CN106191670A - 一种海洋工程用耐低温热轧槽钢及其制造方法 - Google Patents

一种海洋工程用耐低温热轧槽钢及其制造方法 Download PDF

Info

Publication number
CN106191670A
CN106191670A CN201610544205.5A CN201610544205A CN106191670A CN 106191670 A CN106191670 A CN 106191670A CN 201610544205 A CN201610544205 A CN 201610544205A CN 106191670 A CN106191670 A CN 106191670A
Authority
CN
China
Prior art keywords
rolled steel
steel channel
equal
hot
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610544205.5A
Other languages
English (en)
Inventor
王中学
赵培林
杜传治
武玉利
方金林
李超
郭秀辉
赵传东
韩文习
杨栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Iron and Steel Group Co Ltd SISG
Original Assignee
Shandong Iron and Steel Group Co Ltd SISG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Iron and Steel Group Co Ltd SISG filed Critical Shandong Iron and Steel Group Co Ltd SISG
Priority to CN201610544205.5A priority Critical patent/CN106191670A/zh
Publication of CN106191670A publication Critical patent/CN106191670A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明属于冶金技术领域,具体地,本发明涉及一种海洋工程用耐低温热轧槽钢及其制造方法。本发明的海洋工程用耐低温热轧槽钢,其化学成分组成按重量百分比为:C:0.06%~0.10%;Si:≤0.4%;Mn:0.9%~1.6%;V:0.02%~0.08%;P≤0.02%;S≤0.01%;N≤0.015%;Al:0.02%~0.05%;O≤0.004%;其余为铁Fe和不可避免杂质。本发明涉及的海工用槽钢产品其力学性能良好,屈服强度大于等于355MPa,抗拉强度大于等于470MPa,尤其是‑50℃纵向冲击功大于等于34J,适合极寒地区使用。

