CN106198500B - 一种检测有机氯农药的电致化学发光生物传感器的制备方法 - Google Patents

一种检测有机氯农药的电致化学发光生物传感器的制备方法 Download PDF

Info

Publication number
CN106198500B
CN106198500B CN201610521135.1A CN201610521135A CN106198500B CN 106198500 B CN106198500 B CN 106198500B CN 201610521135 A CN201610521135 A CN 201610521135A CN 106198500 B CN106198500 B CN 106198500B
Authority
CN
China
Prior art keywords
organo
manganese
mos
tio
femn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610521135.1A
Other languages
English (en)
Other versions
CN106198500A (zh
Inventor
张勇
吴丹
王耀光
范大伟
魏琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Anbinuo Detection Technology Co ltd
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610521135.1A priority Critical patent/CN106198500B/zh
Publication of CN106198500A publication Critical patent/CN106198500A/zh
Application granted granted Critical
Publication of CN106198500B publication Critical patent/CN106198500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence

Abstract

本发明公开了一种检测有机氯农药的电致化学发光传感器的制备方法。本发明首先制备了一种新型二维纳米复合材料——二氧化钛/二硫化钼复合材料,即铁、锰共掺杂二氧化钛纳米方块与二硫化钼原位复合的二维纳米复合材料FeMn‑TiO2/MoS2,利用该材料的良好的生物相容性和大的比表面积,负载上有机氯农药抗体,在进行检测时,由于铁、锰共掺杂二氧化钛可以催化过氧化氢原位生成O2,并与底液中的K2S2O8进行电化学反应,产生电致化学发光信号,再利用抗体与抗原的特异性定量结合对电子传输能力的影响,使得电流强度降低,从而降低发光强度,最终实现了采用无标记的电致化学发光方法检测有机氯农药的电致化学发光传感器的构建。

