CN106191404A - 一种高强度高塑性twip钢的制备方法 - Google Patents

一种高强度高塑性twip钢的制备方法 Download PDF

Info

Publication number
CN106191404A
CN106191404A CN201610628920.7A CN201610628920A CN106191404A CN 106191404 A CN106191404 A CN 106191404A CN 201610628920 A CN201610628920 A CN 201610628920A CN 106191404 A CN106191404 A CN 106191404A
Authority
CN
China
Prior art keywords
rolling
temperature
twip steel
thickness
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610628920.7A
Other languages
English (en)
Other versions
CN106191404B (zh
Inventor
武晓雷
杨沐鑫
袁福平
姜萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Original Assignee
Institute of Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS filed Critical Institute of Mechanics of CAS
Priority to CN201610628920.7A priority Critical patent/CN106191404B/zh
Publication of CN106191404A publication Critical patent/CN106191404A/zh
Application granted granted Critical
Publication of CN106191404B publication Critical patent/CN106191404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

本发明涉及超细晶金属材料,特别提供了一种高强度高塑性TWIP钢的制备方法。再结晶层片内部由近等轴状的完全再结晶晶粒和宽大的退火孪晶构成。本发明还公开了制备方法。本发明高强度高塑性TWIP钢的性能优异,制备方法简单。

