216412 A CN106216412 A CN 106216412A CN 201610613255 A CN201610613255 A CN 201610613255A CN 106216412 A CN106216412 A CN 106216412A
Authority
CN
China
Prior art keywords
laminar flow
cooling
strength steel
steel sheet
phase transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610613255.4A
Other languages
English (en)
Inventor
李静宇
李勇
韦弦
程官江
毛尽华
商存亮
管刘辉
孔德南
裴凤娟
何晓波
张振申
娄军魁
李伟
刘海强
徐党委
李娜
于爱民
刘文浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Iron and Steel Co Ltd
Original Assignee
Anyang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Iron and Steel Co Ltd filed Critical Anyang Iron and Steel Co Ltd
Priority to CN201610613255.4A priority Critical patent/CN106216412A/zh
Publication of CN106216412A publication Critical patent/CN106216412A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product

Abstract

本发明涉及中厚钢板生产技术领域,具体涉及一种利用炉卷机组层流分段冷却控制中厚板相变的方法,该方法包括如下步骤,步骤一:第一段层流水冷:将高强度钢板从Ar3温度以上进行第一段层流冷却,层流冷却速度为15℃/s‑40℃/s,根据不同的性能要求,控制不同的辊道速度,开启层流集管0.5‑2组,冷却后的温度范围为600℃‑740℃;步骤二:层流辊道上空冷:控制辊道速度为60‑90m/min,并关闭层流集管2‑4组,使钢板在炉卷轧机的层流辊道上进行空冷,空冷时间为6s‑12s;步骤三:第二段层流水冷:进行第二段层流冷却,层流冷却速度为20℃/s‑40℃/s,终冷温度为200℃‑400℃。本发明解决了屈强比偏高和冲击韧性不稳定的问题,提高了生产效率。