Description

一种检测有机氯农药的电致化学发光生物传感器的制备方法
技术领域
本发明涉及一种电致化学发光有机氯传感器的制备方法。属于新型纳米功能材料与生物传感器技术领域。
背景技术
有机氯农药是用于防治植物病、虫害的组成成分中含有有机氯元素的有机化合物。其中以苯为原料的有机氯农药,如杀虫剂DDT、杀螨剂三氯杀螨砜、杀菌剂五氯硝基苯等,这类有机氯农药结构较稳定,生物体内酶难于降解,所以积存在动、植物体内的有机氯农药分子消失缓慢。由于这一特性,它通过生物富集和食物链的作用,使得环境中的残留农药会进一步得到富集和扩散。通过食物链进入人体的有机氯农药能在肝、肾、心脏等组织中蓄积,特别是由于这类农药脂溶性大,所以在体内脂肪中的积累储存更突出。蓄积的残留农药也能通过母乳排出,或转入卵蛋等组织,影响后代。
目前,检测有机氯农药的方法主要有色谱法、质谱法等。此类方法仪器贵重、操作复杂,化验人员需要专业培训后才能进行检测。因此,研发成本低、检测快、灵敏度高、特异性强的有机氯农药传感器具有重要意义。
电致化学发光传感器由于其灵敏度高、特异性好、操作简便等优点被广泛应用于临床诊断、药物分析、环境监测等领域。制备性能优越的电致化学发光传感器,其最关键技术就是发光强度及稳定性和免疫分子的有效固定及重现性等性能的提高。二氧化钛是应用最为广泛的一种光催化剂材料,由于片状二氧化钛纳米材料能够暴露更多的高指数晶面,具有更高的光催化活性,二氧化钛纳米片具有比纳米粒子更好地应用前景,对于二氧化钛纳米片的研究也备受关注。同时,二氧化钛导电性差也限制了由单一二氧化钛纳米材料构建的电致化学发光传感器的灵敏度普遍不高,不利于实际应用。但是,在半导体纳米材料上修饰或复合特殊的纳米材料,可以有效提高半导体表面的共振能量转移,产生更强的发光强度,并大大提高检测灵敏度。因此,设计、制备高效、稳定的二氧化钛纳米片及其修饰物是制备电致化学发光传感器的关键技术。
二硫化钼(化学式为MoS2)纳米材料,具有二维层状结构,是应用最广泛的固体润滑剂之一。其剥离后的片状二维纳米材料,是性能优异的半导体纳米材料,除了具有大的比表面积,可以作为催化剂和生物抗体的载体,提高负载量,同时作为助催化剂也具有优良的电子传递性能。
目前,大多数的合成手段都是分开合成后,再将催化剂与载体进行复合,过程繁琐,产率不高。因此,对于原位复合制备具有优良电致化学发光性能的二维纳米复合材料具有广泛的应用前景和重要的科学意义。
发明内容
本发明的目的在于提供一种制备简单、灵敏度高、检测快速、特异性强的电致化学发光生物传感器的制备方法,所制备的传感器,可用于有机氯农药的快速、灵敏检测。基于此目的,本发明首先制备了一种新型二维纳米复合材料——二氧化钛/二硫化钼复合材料,即铁、锰共掺杂二氧化钛纳米方块与二硫化钼原位复合的二维纳米复合材料FeMn-TiO2/MoS2,利用该材料的良好的生物相容性和大的比表面积,负载上有机氯农药抗体,在进行检测时,由于铁、锰共掺杂二氧化钛可以催化过氧化氢原位生成O2,并与底液中的K2S2O8进行电化学反应,产生电致化学发光信号,再利用抗体与抗原的特异性定量结合对电子传输能力的影响,使得电流强度降低,从而降低发光强度,最终实现了采用无标记的电致化学发光方法检测有机氯农药的电致化学发光传感器的构建。
本发明采用的技术方案如下:
1. 一种检测有机氯农药的电致化学发光生物传感器的制备方法,其特征在于所述的电致化学发光生物传感器由工作电极、FeMn-TiO2/MoS2、有机氯农药抗体、牛血清白蛋白组成;所述的FeMn-TiO2/MoS2为铁、锰共掺杂二氧化钛纳米方块与二硫化钼原位复合的二维纳米复合材料;
其特征在于,所述的制备方法包括以下制备步骤:
a. 制备FeMn-TiO2/MoS2
b. 制备电致化学发光生物传感器;
其中,步骤a制备FeMn-TiO2/MoS2的具体步骤为:
(1)取0.6 g二硫化钼粉末、0.2 ~ 2.0 mmol铁盐和0.2 ~ 2.0 mmol锰盐共同加入到3~10 mL正丁基锂溶液中,在氮气保护和30 ~ 60 ℃下,搅拌12 ~ 48小时,得到反应后的溶液;