Description

一种高强度高塑性TWIP钢的制备方法
技术领域
本发明涉及超细晶金属材料,特别提供了一种高强度高塑性TWIP钢的制备方法。
背景技术
块体纳米金属因其具有的超高强度受到国内外广大研究者的重视,但是多数纳米金属通常存在室温均匀拉伸伸长率不足5%的结构应用瓶颈,如何提高纳米金属的塑性已成为国际材料领域中的重大科学问题。研究证实,纳米金属低塑性问题的实质是应变硬化率过快降低,而导致颈缩过早失稳。近来,利用微结构界面(如晶界、孪晶界等)密度在空间上的非均匀构筑,为增强纳米金属应变硬化能力,抑制应变局部化,提高塑性提供了新思路。随着研究的深入,非均匀纳米结构金属展现出的诸多优异力学性能和独特变形行为,以及强韧化规律,日益引起学术界和工程界的广泛关注,尤其是非均匀纳米结构应变硬化机理,正逐渐成为新的研究热点,因而具有重要的理论和实际意义。
对于传统TWIP钢(孪生诱发塑性钢)而言,当晶粒细化至亚微米尺度后,其后续室温拉伸过程往往不再或难于产生变形孪晶,即在超细晶尺度下TWIP效应失效,这在极大程度上损害了TWIP钢本应具有的均匀塑性。在超细晶尺度下,若是能够―重启”这类奥氏体钢在粗晶状态下原本具有的TWIP效应,那么,无疑将为TWIP钢的进一步强韧化提供一条新的途径。TWIP钢中形变孪晶的产生,既为晶内位错储存提供更多空间,促进传统林位错硬化,又使得变形奥氏体组织的非均匀性增加,提高背应力硬化。形变孪晶或所谓TWIP效应是TWIP钢中高应变硬化率的强大来源。一方面,变形过程中陆续引入的高密度孪晶界面对位错滑移不断形成新的障碍;另一方面,孪晶界面的连续生成也促使背应力持续增加。
现有技术的TWIP钢的性能不理想,制备方法比较复杂。
发明内容
本发明的目的是提供一种高强度高塑性TWIP钢(孪生诱发塑性)的制备方法,通过对TWIP钢进行异步轧制加冷轧,继而选择后续的温度退火处理,以此获得高强度高塑性的力学性能。
本发明的技术方案如下:
一种高强度高塑性TWIP钢,微观结构为再结晶层片与超细晶层片交替分布的复合微观结构,再结晶层片内部由近等轴状的完全再结晶晶粒和宽大的退火孪晶构成。
所述的高强度高塑性TWIP钢,室温拉伸速度为5×10-4/s,屈服强度可达0.9GPa-1.4GPa,均匀拉伸伸长率可达7%-30%,拉伸曲线表现为非连续屈服现象。
所述的高强度高塑性TWIP钢,其特征在于:再结晶晶粒尺寸为1.1–1.6μm,最大再结晶晶粒等效直径≤5μm;超细晶晶粒尺寸范围为80–800nm。
一种高强度高塑性TWIP钢的制备方法,其特征在于:步骤为:1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950-1050℃温度下锻造成型获得钢坯;成分如下表所示:
2)1230-1300℃热轧保温1.5-2h,开轧温度1150-1250℃,中轧温度850-950℃,终轧厚度为20±2mm;(3)高温退火进行均匀化处理:950—1100℃保温2h;(4)在400~600℃温度下进行温轧,轧制厚度为10±1mm;异步轧制10~1mm,异速比1.5;最终同步轧机冷轧1~0.5mm;(5)对轧制后TWIP进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中在550℃-625℃保温1-8min,然后快速水淬至室温。
优选的,所述的高强度高塑性TWIP钢的制备方法,步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在400℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中600℃保温2min,然后快速水淬至室温。
优选的,所述的高强度高塑性TWIP钢的制备方法,步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在500℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中610℃保温2min,然后快速水淬至室温。
优选的,所述的高强度高塑性TWIP钢的制备方法,步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1300℃保温2h,开轧温度为1250℃,中轧温度为950℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1100℃保温2h;(4)温轧:将样品切割成小块,在600℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中625℃保温2min,然后快速水淬至室温。
本发明具有如下优点:
1.性能优异:制备的高强高塑TWIP钢,明显超出传统高锰TWIP钢性能,具有≥5%均匀伸长率前提下所能达到的最大屈服强度,其值约为原始粗晶样品强度的4倍,即在高强度端获得了优异的强塑性匹配。
2.制备方法简单:采用工业上常用的异步轧制和同步轧制(常规冷轧)方法,易于控制轧制的异速比和轧制每道次的压下量等工艺参数;同时,采用高温短时热处理退火工艺,控制退火的温度和时间,也易于实现。本发明工艺简单,可降低成本。
附图说明
图1:本发明实施例3得到的高强高塑TWIP钢的EBSD照片;
图2:本发明实施例3得到的高强高塑TWIP钢的晶粒统计分布图;
图3:本发明实施例3得到的高强高塑TWIP钢的TEM明场像照片;
图4:本发明制备得到的高强高塑TWIP钢的准静态拉伸曲线。
(其中CG表示粗晶,即高温退火均匀后处理后状态,HL600表示冷轧后600℃保温退火状态;UFG表示超细晶,即冷轧后未退火状态)
具体实施方法
下面通过实施例详述本发明,以下实施例仅用于说明本发明,但不用来限制本发明的发明范围。该技术领域的技术工程师可根据上述发明的内容作出一些非本质性的改进和调整。
实施例1
1.熔炼及轧制制备TWIP钢
(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;成分如下表所示:
(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在400℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm。
步骤(3)后,显微组织由尺寸均匀但较为粗大的奥氏体晶粒构成,绝大多数奥氏体晶粒内含有退火孪晶,平均晶粒尺寸为80μm。
步骤(4)后,微观组织为亚微米尺度层片结构;层片界面较为平直、锋锐且明晰,具有较高位错密度,平均层片间距约280nm,最大层片间距约800nm,最短层片长度约1μm。
2.对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中600℃保温2min,然后快速水淬至室温。
高温短时退火后,发生了明显的部分再结晶。再结晶晶粒尺寸分布于1.1–1.6μm范围内,最大再结晶晶粒等效直径≤5μm,超细晶晶粒尺寸范围为80-800nm,平均晶粒尺寸约345nm。
统计计算表明,超细晶和再结晶层片的体积分数为18%和82%,再结晶晶粒承担了22%的应变,整体样品的屈服强度为1.4GPa,均匀伸长率为7%,再结晶晶粒的变形量远远大于样品整体应变,使TWIP钢具备高强度的同时,也有>5%的均匀拉伸伸长率。
实施例2
1.熔炼及轧制制备TWIP钢
(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在500℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm。
步骤(3)后,显微组织由尺寸均匀但较为粗大的奥氏体晶粒构成,绝大多数奥氏体晶粒内含有退火孪晶,平均晶粒尺寸为80μm。
步骤(4)后,微观组织为亚微米尺度层片结构;层片界面较为平直、锋锐且明晰,具有较高位错密度,平均层片间距约280nm,最大层片间距约800nm,最短层片长度约1μm。
2.对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中610℃保温2min,然后快速水淬至室温。
统计计算表明,超细晶和再结晶层片的体积分数为40%和60%,再结晶晶粒承担了34%的应变,整体样品的屈服强度为920MPa,均匀伸长率为21%。
实施例3
1.熔炼及轧制制备TWIP钢
(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1300℃保温2h,开轧温度为1250℃,中轧温度为950℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1100℃保温2h;(4)温轧:将样品切割成小块,在600℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm。
步骤(3)后,显微组织由尺寸均匀但较为粗大的奥氏体晶粒构成,绝大多数奥氏体晶粒内含有退火孪晶,平均晶粒尺寸为80μm。
步骤(4)后,微观组织为亚微米尺度层片结构;层片界面较为平直、锋锐且明晰,具有较高位错密度,平均层片间距约280nm,最大层片间距约800nm,最短层片长度约1μm。
2.对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中625℃保温2min,然后快速水淬至室温。
统计计算表明,超细晶和再结晶层片的体积分数为55%和45%,再结晶晶粒承担了46%的应变,整体样品的屈服强度为900MPa,均匀伸长率为30%。
随着退火温度的升高再结晶引入程度增大,造成组织的不均匀性越明显。这种组织的不均匀性在材料变形过程中产生了巨大作用。本发明中,625℃下短时2min退火得到的TWIP钢强度与塑性匹配最优。