Description

一种利用炉卷机组层流分段冷却控制中厚板相变的方法
技术领域
本发明涉及中厚钢板生产技术领域,具体涉及一种利用炉卷机组层流分段冷却控制中厚板相变的方法。
背景技术
为保证材料使用的经济性和安全性,高强度、高韧性和低屈强比等成为现代钢材生产的基本要求和发展趋势之一,而这些性能的实现都离不开钢材的组织结构控制或相变控制,尤其是低屈强比钢。控制轧制和控制冷却技术是20世纪60年代发展起来的以取得最佳的细化晶粒和组织状态,通过多种强韧化机制改善钢的性能为根本目标的热机械处理或形变热处理技术。所谓的控制冷却,即是通过控制钢板/卷轧后的冷却速度来控制所轧钢板/卷板的组织和力学性能。目前,国内外中厚板/卷生产中所采用的轧后冷却方式主要有一段冷却和分段冷却,主要通过控制各段的目标温度和冷速来达到控制钢板/卷板组织和力学性能的目的。
分段冷却中,水冷、空冷和水冷三段式冷却方式常见于热连轧卷板生产领域,如中国专利CN101979166A采用的即为水冷、空冷和水冷的冷却方式,这种冷却方式鲜见于中厚板生产,其他则多为生产模拟研究。一般情况下,由于设备工艺限制,中厚板机组的层流冷却装置长度一般较短,只能采用一段式层流冷却,不能实现以控制相变为目的的层流分段冷却。
国内外生产低屈强比钢管线钢一般采用轧后弛豫结合层流冷却模式,生产效率较低;TMCP工艺生产高强度低碳贝氏体钢存在冲击韧性不稳定的情况,本项发明能够有效地解决这些问题。
发明内容
本发明提供了一种利用炉卷机组层流分段冷却控制中厚板相变的方法,充分利用设备条件,灵活设置冷却集管的关闭,得到不同的中间空冷时间,实现钢板的相变控制,能够降低高强度钢板的屈强比及提高高强度钢板冲击韧性,解决了现有技术中生产高强度钢板存在屈强比偏高和冲击韧性不稳定的问题,提高了生产效率。
综上所述,为了实现上述目的,本发明采用如下技术方案:
一种利用炉卷机组层流分段冷却控制中厚板相变的方法,其特征在于,所述方法包括以下步骤:
步骤一:第一段层流水冷:高强度钢板经炉卷轧机轧制之后,将高强度钢板从Ar3温度以上进行第一段层流冷却,层流冷却速度为15℃/s-40℃/s,根据不同的性能要求,控制不同的辊道速度,开启层流集管0.5-2组,冷却后的温度范围为600℃-740℃;
步骤二:层流辊道上空冷:所述步骤一中高强度钢板经第一段层流水冷之后,控制辊道速度,并关闭层流集管2-4组,使钢板在炉卷轧机的层流辊道上进行空冷,空冷时间为6s-12s;
步骤三:第二段层流水冷:所述步骤二中高强度钢板经空冷之后,进行第二段层流冷却,层流冷却速度为20℃/s-40℃/s,终冷温度为200℃-400℃。
进一步,所述步骤一和所述步骤二中的辊道速度在60-90m/min之间。
进一步,所述步骤一~步骤三中的高强度钢板为低碳成分体系的低合金高强度钢板。
本发明产生的有益效果如下:
(1)本发明实现了炉卷机组通过实行分段冷却控制中厚板相变的技术问题,能够实现批量生产。
(2)本发明能够降低高强度钢板的屈强比,生产出组织为多边形铁素体和贝氏体的低屈强比管线钢,为炉卷机组开发低屈强比高强度钢板和大变形管线钢提供技术基础。
(3)本发明能够提高高强度钢板的冲击韧性,生产出针状铁素体和多位向板条贝氏体的低碳贝氏体高强度钢,有效控制钢板冲击韧性的质量波动。
(4)本发明工艺控制简单,适应性强,不增加生产成本,本发明通过控制炉卷机组轧后层流分段冷却工艺实现中厚板的相变控制,对钢液成分控制、加热温度、轧制工艺等均没有特殊要求,具有操作简单、适应性强、不增加生产成本等特点。
本发明通过控制第一段层流冷却温度、冷却速度、空冷时间和终冷温度,获得不同的组织匹配,达到以控制相变来降低钢板屈强比或提高钢板冲击韧性的有益效果。
与现有技术相比,本发明适用于中厚板生产技术领域,其不同之处在于利用炉卷机组自带的层流冷却装置,通过分段层流冷却方式,实现了中厚板相变控制。本发明适充分利用设备条件,灵活设置冷却集管的关闭,得到不同的中间空冷时间,实现钢板的相变控制,能够降低高强度钢板的屈强比及提高高强度钢板冲击韧性,解决了现有技术中生产高强度钢板存在屈强比偏高和冲击韧性不稳定的问题,提高了生产效率。
附图说明
图1为本发明的实施例1和对比例1获得的金相组织的对照图;
图2为本发明的实施例2和对比例2获得的金相组织的对照图。
具体实施方式
下面结合附图和具体的实施例对本发明作进一步详细的描述,但本发明的保护范围并不限于此。
一种利用炉卷机组层流分段冷却控制中厚板相变的方法,所述方法包括以下步骤:
步骤一:第一段层流水冷:高强度钢板经炉卷轧机轧制之后,将高强度钢板从Ar3温度以上进行第一段层流冷却,层流冷却速度为15℃/s-40℃/s,根据不同的性能要求,控制不同的辊道速度,辊道速度在60-90m/min之间,开启层流集管0.5-2组,冷却后的温度范围为600℃-740℃。
步骤二:层流辊道上空冷:所述步骤一中高强度钢板经第一段层流水冷之后,控制辊道速度为60-90m/min,并关闭层流集管2-4组,使钢板在炉卷轧机的层流辊道上进行空冷,空冷时间为6s-12s;
步骤三:第二段层流水冷:高强度钢板经空冷后进行第二段层流冷却,以20℃/s-40℃/s的冷却速度经层流冷却至200℃-400℃,使钢板中未转变的奥氏体转变为贝氏体,最终实现中厚板的相变控制,获得针状铁素体和多位向板条贝氏体或多边形铁素体和贝氏体的组织结构。