(2)利用非极性溶剂洗涤步骤(1)中反应后的溶液,然后在30 ~ 60 ℃下进行水浴超声处理,处理完后,再利用非极性溶剂洗涤处理后的溶液,真空干燥,得到铁、锰共插层的二硫化钼纳米材料;
(3)取10 ~ 500 mg步骤(2)制得的铁、锰共插层的二硫化钼纳米材料加入到5 mL钛酸四丁酯中,搅拌1小时后,边搅拌边缓慢加入0.5 ~ 0.8 mL氢氟酸,然后160~180 ℃下在反应釜中反应18 ~ 20小时;
(4)将步骤(3)所得的反应产物,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥,即制得FeMn-TiO2/MoS2
所述的正丁基锂溶液为正丁基锂的己烷溶液,浓度为1.6 mol/L;
所述的铁盐选自下列之一:硫酸铁、氯化铁、硝酸铁、有机铁化合物;
所述的锰盐选自下列之一:硫酸锰、氯化锰、硝酸锰、有机锰化合物;
所述的非极性溶剂选自下列之一:己烷、环己烷、四氯化碳、苯、甲苯;
所述的水浴超声处理,处理时间为1小时;
步骤b制备电致化学发光生物传感器的具体步骤为:
(1)以ITO导电玻璃为工作电极,在电极表面滴涂8~12 µL的FeMn-TiO2/MoS2溶胶,室温下晾干;
(2)将步骤(1)中得到的电极用缓冲溶液PBS清洗,继续在电极表面滴涂8~12 µL10 µg/mL的有机氯农药抗体溶液,4 ℃ 冰箱中保存晾干;
(3)将步骤(2)中得到的电极用PBS清洗,继续在电极表面滴涂8~12 µL 浓度为100µg/mL的牛血清白蛋白溶液,4 ℃ 冰箱中保存晾干;
(4)将步骤(3)中得到的电极用PBS清洗,在4 ℃ 冰箱中保存晾干后,即制得有机氯农药传感器;
所述的FeMn-TiO2/MoS2溶胶为将50 mg 的FeMn-TiO2/MoS2粉末溶于10 mL超纯水中,并超声30 min后制得的水溶胶;
所述的PBS为10 mmol/L的磷酸盐缓冲溶液,所述的磷酸盐缓冲溶液的pH值为7.4。
2. 本发明所述的制备方法所制备的电致化学发光生物传感器的应用,其特征在于,包括如下应用步骤:
a. 标准溶液配制:配制一组包括空白标样在内的不同浓度的有机氯农药标准溶液;
b. 工作电极修饰:将如权利要求1所述的制备方法所制备的电致化学发光生物传感器为工作电极,将步骤a中配制的不同浓度的有机氯农药标准溶液分别滴涂到工作电极表面,4 ℃ 冰箱中保存;
c. 工作曲线绘制:将Ag/AgCl电极作为参比电极,铂丝电极作为对电极,与步骤b所修饰好的工作电极组成三电极系统,连接到电致化学发光检测设备上;在电解槽中先后加入15 mL的K2S2O8溶液和100 µL 的H2O2溶液;用循环伏安法对组装的工作电极施加循环电压;根据所得的电致化学发光的光信号强度与有机氯农药抗原标准溶液浓度之间的关系,绘制工作曲线;空白标样的光信号强度记为D 0,含有不同浓度的有机氯农药标准溶液的光信号强度记为D i,响应光信号强度降低的差值为ΔD = D 0-D i,ΔD与有机氯农药标准溶液的质量浓度C之间成线性关系,绘制ΔDC工作曲线;
d. 有机氯农药的检测:用待测样品代替步骤a中的有机氯农药标准溶液,按照步骤b和c中的方法进行检测,根据响应光信号强度降低的差值ΔD和工作曲线,得到待测样品中有机氯农药的含量;
所述的K2S2O8溶液由1 mol K2S2O8和1 mol KCl溶于10 L 的pH=6.5缓冲溶液中制备得到,所述的pH=6.5缓冲溶液为pH值为6.5的磷酸盐缓冲溶液;
所述的H2O2溶液为过氧化氢水溶液,所述的过氧化氢水溶液的浓度为10%。
3. 本发明所述的检测有机氯农药的电致化学发光生物传感器的制备方法和应用,所述的有机氯农药选自下列之一:三氯杀螨砜、三氯杀螨醇、五氯硝基苯。
本发明的有益成果
(1)本发明所述的电致化学发光生物传感器制备简单,操作方便,实现了对有机氯农药的快速、灵敏、高选择性检测,并且成本低,可应用于便携式检测,具有市场发展前景;