Description

一种海洋工程用耐低温热轧槽钢及其制造方法
技术领域
本发明属于冶金技术领域,具体地,本发明涉及一种海洋工程用耐低温热轧槽钢及其制造方法。
背景技术
海洋平台是在海洋上进行作业的特殊场所,主要用于海上油气的钻探和开发。随着石油和天然气需求的日益增大,油气开采已呈现出陆海并进的局面,而作为海上油气钻采作的支撑结构物海洋工程装备前景广阔,发展势头强劲。目前全球有100多个国家正在进行海上石油勘探。由于海洋平台服役期比船舶类的服役期长50%,采用的钢材必须具有高强度、高韧性、抗疲劳、抗层状撕裂、良好的焊接性和耐海水腐蚀等性能。其中,耐低温性能对于极寒地区起到关键作用。
海洋工程用槽钢作为复杂断面型钢的一类,与其他槽钢一样,在制造海洋平台过程中起到支撑作用。
公布号CN103074545A专利涉及到一种高强度耐低温热轧叉车门架用槽钢及其制备方法,该发明提供了一种高强度耐低温热轧叉车门架用槽钢及其制备方法。根据该发明的叉车门架用槽钢的化学成分的重量百分数为:C 0.15%~0.20%、Si0.30%~0.45%、Mn1.30%~1.45%、P≤0.025%、S≤0.015%、V 0.07%~0.09%,其余为铁和不可避免的微量杂质。根据本发明的叉车门架用槽钢的制备方法包括:铁水预脱硫,顶底复吹转炉冶炼,LF精炼,连铸,轧制成型。该发明主要通过微合金化来提高强度,微合金化主要应用钒,没有添加其他的元素。根据本发明的叉车门架用槽钢针对叉车门架涉及,低温韧性保证在-5℃纵向冲击功Aku2平均为61J的水平,不能够满足极地低温环境下的韧性使用要求。
公布号CN103966508A专利涉及一种耐低温叉车门架用钢及其制造方法,所述槽钢的化学成分为:0.08wt%~0.16wt%的C、0.15wt%~0.40wt%的Si、1.2wt%~1.6wt%的Mn、不超过0.020wt%的P、不超过0.010wt%的S、0.02wt%~0.06wt%的V、0.01wt%~0.03wt%的Ti、0.025wt%~0.05wt%的Nb,余量为铁和不可避免的杂质。根据该发明的方法生产出的叉车门架用钢在低温条件下-40℃下冲击韧性在28J以上。但是添加Nb,Ti等,成本显著增加,同时对于-50℃条件下在极寒地区使用受到限制。
发明内容
本发明的目的是针对现有技术的不足,为了满足低温环境下海洋石油钢的需求,提供一种石油平台用耐低温热轧槽钢及其制造方法。更具体是说,本发明提供一种屈服强度355MPa及以上级别,-50℃以下耐低温槽钢及其低成本制造方法。
本发明的技术方案如下:
本发明的海洋工程用耐低温热轧槽钢,其化学成分组成按重量百分比为:C:0.06%~0.10%;Si:≤0.4%;Mn:0.9%~1.6%;V:0.02%~0.08%;P≤0.02%;S≤0.01%;N≤0.015%;Al:0.02%~0.05%;O≤0.004%;其余为Fe和不可避免杂质。
进一步地,本发明除上述合金成分外,还可以选择添加Nb,Ti或者Ni等一种或者几种元素。此种情况下,本发明的海洋工程用耐低温热轧槽钢,其化学成分组成按重量百分比为:C:0.06%~0.10%;Si:≤0.4%;Mn:0.9%~1.6%;V:0.02%~0.08%;P≤0.02%;S≤0.01%;N≤0.015%;Al:0.02%~0.05%;O≤0.004%;Nb,Ti或者Ni中的一种或者几种元素,其含量控制在Nb≤0.02%,Ti≤0.025%或者Ni≤0.02%;其余为Fe和不可避免杂质。
本发明的热轧槽钢,其屈服强度大于等于355MPa,抗拉强度大于等于470MPa,延伸率大于等于25%,-50℃纵向冲击功大于等于34J。
本发明还提供了一种上述热轧槽钢的制造方法,其生产制备工艺主要包括转炉冶炼,LF精炼,连铸和热轧成型,具体步骤如下:
1)铁水预脱硫:
对使用原矿制得的铁水脱硫,脱硫后保证铁水中的硫含量为≤0.02wt%;
2)转炉冶炼:
入炉铁水砷含量≤100ppm,要求铁水计量准确,装入量误差≤0.5吨;渣料必须于终点前3分钟加完,全程渣子化好、化透;终渣碱度控制在2.5~3.3范围内;控制钢水的化学成分按重量百分比计与所述热轧槽钢的化学成分一致;
3)精炼:
精炼全程底吹氩气搅拌,保证夹杂物上浮,保证精炼软吹氩不小于10分钟;
4)连铸:
连铸过程中间包液面≥800mm,采用全保护浇注工艺;拉速控制在1.1~1.8m/min;
5)热轧:
在轧制过程中,加热炉的均热温度为1150~1250℃,铸坯在炉时间为120~200min;开轧温度为1100~1160℃,终轧温度在翼缘外侧为820~900℃,轧材的翼缘厚度范围为5~15mm,轧后轧材在冷床自然冷却。
根据本发明的制造方法,其中作为优选,步骤2)采用双挡渣出钢工艺,放钢时间不小于2min,控制转炉下渣量≤70mm;采用铝锰铁脱氧,铝锰铁加入量1.5~4.0kg/t钢,炉前可视情况补加;采用金属锰、钒氮进行合金化,合金成分按中限控制。
根据本发明的制造方法,为保证生产顺行,步骤3)在精炼出站前喂入钙线50~150m/炉。
根据本发明的制造方法,其中作为优选,步骤5)所述精轧在万能连轧机上进行,机架间水冷全部开启。
本发明通过低碳微合金化工艺设计,应用铝脱氧、以V-Al-N为主的工艺技术,结合加热温度和终轧温度等过程温度控制,实现海洋工程用大中规格槽钢产品生产。根据本发明实施例,海洋工程用槽钢的制备方法包括脱硫、转炉冶炼、LF精炼、矩型坯全保护连铸、纵列式万能轧制工艺。
在本发明中主要合金元素的作用如下:
C:在钢中以间隙原子存在,也可以与V,Ti,Nb等强碳化合物合金元素相结合,形成细小弥散的碳化物,起到抑制晶粒长大和析出强化的作用,是最有效的强化元素之一。过高的C对于钢的韧性不利,因此C控制在0.06%~0.10%;
Mn:能够降低奥氏体向铁素体转变的相变温度,而奥氏体向铁素体转变的相变温度的降低对于热轧态或正火态钢材的铁素体晶粒尺寸有细化作用,因此,Mn早就作为高强度微合金钢中的主要合金元素而被广泛应用。Mn过高将增加裂纹敏感性显著增加,过低则固溶强化效果不明显,从而影响强度。故Mn的取值范围确定在0.9~1.6%。
Si:可以固溶于铁素体和奥氏体中,提高钢的强度、硬度、弹性和耐磨性。提高钢的淬火、正火和退火温度,提高钢的回火稳定性和抗氧化性。当钢中Si含量较高时,钢的焊接性能会恶化。Si含量高于0.5%以上将损害钢的韧性和塑性。
V:为强碳化合物形成元素,可阻碍钢在加热时的奥氏体晶粒长大,并能够抑制轧制后的再结晶及再结晶后的晶粒长大,形成的VN起到细化晶粒的作用,VC起到沉淀强化的作用,进而提高钢材的强度和低温韧性。
P:是钢中的有害元素,由于其偏析倾向严重,容易在晶界聚集恶化钢的基体组织,使钢的力学性能不均匀,因此本发明将磷含量控制到0.02%以下。
S:是大多数钢种中的有害元素,偏析倾向严重,易引起钢材低温沿晶断裂和高温脆化,并能导致钢材具有各向异性韧性低等缺点,本发明将硫含量控制在0.01%以下。
Al:脱氧剂,同时可以与钢中的N形成AlN,细化铁素体晶粒,起到细晶强化的作用,同时改善钢的韧性。过多的Al不利于组织的纯净度,因此控制含量在0.02%~0.05%;
本发明未提及的工序,均可采用现有技术。
同目前高强度槽钢及生产方法比较,本发明技术方案的优点在于:
1、与现有技术相比,本专利涉及技术充分利用细晶强化机制,细化基体组织晶粒到18微米以下,提高低温韧性;同时,采用低碳含量控制,避免出现过多的珠光体和带状组织,提高组织均匀性。
2、V-Al-N复合微合金化工艺,成本低廉,炼钢工序工艺控制简单,合金回收率稳定,轧制过程不需进行冷却水控轧空冷,通过空冷就可以实现组织的细化以及稳定性,从而得到耐低温海工用槽钢。
3、本发明涉及的海工用槽钢产品其力学性能良好,屈服强度大于等于355MPa,抗拉强度大于等于470MPa,尤其是-50℃纵向冲击功大于等于34J,适合极寒地区使用。
附图说明
图1是本发明的耐低温热轧槽钢外形示意图;其中h表示高度,b表示腿宽度,s表示腰宽度,t表示腿厚度,r1表示内圆弧半径。
具体实施方式
以下列举具体实施例对本发明进行说明。需要指出的是,实施例只用于对本发明作进一步说明,不限制本发明的保护范围,其他人根据本发明做出的非本质的修改和调整,仍属于本发明的保护范围。
下述实施例中的连铸坯均按以下工艺流程制备:根据设定的化学成分范围(表1),以化学成分C,Si,Mn,S,P和Fe为原料,进行转炉冶炼、精炼、连铸、铸坯直接加热或者均热。实施例1-3的制备步骤如下:
1、铁水预脱硫:
对使用原矿制得的铁水脱硫,脱硫后保证铁水中的硫含量为≤0.008wt%;
2、转炉冶炼:
入炉铁水砷含量小于100ppm;渣料必须于终点前3分钟加完,全程渣子化好、化透。终渣碱度控制在2.9~3.1范围内。采用双挡渣出钢工艺,放钢时间5min,控制转炉下渣量60mm;控制钢水的化学成分按重量百分比计与所述热轧槽钢的化学成分一致。
3、精炼:
执行全程底吹氩搅拌吹氩制度,保证夹杂物上浮,保证精炼软吹氩15分钟。为保证生产顺行,精炼出站前喂入钙线100m。
4、连铸:
采用全保护浇注工艺;拉速控制在1.5m/min.
5、热轧:
控制温度为主,终轧温度检测翼缘外侧,轧后轧材在冷床自然冷却。实施例1-3的化学成分及具体工艺见下表1。
表1实施例1-3的化学成分(wt%,余量铁)
项目 C Si Mn P S Al V N Nb Ti Ni
实施例1 0.06 0.25 1.1 0.02 0.010 0.020 0.05 0.012
实施例2 0.08 0.35 1.20 0.019 0.009 0.025 0.035 0.008
实施例3 0.10 0.28 1.0 0.018 0.008 0.030 0.03 0.01
实施例4 0.06 0.25 1.1 0.02 0.010 0.020 0.05 0.012 0.02
实施例5 0.08 0.35 1.20 0.019 0.009 0.025 0.035 0.008 0.015
实施例6 0.10 0.28 1.0 0.018 0.008 0.030 0.03 0.01 0.015 0.2
实施例7 0.06 0.25 1.1 0.02 0.010 0.020 0.05 0.012 0.02 0.015 0.2
实施例1-3的热轧工艺条件见表2。按照标准为BS EN ISO 377-1997《力学性能试验试样的取样位置和制备》;屈服强度、抗拉强度、延伸率的试验方法参照标准ISO6892-1-2009《金属材料室温拉伸试验方法》;冲击功试验方法参照标准ISO 148-1《金属材料夏比摆锤冲击试验》,结果见表2。
表2实施例1-3的热轧工艺条件
从表中可见,本发明实施例1-3屈服强度保持355MPa级别,其-50℃冲击功较高。可以满足制备海洋工程构件在极低环境下的使用条件,适用于制作海洋石油平台、海洋远洋运输船舶等具有较高低温韧性要求的支撑结构件。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (8)

1.一种海洋工程用耐低温热轧槽钢,其特征在于,所述热轧槽钢的化学成分组成按重量百分比为:C:0.06%~0.10%;Si:≤0.4%;Mn:0.9%~1.6%;V:0.02%~0.08%;P≤0.02%;S≤0.01%;N≤0.015%;Al:0.02%~0.05%;O≤0.004%;其余为Fe和不可避免杂质。
2.如权利要求1所述的热轧槽钢,其特征在于,所述热轧槽钢的屈服强度大于等于355MPa,抗拉强度大于等于470MPa,延伸率大于等于25%,-50℃纵向冲击功大于等于34J。
3.一种海洋工程用耐低温热轧槽钢,其特征在于,所述热轧槽钢的化学成分组成按重量百分比为:C:0.06%~0.10%;Si:≤0.4%;Mn:0.9%~1.6%;V:0.02%~0.08%;P≤0.02%;S≤0.01%;N≤0.015%;Al:0.02%~0.05%;O≤0.004%;Nb,Ti或者Ni中的一种或者几种元素,其含量控制在Nb≤0.02%,Ti≤0.025%或者Ni≤0.02%;其余为Fe和不可避免杂质。
4.如权利要求2所述的热轧槽钢,其特征在于,所述热轧槽钢的屈服强度大于等于355MPa,抗拉强度大于等于470MPa,延伸率大于等于25%,-50℃纵向冲击功大于等于34J。
5.一种权利要求1-4任一所述热轧槽钢的制造方法,包括以下步骤:
1)铁水预脱硫:
对使用原矿制得的铁水脱硫,脱硫后保证铁水中的硫含量为≤0.02wt%;
2)转炉冶炼:
入炉铁水砷含量≤100ppm,装入量误差≤0.5吨;终渣碱度控制在2.5~3.3范围内;控制钢水的化学成分按重量百分比计与所述热轧槽钢的化学成分一致;
3)精炼:
精炼全程底吹氩气搅拌,保证夹杂物上浮,保证精炼软吹氩不小于10分钟;
4)连铸:
连铸过程中间包液面≥800mm,采用全保护浇注工艺;拉速控制在1.1~1.8m/min;
5)热轧:
在轧制过程中,加热炉的均热温度为1150~1250℃,铸坯在炉时间为120~200min;开轧温度为1100~1160℃,终轧温度在翼缘外侧为820~900℃,轧材的翼缘厚度范围为5~15mm,轧后轧材在冷床自然冷却。
6.根据权利要求5所述的制造方法,其特征在于,步骤2)采用双挡渣出钢工艺,放钢时间不小于2min,控制转炉下渣量≤70mm;采用铝锰铁脱氧,铝锰铁加入量1.5~4.0kg/t钢;采用金属锰、钒氮进行合金化,合金成分按中限控制。
7.根据权利要求5所述的制造方法,其特征在于,步骤3)在精炼出站前喂入钙线50~150m/炉。
8.根据权利要求5所述的制造方法,其特征在于,步骤5)所述精轧在万能连轧机上进行,机架间水冷全部开启。
CN201610544205.5A 2016-07-11 2016-07-11 一种海洋工程用耐低温热轧槽钢及其制造方法 Pending CN106191670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610544205.5A CN106191670A (zh) 2016-07-11 2016-07-11 一种海洋工程用耐低温热轧槽钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610544205.5A CN106191670A (zh) 2016-07-11 2016-07-11 一种海洋工程用耐低温热轧槽钢及其制造方法

Publications (1)

Publication Number Publication Date
CN106191670A true CN106191670A (zh) 2016-12-07

Family

ID=57477250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610544205.5A Pending CN106191670A (zh) 2016-07-11 2016-07-11 一种海洋工程用耐低温热轧槽钢及其制造方法

Country Status (1)

Country Link
CN (1) CN106191670A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834944A (zh) * 2017-02-10 2017-06-13 山东钢铁股份有限公司 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
CN108160705A (zh) * 2017-11-17 2018-06-15 山东钢铁股份有限公司 一种平行宽翼缘槽钢及其生产方法
CN111020379A (zh) * 2019-11-22 2020-04-17 龙南龙钇重稀土科技股份有限公司 稀土复合增强热轧钢筋及其制备方法
CN111647810A (zh) * 2020-05-28 2020-09-11 鞍钢股份有限公司 一种屈服强度355MPa级桥梁用槽钢及其生产方法
CN113462974A (zh) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 一种10~60mm厚度规格高强度高韧性叉车用钢及其制备方法
CN113462972A (zh) * 2021-06-21 2021-10-01 山东钢铁股份有限公司 一种海洋工程用调质处理高强度耐低温h型钢及其制备方法
CN113913690A (zh) * 2021-09-23 2022-01-11 山东钢铁股份有限公司 一种海上风电法兰用钢及制备方法
CN114293092A (zh) * 2021-09-08 2022-04-08 武汉钢铁有限公司 一种适用于-70℃环境下的低合金高强钢
CN115418559A (zh) * 2022-07-20 2022-12-02 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258411A (ja) * 1984-06-05 1985-12-20 Kawasaki Steel Corp 溶接鋼管の加工方法
JP2005281842A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 溶接部靭性に優れた低温用低降伏比鋼材の製造方法
CN105018861A (zh) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 一种低成本正火轧制热轧h型钢及其制备方法
CN105586534A (zh) * 2016-02-22 2016-05-18 山东钢铁股份有限公司 一种特厚低韧脆转变温度的热轧h型钢及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258411A (ja) * 1984-06-05 1985-12-20 Kawasaki Steel Corp 溶接鋼管の加工方法
JP2005281842A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 溶接部靭性に優れた低温用低降伏比鋼材の製造方法
CN105018861A (zh) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 一种低成本正火轧制热轧h型钢及其制备方法
CN105586534A (zh) * 2016-02-22 2016-05-18 山东钢铁股份有限公司 一种特厚低韧脆转变温度的热轧h型钢及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国出入境检验检疫指南》编辑委员会: "《中国出入境检验检疫指南》", 31 January 2000 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834944A (zh) * 2017-02-10 2017-06-13 山东钢铁股份有限公司 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
CN108160705A (zh) * 2017-11-17 2018-06-15 山东钢铁股份有限公司 一种平行宽翼缘槽钢及其生产方法
CN108160705B (zh) * 2017-11-17 2019-06-11 山东钢铁股份有限公司 一种平行宽翼缘槽钢及其生产方法
CN111020379A (zh) * 2019-11-22 2020-04-17 龙南龙钇重稀土科技股份有限公司 稀土复合增强热轧钢筋及其制备方法
CN111647810A (zh) * 2020-05-28 2020-09-11 鞍钢股份有限公司 一种屈服强度355MPa级桥梁用槽钢及其生产方法
CN111647810B (zh) * 2020-05-28 2021-07-20 鞍钢股份有限公司 一种屈服强度355MPa级桥梁用槽钢及其生产方法
WO2022267173A1 (zh) * 2021-06-21 2022-12-29 山东钢铁股份有限公司 一种海洋工程用调质处理高强度耐低温h型钢及其制备方法
CN113462972A (zh) * 2021-06-21 2021-10-01 山东钢铁股份有限公司 一种海洋工程用调质处理高强度耐低温h型钢及其制备方法
CN113462974A (zh) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 一种10~60mm厚度规格高强度高韧性叉车用钢及其制备方法
CN114293092A (zh) * 2021-09-08 2022-04-08 武汉钢铁有限公司 一种适用于-70℃环境下的低合金高强钢
CN113913690B (zh) * 2021-09-23 2022-07-26 山东钢铁股份有限公司 一种海上风电法兰用钢及制备方法
CN113913690A (zh) * 2021-09-23 2022-01-11 山东钢铁股份有限公司 一种海上风电法兰用钢及制备方法
CN115418559A (zh) * 2022-07-20 2022-12-02 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法
CN115418559B (zh) * 2022-07-20 2023-11-07 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法

Similar Documents

Publication Publication Date Title
CN108893675B (zh) 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
CN106191670A (zh) 一种海洋工程用耐低温热轧槽钢及其制造方法
CN107747043B (zh) 一种屈服强度650MPa及以上级别耐候热轧H型钢及其制造方法
CN109136738B (zh) 一种高强度耐低温船体结构钢板及其制备方法
CN113862558B (zh) 一种屈服强度700MPa级低成本高韧性高强调质钢及其制造方法
CN108220784A (zh) 一种低屈强比碳锰低温钢的制造方法
JP5740486B2 (ja) 極低温靭性に優れた高強度鋼板及びその製造方法
CN104630625B (zh) 一种耐低温热轧h型钢及其制备方法
CN109868414B (zh) 低温冲击性优良的屈服强度≥430MPa压力容器钢及生产方法
CN102345066B (zh) 一种用于压力容器的钢及其制备方法
CN102605280A (zh) 海洋平台用特厚高强度优良低温韧性钢板及其制造方法
CN111996449B (zh) 一种塑韧性优异的管线用厚板及其生产方法
CN104404384A (zh) 一种550MPa级低压缩比高韧性海洋工程平台用钢板及生产方法
CN106834944A (zh) 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
CN106756517A (zh) 一种用于极地船舶的钢板及其制造方法
CN114134408B (zh) 一种460MPa级桥梁钢板及其制造方法
CN106498296A (zh) 一种屈服强度1100MPa级高强钢的制造方法
CN111155022B (zh) 一种具有低温韧性的390MPa级极地船体结构钢及其制备方法
CN114107822B (zh) 一种15.9级高强度螺栓用钢及其生产方法和热处理方法
CN109023055A (zh) 一种高强度高成形性汽车钢板及其生产工艺
CN114058974B (zh) 一种15.9级耐腐蚀高强度螺栓用钢及其生产方法和热处理方法
CN102021489A (zh) 一种易焊接时效高强度钢及其热处理工艺
CN104073731B (zh) 一种采用直接淬火工艺的超高强船板的生产方法
CN103361573A (zh) 一种420MPa级含矾氮钢及其生产方法
CN109097681A (zh) 一种高强度低夹杂汽车钢板及其连铸过程电磁搅拌工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207