所述高强度钢板为低碳成分体系的低合金高强度钢板。本发明利用炉卷机组现有的层流冷却装置,通过层流分段冷却,在步骤一和步骤二中使轧后钢板从Ar3温度以上开始层流冷却,根据所追求的性能不同确定第一段层流冷却开水组数、辊道速度和关闭组数。
实施例1:
牌号为L450M的管线钢,规格为20mm厚×2672mm宽,经炉卷机组轧制后采用层流分段冷却工艺,终轧温度为780℃,一种利用炉卷机组层流分段冷却控制中厚板相变的方法,所述方法包括以下步骤:
步骤一:第一段层流水冷:管线钢经炉卷轧机轧制之后,将高强度钢板进行第一段层流冷却,第一段层流冷却速度为20℃/s;控制辊道速度为60m/min,开启层流集管的组数为1组,冷却至720℃;
步骤二:层流辊道上空冷:所述步骤一中管线钢经第一段层流水冷之后,控制辊道速度为70m/min,并关闭相应组数的层流集管4组,使钢板在炉卷机的层流辊道上进行空冷,空冷时间为10s,使轧制后的奥氏体部分相变为多边形铁素体;
步骤三:第二段层流水冷:所述步骤二中高强度钢板经空冷之后,进行第二段层流冷却,第二段层流冷却速度为25℃/s,终冷温度为320℃,使钢板中未相变的奥氏体转变为贝氏体,最终实现中厚板的相变控制,获得具有多边形铁素体和贝氏体的组织结构的管线钢。
经检测,该具有多边形铁素体和贝氏体的组织结构的管线钢的力学性能屈服强度Rt0.5:515MPa,抗拉强度Rm:711MPa,屈强比:0.72,延伸率A50:43.6%,-20℃冲击韧性Akv:240J,-15℃落锤性能DWTT剪切面积SA%:93%,具体见表1中实施例1对应的生产工艺及其组织性能数据,如图1A所示,是本实施例最终获得的具有多边形铁素体和贝氏体的管线钢金相组织。
对比例1:
牌号为L450M的管线钢,规格为20mm厚×2672mm宽,经炉卷机组轧制后采用常规层流冷却工艺,即一段式冷却,终轧温度780℃,层流冷却速度27℃/s,终冷温度500℃,最终获得具有准多边形铁素体和M/A组织结构的管线钢。经检测,其力学性能屈服强度Rt0.5:499MPa,抗拉强度Rm:581MPa,屈强比:0.86,延伸率A50:38%,-20℃冲击韧性Akv:230J,-15℃DWTT剪切面积SA%:92%,具体见表1中对比例1对应的生产工艺及其组织性能数据。如图1B所示,是本对比例最终获得的具有准多边形铁素体和M/A岛的管线钢金相组织。
表1实施例1与对比例1的生产工艺及其对应的组织性能
将表1中实施例1和对比例1的数据进行对比可以看出,实施例1和对比例1最终得到的管线钢的冲击韧性、DWTT性能没有明显差异,但实施例1的屈强比与对比例1相比得到了明显降低;管线钢的金相组织类型由准多边型铁素体和M/A岛转变为多边形铁素体和贝氏体;因此,利用本发明得到的管线钢的金相组织和力学性能得到明显改变。
实施例2:
800MPa级低碳贝氏体高强度钢,规格为25mm厚×2645mm宽,经炉卷机组轧制后采用层流分段冷却工艺,终轧温度770℃,一种利用炉卷机组层流分段冷却控制中厚板相变的方法,所述方法包括以下步骤:
步骤一:第一段层流水冷:高强度钢板经炉卷轧机轧制之后,将高强度钢板进行第一段层流冷却,第一段层流冷却速度为18℃/s;控制辊道速度为76m/min,开启层流集管的组数为2组,冷却至630℃;
步骤二:层流辊道上空冷:所述步骤一中高强度钢板经第一段层流水冷之后,控制辊道速度为76m/min并关闭相应组数的层流集管3组,使钢板在炉卷机的层流辊道上进行空冷7s,使轧制后的奥氏体部分转变为针状铁素体;
步骤三:第二段层流水冷:所述步骤二中高强度钢板经空冷之后,进行第二段层流冷却,第二段层流冷却速度为22℃/s,终冷温度为390℃,使钢板中未相变的奥氏体转变为不同位向的板条贝氏体,得到具有针状铁素体和多位向板条贝氏体的组织结构的高强度钢板。
经检测,具有针状铁素体+多位向板条贝氏体的组织结构的高强度钢板的力学性能屈服强度Rt0.5:855MPa,抗拉强度Rm:990MPa,屈强比:0.86,延伸率A:27%,-40℃冲击韧性Akv:120J,具体见表2中实施例2对应的生产工艺及其组织性能数据。如图2A所示,是本实施例之中获得的具有针状铁素体和多位向板条贝氏体的高强度钢板金相组织。
对比例2:
800MPa级低碳贝氏体高强度钢,规格为25mm厚×2650mm宽,经炉卷机组轧制后采用常规层流冷却工艺,即一段式冷却,终轧温度770℃,层流冷却速度22℃/s,终冷温度400℃。最终获得具有板条贝氏体的组织结构的高强度钢;经检测,其力学性能屈服强度Rt0.5:865MPa,抗拉强度Rm:992MPa,屈强比:0.87,延伸率A:26%,-40℃冲击韧性Akv:50J,具体见表2中对比例2对应的生产工艺及其组织性能数据。如图2B所示,是本对比例之中获得的具有板条贝氏体的的高强度钢板金相组织。
表2实例二与对比例二的生产工艺及其组织性能
将表2中实施例2和对比例2的数据进行对比可以看出,实施例2和对比例2最终得到的800MPa级低碳贝氏体高强度钢的屈服强度、抗拉强度、屈强比、延伸率没有明显差异,但实施例2的-40℃冲击韧性与对比例2相比得到了明显的提高;800MPa级低碳贝氏体高强度钢的金相组织类型由板条贝氏体转变为针状铁素体和多位向板条贝氏体;因此,利用本发明得到的低碳贝氏体高强度钢的的金相组织和力学性能得到明显改变。
要说明的是,上述实施例是对本发明技术方案的说明而非限制,所属技术领域普通技术人员的等同替换或者根据现有技术而做的其它修改,只要没超出本发明技术方案的思路和范围,均应包含在本发明所要求的权利范围之内。