(2)本发明首次采用原位复合的方法制备了二维纳米材料FeMn-TiO2/MoS2,该方法主要有三个优势:一是,由于铁、锰共同在二氧化钛纳米方块上的原位生长而充分与二氧化钛纳米方块接触,利用铁、锰的金属表面等离子体作用以及二者的协同作用,有效提高了半导体基质共振能量转移能力,解决了二氧化钛纳米片虽然比表面积比较大及介孔特性适用于电致化学发光基质材料,但是电致化学发光信号不稳定的技术问题;二是,由于二硫化钼片状二维纳米材料的负载特性和二氧化钛纳米方块在其上的充分分散,极大地增大了电致化学发光强度,解决了二氧化钛纳米片导电性差和电致化学发光强度弱而不利于制备电致化学发光传感器的技术问题;三是,由于铁、锰离子在该过程中既作为插层材料又作为反应掺杂材料,最后采用原位复合的方法实现了该复合材料的一锅制备,不但节省了时间、材料损耗,而且使得制备的铁、锰共掺杂的二氧化钛纳米方块能够更好地均匀分散到二硫化钼片状二维纳米材料上面。因此,该材料的有效制备,具有重要的科学意义和应用价值;
(3)本发明首次将FeMn-TiO2/MoS2应用于电致化学发光生物传感器的制备中,显著提高了电致化学发光的强度和稳定性,大大提高了电致化学发光传感器的检测灵敏度,使得电致化学发光生物传感器实现了在实际工作中的应用;该材料的应用,也为相关生物传感器,如光电化学传感器、电化学传感器等提供了技术参考,具有广泛的潜在使用价值。
具体实施方式
实施例1 FeMn-TiO2/MoS2的制备
(1)取0.6 g二硫化钼粉末、0.2 mmol铁盐和0.2 mmol锰盐共同加入到3mL正丁基锂溶液中,在氮气保护和60 ℃下,搅拌12小时,得到反应后的溶液;
(2)利用非极性溶剂洗涤步骤(1)中反应后的溶液,然后在60 ℃下进行水浴超声处理,处理完后,再利用非极性溶剂洗涤处理后的溶液,真空干燥,得到铁、锰共插层的二硫化钼纳米材料;
(3)取500 mg步骤(2)制得的铁、锰共插层的二硫化钼纳米材料加入到5 mL钛酸四丁酯中,搅拌1小时后,边搅拌边缓慢加入0.5 mL氢氟酸,然后160 ℃下在反应釜中反应18小时;
(4)将步骤(3)所得的反应产物,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥,即制得FeMn-TiO2/MoS2
所述的正丁基锂溶液为正丁基锂的己烷溶液,浓度为1.6 mol/L;
所述的铁盐为硫酸铁;
所述的锰盐为硫酸锰;
所述的非极性溶剂为己烷;
所述的水浴超声处理,处理时间为1小时。
实施例2 FeMn-TiO2/MoS2的制备
(1)取0.6 g二硫化钼粉末、1.0 mmol铁盐和1.0 mmol锰盐共同加入到5 mL正丁基锂溶液中,在氮气保护和30 ℃下,搅拌24小时,得到反应后的溶液;
(2)利用非极性溶剂洗涤步骤(1)中反应后的溶液,然后在30 ℃下进行水浴超声处理,处理完后,再利用非极性溶剂洗涤处理后的溶液,真空干燥,得到铁、锰共插层的二硫化钼纳米材料;
(3)取200 mg步骤(2)制得的铁、锰共插层的二硫化钼纳米材料加入到5 mL钛酸四丁酯中,搅拌1小时后,边搅拌边缓慢加入0.6 mL氢氟酸,然后180 ℃下在反应釜中反应20小时;
(4)将步骤(3)所得的反应产物,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥,即制得FeMn-TiO2/MoS2
所述的正丁基锂溶液为正丁基锂的己烷溶液,浓度为1.6 mol/L;
所述的铁盐为氯化铁;
所述的锰盐为氯化锰;
所述的非极性溶剂为四氯化碳;
所述的水浴超声处理,处理时间为1小时。
实施例3 电致化学发光生物传感器的制备方法
(1)将宽为1 cm、长为4 cm的ITO导电玻璃作为工作电极,在电极表面滴涂8 µL的FeMn-TiO2/MoS2溶胶,室温下晾干;
(2)将步骤(1)中得到的电极用缓冲溶液PBS清洗,继续在电极表面滴涂8 µL 10 µg/mL的有机氯农药抗体溶液,4 ℃ 冰箱中保存晾干;
(3)将步骤(2)中得到的电极用PBS清洗,继续在电极表面滴涂8 µL 浓度为100 µg/mL的牛血清白蛋白溶液,4 ℃ 冰箱中保存晾干;