Claims (7)

1.一种高强度高塑性TWIP钢,其特征在于:微观结构为再结晶层片与超细晶层片交替分布的复合微观结构,再结晶层片内部由近等轴状的完全再结晶晶粒和宽大的退火孪晶构成。
2.如权利1要求所述的高强度高塑性TWIP钢,其特征在于:室温拉伸速度为5×10-4/s,屈服强度可达0.9GPa-1.4GPa,均匀拉伸伸长率可达7%-30%,拉伸曲线表现为非连续屈服现象。
3.如权利1要求所述的高强度高塑性TWIP钢,其特征在于:再结晶晶粒尺寸为1.1–1.6μm,最大再结晶晶粒等效直径≤5μm;超细晶晶粒尺寸范围为80–800nm。
4.如权利1至3任一所述的高强度高塑性TWIP钢的制备方法,其特征在于:步骤为:1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950-1050℃温度下锻造成型获得钢坯;2)1230-1300℃热轧保温1.5-2h,开轧温度1150-1250℃,中轧温度850-950℃,终轧厚度为20±2mm;(3)高温退火进行均匀化处理:950-1100℃保温2h;(4)在400-600℃温度下进行温轧,轧制厚度为10±1mm;异步轧制10-1mm,异速比1.5;最终同步轧机冷轧至1-0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,热处理炉内于550℃-625℃保温1-8min,然后快速水淬至室温。
5.如权利4所述的高强度高塑性TWIP钢的制备方法,其特征在于:步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在400℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中600℃保温2min,然后快速水淬至室温。
6.如权利4所述的高强度高塑性TWIP钢的制备方法,其特征在于:步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1250℃保温2h,开轧温度为1200℃,中轧温度为900℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1000℃保温2h;(4)温轧:将样品切割成小块,在500℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中610℃保温2min,然后快速水淬至室温。
7.如权利4所述的高强度高塑性TWIP钢的制备方法,其特征在于:步骤为:(1)真空感应电炉熔炼及浇铸制成TWIP钢钢锭,在950℃-1050℃温度下锻造成型获得钢坯;(2)热轧:1300℃保温2h,开轧温度为1250℃,中轧温度为950℃,终轧厚度为20mm;(3)高温退火进行均匀化处理:1100℃保温2h;(4)温轧:将样品切割成小块,在600℃温度下进行温轧,轧制厚度为10mm;异步轧制:轧制厚度为1mm,异速比1.5;最终同步轧机冷轧厚度为0.5mm;(5)对轧制后TWIP钢进行高温短时退火处理:样品封装于高真空石英试管中,在热处理炉中625℃保温2min,然后快速水淬至室温。
CN201610628920.7A 2016-08-03 2016-08-03 一种高强度高塑性twip钢的制备方法 Active CN106191404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610628920.7A CN106191404B (zh) 2016-08-03 2016-08-03 一种高强度高塑性twip钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610628920.7A CN106191404B (zh) 2016-08-03 2016-08-03 一种高强度高塑性twip钢的制备方法

Publications (2)

Publication Number Publication Date
CN106191404A true CN106191404A (zh) 2016-12-07
CN106191404B CN106191404B (zh) 2018-03-02

Family

ID=57498153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610628920.7A Active CN106191404B (zh) 2016-08-03 2016-08-03 一种高强度高塑性twip钢的制备方法

Country Status (1)