Claims (3)

1.一种利用炉卷机组层流分段冷却控制中厚板相变的方法,其特征在于,所述方法包括以下步骤:
步骤一:第一段层流水冷:高强度钢板经炉卷轧机轧制之后,将高强度钢板从Ar3温度以上进行第一段层流冷却,层流冷却速度为15℃/s-40℃/s,根据不同的性能要求,控制不同的辊道速度,开启层流集管0.5-2组,冷却后的温度范围为600℃-740℃;
步骤二:层流辊道上空冷:所述步骤一中高强度钢板经第一段层流水冷之后,控制辊道速度,并关闭层流集管2-4组,使钢板在炉卷轧机的层流辊道上进行空冷,空冷时间为6s-12s;
步骤三:第二段层流水冷:所述步骤二中高强度钢板经空冷之后,进行第二段层流冷却,层流冷却速度为20℃/s-40℃/s,终冷温度为200℃-400℃。
2.根据权利要求1所述的一种利用炉卷机组层流分段冷却控制中厚板相变的方法,其特征在于,所述步骤一和所述步骤二中的辊道速度在60-90m/min之间。
3.根据权利要求1所述的一种利用炉卷机组层流分段冷却控制中厚板相变的方法,其特征在于,所述步骤一~步骤三中的高强度钢板为低碳成分体系的低合金高强度钢板。
CN201610613255.4A 2016-07-29 2016-07-29 一种利用炉卷机组层流分段冷却控制中厚板相变的方法 Pending CN106216412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610613255.4A CN106216412A (zh) 2016-07-29 2016-07-29 一种利用炉卷机组层流分段冷却控制中厚板相变的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610613255.4A CN106216412A (zh) 2016-07-29 2016-07-29 一种利用炉卷机组层流分段冷却控制中厚板相变的方法

Publications (1)

Publication Number Publication Date
CN106216412A true CN106216412A (zh) 2016-12-14

Family

ID=57536226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610613255.4A Pending CN106216412A (zh) 2016-07-29 2016-07-29 一种利用炉卷机组层流分段冷却控制中厚板相变的方法

Country Status (1)

Country Link
CN (1) CN106216412A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234612A (zh) * 2018-08-20 2019-01-18 安阳钢铁股份有限公司 一种高韧性含b热轧低碳贝氏体钢板及其生产方法
CN109252089A (zh) * 2018-08-20 2019-01-22 安阳钢铁股份有限公司 一种应变设计管线钢x65钢板及其生产方法
CN114393045A (zh) * 2021-11-30 2022-04-26 安阳钢铁股份有限公司 一种超长低碳贝氏体钢板冷却均匀性控制方法
CN115198202A (zh) * 2022-09-19 2022-10-18 苏州创镕新材料科技有限公司 车用油箱托架的700MPa级高强减薄材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU598672A1 (ru) * 1976-11-05 1978-03-07 Предприятие П/Я А-3244 Способ охлаждени гор чекатаных полос
CN101603153A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种热轧铁素体贝氏体双相钢及其生产方法
CN102605251A (zh) * 2012-03-28 2012-07-25 东北大学 一种前置式超快冷制备热轧双相钢的方法
CN102719732A (zh) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 热轧高强度双相钢板及其制造方法
CN103320701A (zh) * 2012-03-23 2013-09-25 宝山钢铁股份有限公司 一种铁素体贝氏体先进高强度钢板及其制造方法
CN103484641A (zh) * 2013-09-05 2014-01-01 攀钢集团西昌钢钒有限公司 一种管线钢冷却工艺控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU598672A1 (ru) * 1976-11-05 1978-03-07 Предприятие П/Я А-3244 Способ охлаждени гор чекатаных полос
CN101603153A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种热轧铁素体贝氏体双相钢及其生产方法
CN103320701A (zh) * 2012-03-23 2013-09-25 宝山钢铁股份有限公司 一种铁素体贝氏体先进高强度钢板及其制造方法
CN102605251A (zh) * 2012-03-28 2012-07-25 东北大学 一种前置式超快冷制备热轧双相钢的方法
CN102719732A (zh) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 热轧高强度双相钢板及其制造方法
CN103484641A (zh) * 2013-09-05 2014-01-01 攀钢集团西昌钢钒有限公司 一种管线钢冷却工艺控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234612A (zh) * 2018-08-20 2019-01-18 安阳钢铁股份有限公司 一种高韧性含b热轧低碳贝氏体钢板及其生产方法
CN109252089A (zh) * 2018-08-20 2019-01-22 安阳钢铁股份有限公司 一种应变设计管线钢x65钢板及其生产方法
CN109252089B (zh) * 2018-08-20 2020-11-06 安阳钢铁股份有限公司 一种应变设计管线钢x65钢板及其生产方法
CN114393045A (zh) * 2021-11-30 2022-04-26 安阳钢铁股份有限公司 一种超长低碳贝氏体钢板冷却均匀性控制方法
CN115198202A (zh) * 2022-09-19 2022-10-18 苏州创镕新材料科技有限公司 车用油箱托架的700MPa级高强减薄材料及其制备方法
CN115198202B (zh) * 2022-09-19 2022-12-27 苏州创镕新材料科技有限公司 车用油箱托架的700MPa级高强减薄材料及其制备方法

Similar Documents

Publication Publication Date Title
CN101701326B (zh) 一种厚规格高强高韧船板钢及其生产方法
CN101613828B (zh) 屈服强度460MPa级低屈强比建筑用特厚钢板及制造方法
CN106216412A (zh) 一种利用炉卷机组层流分段冷却控制中厚板相变的方法
CN101185938A (zh) 带肋钢筋生产方法
CN111360066A (zh) 一种低成本少红锈高强抗震螺纹钢钢筋生产方法及系统
CN109972033A (zh) 一种低碳当量的特厚钢板q460e的生产方法
CN107604248B (zh) 一种高强度q500gjd调质态建筑结构用钢板及其制造方法
CN108660395A (zh) 一种690MPa级低碳中锰高强度中厚板及淬火-动态配分生产工艺制备方法
CN103045939A (zh) 一种资源节约型q345低合金系列钢板及其生产方法
CN205851555U (zh) 一种低屈强比热轧高强度抗震钢筋的生产系统
CN104141099B (zh) 一种超厚规格x70热轧板卷的制造方法
CN103952523B (zh) 一种马氏体铁素体双相钢冷轧板带的连续退火方法
CN101906519A (zh) 低屈强比表层超细晶低碳钢厚板的制造方法
CN104694844A (zh) 一种x65m管线钢的生产方法
CN112048679A (zh) 一种低成本屈服强度490MPa桥梁钢板生产方法
CN103725960A (zh) 一种薄规格高强韧管线钢板及其生产方法
CN112692074A (zh) 屈服强度460MPa级热轧薄规格抗震耐火钢板及制备方法
CN103740925B (zh) 采用喷射和层流冷却联动生产高强韧性管线钢的方法
CN103643120A (zh) 高韧性焊接气瓶用钢热轧板卷的制造方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN104018063B (zh) 低合金高强度q420c中厚钢板的生产方法
CN105886924A (zh) 一种高强韧性能的低合金钢及其制备方法
CN105256117A (zh) 一种极地用-80℃低温韧性优异的高强度船用tmcp钢的制造方法
CN102643969B (zh) 一种纳米结构超高强塑性低合金钢及其制备方法
CN102943205A (zh) 一种抗拉强度580MPa级铁素体贝氏体热轧双相钢及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161214

RJ01 Rejection of invention patent application after publication