(4)将步骤(3)中得到的电极用PBS清洗,4 ℃ 冰箱中保存晾干后,即制得有机氯农药传感器;
所述的Mn-TiO2/MoS2溶胶为将50 mg 的FeMn-TiO2/MoS2粉末溶于10 mL超纯水中,并超声30 min后制得的水溶胶;
所述的PBS为10mmol/L的磷酸盐缓冲溶液,所述的磷酸盐缓冲溶液的pH值为7.4,所述的有机氯农药为三氯杀螨砜。
实施例4 电致化学发光生物传感器的制备方法
(1)将宽为1 cm、长为4 cm的ITO导电玻璃作为工作电极,在电极表面滴涂10 µL的FeMn-TiO2/MoS2溶胶,室温下晾干;
(2)将步骤(1)中得到的电极用缓冲溶液PBS清洗,继续在电极表面滴涂10 µL 10µg/mL的有机氯农药抗体溶液,4 ℃ 冰箱中保存晾干;
(3)将步骤(2)中得到的电极用PBS清洗,继续在电极表面滴涂10 µL 浓度为100 µg/mL的牛血清白蛋白溶液,4 ℃ 冰箱中保存晾干;
(4)将步骤(3)中得到的电极用PBS清洗,在4 ℃ 冰箱中保存晾干后,即制得有机氯农药传感器;
所述的FeMn-TiO2/MoS2溶胶为将50 mg 的Mn-TiO2/MoS2粉末溶于10 mL超纯水中,并超声30 min后制得的水溶胶;
所述的PBS为10 mmol/L的磷酸盐缓冲溶液,所述的磷酸盐缓冲溶液的pH值为7.4,所述的有机氯农药为三氯杀螨醇。
实施例5 电致化学发光生物传感器的制备方法
(1)将宽为1 cm、长为4 cm的ITO导电玻璃作为工作电极,在电极表面滴涂12 µL的FeMn-TiO2/MoS2溶胶,室温下晾干;
(2)将步骤(1)中得到的电极用缓冲溶液PBS清洗,继续在电极表面滴涂12 µL 10µg/mL的有机氯农药抗体溶液,4 ℃ 冰箱中保存晾干;
(3)将步骤(2)中得到的电极用PBS清洗,继续在电极表面滴涂12 µL 浓度为100 µg/mL的牛血清白蛋白溶液,4 ℃ 冰箱中保存晾干;
(4)将步骤(3)中得到的电极用PBS清洗,在4 ℃ 冰箱中保存晾干后,即制得有机氯农药传感器;
所述的Mn-TiO2/MoS2溶胶为将50 mg 的FeMn-TiO2/MoS2粉末溶于10 mL超纯水中,并超声30 min后制得的水溶胶;
所述的PBS为10 mmol/L的磷酸盐缓冲溶液,所述的磷酸盐缓冲溶液的pH值为7.4,所述的有机氯农药为氯硝基苯。
实施例6 实施例1~5制备的电致化学发光生物传感器,应用于有机氯农药的检测,步骤如下:
(1)标准溶液配制:配制一组包括空白标样在内的不同浓度的有机氯农药标准溶液;
(2)工作电极修饰:将如权利要求1所述的制备方法所制备的电致化学发光生物传感器为工作电极,将步骤(1)中配制的不同浓度的有机氯农药标准溶液分别滴涂到工作电极表面,4 ℃ 冰箱中保存;
(3)工作曲线绘制:将饱和甘汞电极作为参比电极,铂丝电极作为辅助电极,与步骤(2)所修饰好的工作电极组成三电极系统,连接到电致化学发光检测设备上;在电解槽中先后加入15 mL的K2S2O8溶液和100 µL 的H2O2溶液;用循环伏安法对组装的工作电极施加循环电压;根据所得的电致化学发光的光信号强度与有机氯农药抗原标准溶液浓度之间的关系,绘制工作曲线;空白标样的光信号强度记为D 0,含有不同浓度的有机氯农药标准溶液的光信号强度记为D i,响应光信号强度降低的差值为ΔD = D 0-D i,ΔD与有机氯农药标准溶液的质量浓度C之间成线性关系,绘制ΔDC工作曲线;有机氯农药的线性检测范围为:0.003~100 ng/mL,检出限为:1.1 pg/mL;
(4)有机氯农药的检测:用待测样品代替步骤a中的有机氯农药标准溶液,按照步骤b和c中的方法进行检测,根据响应光信号强度降低的差值ΔD和工作曲线,得到待测样品中有机氯农药的含量;
所述的K2S2O8溶液由1 mol K2S2O8和1 mol KCl溶于10 L 的pH=6.5缓冲溶液中制备得到,所述的pH=6.5缓冲溶液为pH值为6.5的磷酸盐缓冲溶液;
所述的H2O2溶液为过氧化氢水溶液,所述的过氧化氢水溶液的浓度为10%。

Claims (1)

1.一种检测有机氯农药的电致化学发光生物传感器的制备方法,其特征在于所述的电致化学发光生物传感器由工作电极、FeMn-TiO2/MoS2、有机氯农药抗体、牛血清白蛋白组成;所述的FeMn-TiO2/MoS2为铁、锰共掺杂二氧化钛纳米方块与二硫化钼原位复合的二维纳米复合材料;
所述的FeMn-TiO2/MoS2的具体制备步骤为:取0.6 g二硫化钼粉末、0.2 ~ 2.0 mmol铁盐和0.2 ~ 2.0 mmol锰盐共同加入到3~10 mL正丁基锂溶液中,在氮气保护和30 ~ 60 ℃下,搅拌12 ~ 48小时,得到反应后的溶液;然后在30 ~ 60 ℃下进行水浴超声处理,处理完后,再利用非极性溶剂洗涤处理后的溶液,真空干燥,得到铁、锰共插层的二硫化钼纳米材料;取10 ~ 500 mg制得的铁、锰共插层的二硫化钼纳米材料加入到5 mL钛酸四丁酯中,搅拌1小时后,边搅拌边缓慢加入0.5 ~ 0.8 mL氢氟酸,然后160~180 ℃下在反应釜中反应18~ 20小时;所得的反应产物,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥,即制得FeMn-TiO2/MoS2
所述的正丁基锂溶液为正丁基锂的己烷溶液,浓度为1.6 mol/L;
所述的铁盐选自下列之一:硫酸铁、氯化铁、硝酸铁、有机铁化合物;
所述的锰盐选自下列之一:硫酸锰、氯化锰、硝酸锰、有机锰化合物;
所述的非极性溶剂选自下列之一:己烷、环己烷、四氯化碳、苯、甲苯;
所述的水浴超声处理,处理时间为1小时;
所述的电致化学发光生物传感器的具体制备步骤为:
(1)以ITO导电玻璃为工作电极,在电极表面滴涂8~12 µL的FeMn-TiO2/MoS2溶胶,室温下晾干;
(2)将步骤(1)中得到的电极用缓冲溶液PBS清洗,继续在电极表面滴涂8~12 µL 10 µg/mL的有机氯农药抗体溶液,4 ℃ 冰箱中保存晾干;
(3)将步骤(2)中得到的电极用PBS清洗,继续在电极表面滴涂8~12 µL 浓度为100 µg/mL的牛血清白蛋白溶液,4 ℃ 冰箱中保存晾干;
(4)将步骤(3)中得到的电极用PBS清洗,在4 ℃ 冰箱中保存晾干后,即制得电致化学发光生物传感器;
所述的FeMn-TiO2/MoS2溶胶为将50 mg 的FeMn-TiO2/MoS2粉末溶于10 mL超纯水中,并超声30 min后制得的水溶胶;
所述的PBS为10 mmol/L的磷酸盐缓冲溶液,所述的磷酸盐缓冲溶液的pH值为7.4;
所述的有机氯农药选自下列之一:三氯杀螨砜、三氯杀螨醇、五氯硝基苯。
CN201610521135.1A 2016-07-05 2016-07-05 一种检测有机氯农药的电致化学发光生物传感器的制备方法 Active CN106198500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610521135.1A CN106198500B (zh) 2016-07-05 2016-07-05 一种检测有机氯农药的电致化学发光生物传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610521135.1A CN106198500B (zh) 2016-07-05 2016-07-05 一种检测有机氯农药的电致化学发光生物传感器的制备方法

Publications (2)

Publication Number Publication Date
CN106198500A CN106198500A (zh) 2016-12-07
CN106198500B true CN106198500B (zh) 2019-03-05

Family

ID=57466044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610521135.1A Active CN106198500B (zh) 2016-07-05 2016-07-05 一种检测有机氯农药的电致化学发光生物传感器的制备方法

Country Status (1)

Country Link
CN (1) CN106198500B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297305A (zh) * 2014-09-06 2015-01-21 济南大学 一种CdS敏化TiO2环境雌激素光电化学传感器制备方法与应用
CN104297464A (zh) * 2014-09-06 2015-01-21 济南大学 一种原位生成CdS真菌毒素光电化学传感器制备方法及应用
CN104569435A (zh) * 2015-01-25 2015-04-29 济南大学 一种无标记光电化学甲胎蛋白免疫传感器的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090757B2 (en) * 2002-02-15 2006-08-15 Ut-Battelle Llc Photoelectrochemical molecular comb

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297305A (zh) * 2014-09-06 2015-01-21 济南大学 一种CdS敏化TiO2环境雌激素光电化学传感器制备方法与应用
CN104297464A (zh) * 2014-09-06 2015-01-21 济南大学 一种原位生成CdS真菌毒素光电化学传感器制备方法及应用
CN104569435A (zh) * 2015-01-25 2015-04-29 济南大学 一种无标记光电化学甲胎蛋白免疫传感器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform;Ke-Jing Huang等;《Bioelectrochemistry》;20121107;第90卷;第19页第2.3-2.4节 *
Hierarchical MoS2 Nanosheet@TiO2 Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances;Lingxia Zheng等;《Small》;20160122;第12卷(第11期);摘要 *

Also Published As

Publication number Publication date
CN106198500A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN105628758B (zh) 一种基于二维纳米光敏材料的光电化学对硫磷传感器的制备方法及应用
CN106198501B (zh) 一种检测黄曲霉毒素的电致化学发光传感器的制备方法
CN105717180B (zh) 一种基于二维纳米复合材料的光电化学黄曲霉毒素生物传感器的制备方法及应用
CN105699645B (zh) 一种电化学沙丁胺醇传感器的制备方法及应用
CN105572193A (zh) 一种基于复合铈掺杂的多孔纳米复合材料的电化学杀虫脒传感器的制备方法及应用
CN105572108B (zh) 一种电致化学发光内吸磷传感器的制备方法及应用
CN105738437B (zh) 一种基于金属及金属氧化物共掺杂纳米复合材料的电化学对硫磷传感器的制备方法及应用
CN110261448A (zh) 一种基于锌钛复合材料的信号抑制型光电化学降钙素原传感器的制备方法及应用
CN106124588B (zh) 一种基于掺杂二氧化钛/二硫化钼复合材料的电化学壬基酚传感器的制备方法
CN105738447B (zh) 一种电化学氯霉素生物传感器的制备方法及应用
CN105675685A (zh) 一种基于锰掺杂二维纳米复合材料的电化学杀虫脒传感器的制备方法及应用
CN105738353B (zh) 一种光电化学溴氰菊酯传感器的制备方法及应用
CN106124591B (zh) 一种基于二氧化钛/二硫化钼复合材料的雌二醇传感器的制备方法
CN106198682B (zh) 一种基于双金属共掺杂二维光敏剂的光电化学呋喃唑酮传感器的制备方法
CN105717099B (zh) 一种电致化学发光呋喃唑酮生物传感器的制备方法及应用
CN106124589B (zh) 一种基于铁掺杂二维纳米材料构建的电化学生物传感器的制备方法
CN106198500B (zh) 一种检测有机氯农药的电致化学发光生物传感器的制备方法
CN106198683B (zh) 一种基于二维纳米光电材料的光电化学氯霉素生物传感器的制备方法
CN106053442B (zh) 一种基于铁钴共掺杂二维纳米材料的电致化学发光溴氰菊酯传感器的制备方法
CN106053572B (zh) 一种电化学双酚a传感器的制备方法
CN105738350B (zh) 一种基于钴掺杂二维纳米复合材料的电致化学发光氨基甲酸酯传感器的制备方法及应用
CN106053573B (zh) 一种基于负载型双金属共掺杂纳米复合材料的电化学传感器的制备方法
CN106198672B (zh) 一种检测氨基甲酸酯的电化学传感器的制备方法
CN106053566B (zh) 一种基于二维磁性纳米光电材料的光电化学沙丁胺醇传感器的制备方法
CN106248753B (zh) 一种基于负载型双金属共掺杂光敏剂的光电化学杀虫脒传感器的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220323

Address after: 450000 floors 7 and 8, unit 1, building 13, No. 11, Changchun Road, Zhengzhou high tech Industrial Development Zone, Zhengzhou City, Henan Province

Patentee after: HENAN ANBINUO DETECTION TECHNOLOGY CO.,LTD.

Address before: No. 336, West Road, South Xin Zhuang, Shandong, Shandong

Patentee before: University of Jinan