Country Link
CN (1) CN106191404B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624741A (zh) * 2017-03-23 2018-10-09 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN110129699A (zh) * 2019-06-13 2019-08-16 中国科学院力学研究所 一种高均匀伸长率GPa级钛及其制备方法
CN110951956A (zh) * 2019-12-19 2020-04-03 中北大学 一种超高塑性twip钢的生产方法
CN112662971A (zh) * 2020-10-28 2021-04-16 西安交通大学 一种具有梯度结构的高强twip钛合金及其热轧方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662932B (zh) * 2019-10-15 2022-03-04 中国石油化工股份有限公司 一种twip钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048034A1 (de) * 2004-11-03 2006-05-11 Thyssenkrupp Steel Ag Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels “direct strip casting '
CN101235464A (zh) * 2007-11-29 2008-08-06 北京科技大学 一种铜、镍合金化的孪晶诱导塑性钢铁材料及制备工艺
CN101660086A (zh) * 2008-08-25 2010-03-03 鞍钢股份有限公司 一种轻质、高性能孪晶诱导塑性钢及其制备方法
CN102212746A (zh) * 2011-06-03 2011-10-12 武汉钢铁(集团)公司 强塑积大于65GPa·%的孪晶诱导塑性钢及生产方法
CN104328360A (zh) * 2014-11-20 2015-02-04 北京科技大学 双相孪生诱导塑性超高强度汽车钢板及其制备工艺
CN105441796A (zh) * 2014-09-26 2016-03-30 鞍钢股份有限公司 具有高强塑积twip钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048034A1 (de) * 2004-11-03 2006-05-11 Thyssenkrupp Steel Ag Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels “direct strip casting '
CN101235464A (zh) * 2007-11-29 2008-08-06 北京科技大学 一种铜、镍合金化的孪晶诱导塑性钢铁材料及制备工艺
CN101660086A (zh) * 2008-08-25 2010-03-03 鞍钢股份有限公司 一种轻质、高性能孪晶诱导塑性钢及其制备方法
CN102212746A (zh) * 2011-06-03 2011-10-12 武汉钢铁(集团)公司 强塑积大于65GPa·%的孪晶诱导塑性钢及生产方法
CN105441796A (zh) * 2014-09-26 2016-03-30 鞍钢股份有限公司 具有高强塑积twip钢及其制备方法
CN104328360A (zh) * 2014-11-20 2015-02-04 北京科技大学 双相孪生诱导塑性超高强度汽车钢板及其制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈云龙: ""异步轧制对纯铁及TWIP钢组织性能影响的研究"", 《上海交通大学2009年度学位论文》 *
陈科蓓等: ""退火温度对异步轧制30Mn-3Si-3Al TWIP钢力学性能的影响"", 《中国力学大会-2015论文摘要集》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624741A (zh) * 2017-03-23 2018-10-09 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN108624741B (zh) * 2017-03-23 2019-10-22 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN110129699A (zh) * 2019-06-13 2019-08-16 中国科学院力学研究所 一种高均匀伸长率GPa级钛及其制备方法
CN110951956A (zh) * 2019-12-19 2020-04-03 中北大学 一种超高塑性twip钢的生产方法
CN112662971A (zh) * 2020-10-28 2021-04-16 西安交通大学 一种具有梯度结构的高强twip钛合金及其热轧方法
CN112662971B (zh) * 2020-10-28 2022-05-20 西安交通大学 一种具有梯度结构的高强twip钛合金及其热轧方法

Also Published As

Publication number Publication date
CN106191404B (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN106191404A (zh) 一种高强度高塑性twip钢的制备方法
CN103894792B (zh) 全纤维组织大型单法兰防爆电机主轴锻件加工方法
Lv et al. Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel
CN107177791B (zh) 一种超低碳钢纤维用热轧盘条及其生产方法
CN107794357A (zh) 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
CN112410681A (zh) 一种高强塑积中锰钢及其制备方法
CN106862272A (zh) 一种高强度高延展性镁合金板材的高效率轧制工艺及制备方法
CN114410893B (zh) 一种退火态热作模具钢的超细晶化组织热处理工艺
JPWO2016080308A1 (ja) 冷間鍛造部品用圧延棒鋼または圧延線材
CN103774070B (zh) 一种Mg-Zn-Al-Cu系超高强镁合金板材制备方法
CN106011681A (zh) 一种提高316ln奥氏体不锈钢力学性能的方法
Jiang et al. Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper
CN104805335B (zh) 低电阻率铝合金杆
CN106498139B (zh) 一种生产if钢的工艺方法及装置
CN104232859B (zh) 一种GCr15SiMn钢的热处理方法
CN104099517B (zh) 一种225MPa级别低屈服点建筑抗震用钢的制造方法
CN106048409A (zh) 一种提高301ln奥氏体不锈钢力学性能的方法
CN104087830B (zh) 一种160MPa级别低屈服点建筑抗震用钢的制造方法
CN103320686B (zh) 冷轧薄板45号钢及其生产方法
CN105274434B (zh) 一种能降低由偏析引起开裂的热轧低合金钢及生产方法
CN103643116A (zh) 一种焊接气瓶及其热轧钢板的制造工艺
CN115125431B (zh) 一种细化低活化铁素体马氏体钢组织的方法
CN106521335B (zh) 一种高强塑积trip钢棒材及等通道转角挤压制备方法
CN105567948A (zh) 一种冷轧钢卷球化退火温控工艺
JPS60114517A (ja) 軟化焼鈍処理の省略可能な鋼線材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant