CN106186515A - 一种用于循环水养殖的水处理系统及方法 - Google Patents

一种用于循环水养殖的水处理系统及方法 Download PDF

Info

Publication number
CN106186515A
CN106186515A CN201610570803.XA CN201610570803A CN106186515A CN 106186515 A CN106186515 A CN 106186515A CN 201610570803 A CN201610570803 A CN 201610570803A CN 106186515 A CN106186515 A CN 106186515A
Authority
CN
China
Prior art keywords
ammonia nitrogen
regulating reservoir
water treatment
water
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610570803.XA
Other languages
English (en)
Other versions
CN106186515B (zh
Inventor
倪琦
张海耿
张业韡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fishery Machinery and Instrument Research Institute of CAFS
Original Assignee
Fishery Machinery and Instrument Research Institute of CAFS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fishery Machinery and Instrument Research Institute of CAFS filed Critical Fishery Machinery and Instrument Research Institute of CAFS
Priority to CN201610570803.XA priority Critical patent/CN106186515B/zh
Publication of CN106186515A publication Critical patent/CN106186515A/zh
Application granted granted Critical
Publication of CN106186515B publication Critical patent/CN106186515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

本发明涉及一种用于循环水养殖的水处理系统,细菌培养池通过计量泵与调节池连接;调节池通过蠕动泵与细菌培养池连接,为细菌培养池补充液体;调节池通过离心泵与一体化水处理设备连接,一体化水处理设备与养殖池连接;一体化水处理设备还通过电磁阀与小型生物过滤器连接,小型生物过滤器与养殖池连接;养殖池内设置氨氮传感器,细菌培养池内设置液位开关;氨氮传感器、液位开关、计量泵、蠕动泵、电磁阀分别与电气控制柜信号连接;当氨氮传感器检测数据达到第一临界点时,计量泵开启/关闭,当氨氮传感器检测数据达到第二临界点时,电磁阀开启/关闭;当液位开关检测的液位数据下降至临界点时,蠕动泵开启,反之蠕动泵关闭。

Description

一种用于循环水养殖的水处理系统及方法
技术领域
本发明的涉及一种用于循环水养殖的水处理系统及方法,属于循环水养殖水处理技术领域。
背景技术
循环水养殖系统因其具有高效、可控、节水省地、对环境污染小等特点,正逐渐在世界各国水产养殖业中得到重视和应用,它汇集水产养殖学、微生物学、环境科学、信息与计算机科学等众多学科知识于一体,是未来水产养殖业可持续发展的主要方向之一。在循环水养殖系统中,生物滤器是核心的水处理单元,利用滤器中填料表面的微生物通过硝化反应来降解养殖水体中氨氮、亚硝氮、化学需氧量等营养盐或有机物,进而达到净化水质的目的,以确保鱼的正常生长。
生物滤器中生物膜的培养与维护是整个系统有效运行的重要环节,也是水处理研究中的难点和热点。目前国内用于循环水养殖系统中的生物滤器主要有固定床生物滤器和移动床生物滤器两类,采用的填料有立体弹性纤维,生化毡、改性悬浮填料和活性碳等,常采用自然挂膜法进行生物挂膜培养,即采用循环水系统中本身的微生物进行挂膜,其生物滤器的启动时间普遍较长,特别是在低温工况下,一般的生物滤器普遍存在启动周期长,处理效果不理想等问题。在系统正常运行过程中,生物滤器基本处于“放养”状态,即对其进行的维护与管理较少,影响了生物滤器水处理性能的稳定性及可控性。而养殖水质对养殖品种的生长影响很大,若鱼类长时间生长在高氨氮的环境中,将减弱鱼类自身的抵抗力,容易发病,进而影响了养殖效益。
发明内容
本发明需要解决的技术问题是:
1)循环水养殖系统中生物过滤环节只采用生物滤器方式,该装置需额外的能耗,而且其体积所占比例较大,投资建设成本普遍较高,影响了该养殖模式的大规模推广与应用。
2)循环水养殖系统中生物滤器常采用自然挂膜方式进行滤器的启动,该方法存在启动时间长,不易接种成功等问题,造成滤器处理效率低,运行效果不稳定等问题,进而影响了循环水养殖系统运行的效率。
3)在实际运行中,生物滤器的性能受外界环境的影响较大,抗氨氮冲击负荷及可控性能力较弱,进而影响了生物滤器水处理性能的稳定性。
4)在养殖过程中,随着养殖品种的生长,对循环水养殖系统的水处理能力提出了更高的要求,而传统养殖模式无法再提升系统的水处理能力,故不可避免地需对养殖品种进行分池,影响了养殖品种的生长。
5)传统的循环水养殖系统中生物过滤环节可调节性较差,无法根据实际情况进行有效的、自动化的调节。
本发明采用以下技术方案:
一种用于循环水养殖的水处理系统,包括相互信号连接的工控机11、电气控制柜10;还包括养殖池5、细菌培养池2、调节池3、一体化水处理设备9、小型生物过滤器6;所述细菌培养池2通过计量泵12与调节池3连接,将调制完成/中的细菌培养液泵送至调节池3;所述调节池3通过蠕动泵13与细菌培养池2连接,将调节池3中的水体泵送至细菌培养池2,为细菌培养池2补充液体;所述调节池3通过离心泵4与一体化水处理设备9连接,所述一体化水处理设备9与养殖池5连接;所述一体化水处理设备9还通过电磁阀7与小型生物过滤器6连接,所述小型生物过滤器6与养殖池5连接;所述养殖池5内设置氨氮传感器8,所述细菌培养池2内设置液位开关1;所述氨氮传感器8、液位开关1、计量泵12、蠕动泵13、电磁阀7分别与电气控制柜10信号连接;当氨氮传感器8检测数据达到第一临界点时,所述计量泵12开启/关闭,当氨氮传感器8检测数据达到第二临界点时,所述电磁阀7开启/关闭;当液位开关1检测的液位数据下降至临界点时,所述蠕动泵13开启,反之蠕动泵13关闭。
本技术方案中,小型生物过滤器的体积远小于通常的生物过滤器(如生物床过滤器),因此占地较小,成本也大幅降低。
进一步的,所述调节池3的容量远大于所述细菌培养池2的容量。
进一步的,氨氮传感器8对于养殖水体的氨氮浓度维持在第一临界点附近±0.1mg/L的范围内。
一种上述用于循环水养殖的水处理系统的水处理方法,包括以下步骤:将功能性细菌放入细菌培养池2中,引入调节池3中的水,并投加适量的营养盐,对功能性细菌进行培养;在工作状态,细菌培养池2中的液体逐渐减少,液位开关1发出信号,传至工控机11,工控机11控制蠕动泵13开启,从调节池抽水补充至细菌培养池2中,并定期根据所补充的水增加一定量的功能性细菌及营养盐;通过氨氮传感器8把采集到的氨氮参数传输给工控机11,通过软件进行处理,发布命令给计量泵12进行调节,将细菌培养池2中的菌液加至调节池3后,功能性细菌快速分解养殖水体中的氨氮;功能性细菌随离心泵4的抽取,转移至一体化水处理设备9及养殖池5中,电磁阀7根据氨氮传感器8的检测数据进行开启或关闭,进而完成整个系统中养殖水体的净化。
本发明的有益效果在于:
1.循环水养殖系统中在无生物滤器装置下,本方法可实现氨氮的连续降解,并将其控制在合理范围,是养殖水处理方式的一种突破。
2.本发明可实时监控养殖水体氨氮变化,并自动判断,将养殖水体的氨氮浓度维持在设定值附近±0.1mg/L的范围内,解决了常规生物滤器无法精准控制养殖水体中氨氮浓度问题。
3.本水处理模式在无生物滤器工作时,可显著降低系统的能耗,节约了养殖的生长成本。
4.本水处理模式可提升细菌的活性,并实现了功能性细菌的稳定培养,解决了直接投加细菌效果不显著的问题。
5.本水处理模式可显著降低投资成本,并节约了占地空间,有利于循环水养殖模式的应用与推广。
6.本发明将循环水养殖系统中的氨氮长期维持在设定值附近,没有过大的波动,有利于养殖对象的生长发育,可显著提升养殖效益。
7.本发明可实现养殖对象的连续饲养,即可从幼鱼直接养至成鱼,减少了传统养殖过程中分池带来的麻烦及对鱼的损伤,实现了养殖效益的最大化。
8.有巨大的市场前景及应用推广价值。
附图说明
图1是本发明用于循环水养殖的水处理系统的结构示意图。
图2是本发明用于循环水养殖的水处理系统的控制流程图。
图中,1:液位开关;2:细菌培养池;3:调节池;4:离心泵;5:养殖池;6:小型生物过滤器;7:电磁阀;8:氨氮传感器;9:一体化水处理设备;10:电控柜;11:工控机;12:计量泵;13:蠕动泵。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
本水处理模式主要采用向养殖水体定量添加功能性细菌的方式调控养殖水质,并辅以生物滤器提升水处理效果。
以下先对硬件系统进行说明:
参见图1,一种用于循环水养殖的水处理系统,包括相互信号连接的工控机11、电气控制柜10;还包括养殖池5、细菌培养池2、调节池3、一体化水处理设备9、小型生物过滤器6;所述细菌培养池2通过计量泵12与调节池3连接,将调制完成/中的细菌培养液泵送至调节池3;所述调节池3通过蠕动泵13与细菌培养池2连接,将调节池3中的水体泵送至细菌培养池2,为细菌培养池2补充液体;所述调节池3通过离心泵4与一体化水处理设备9连接,所述一体化水处理设备9与养殖池5连接;所述一体化水处理设备9还通过电磁阀7与小型生物过滤器6连接,所述小型生物过滤器6与养殖池5连接;所述养殖池5内设置氨氮传感器8,所述细菌培养池2内设置液位开关1;所述氨氮传感器8、液位开关1、计量泵12、蠕动泵13、电磁阀7分别与电气控制柜10信号连接;当氨氮传感器8检测数据达到第一临界点时,所述计量泵12开启/关闭,当氨氮传感器8检测数据达到第二临界点时,所述电磁阀7开启/关闭;当液位开关1检测的液位数据下降至临界点时,所述蠕动泵13开启,反之蠕动泵13关闭。
参见图1,所述调节池3的容量远大于所述细菌培养池2的容量。
氨氮传感器8对于养殖水体的氨氮浓度维持在第一临界点附近±0.1mg/L的范围内。
以下对处理和控制过程进行说明:
功能性细菌以溶液方式暂放于培养池中,溶液通过自动补水装置向养殖池中抽取,并根据向培养池中加入的水体量定量添加一定的营养盐及细菌,以使细菌保持较高的活性以及稳定的菌群数量。在养殖池内置入氨氮传感器,氨氮传感器通过电气控制柜连接到工控机,工控机通过电气控制柜连接计量泵,控制计量泵的输出流量。计量泵的输入端连接细菌培养池,计量泵的输出端由管路接至调节池。工作时,氨氮传感器将测得的氨氮浓度输入给工控机,工控机将信号与初始设定氨氮浓度进行对比,分析判断养殖池氨氮浓度的变化,将养殖水体的氨氮浓度维持在设定值附近±0.1mg/L的范围内。根据要求,控制计量泵流量,使计量泵将一定量的功能性细菌溶液加入至调节池,功能性细菌加入至养殖水体中后,以水体中的营养盐为基质迅速生长与繁殖,同时,分解养殖水质中的氨氮等营养盐,进而降低养殖水体中的氨氮浓度。由于细菌的生长与繁殖有一定的周期,故分解养殖水体中的氨氮具有一定的延时性。氨氮传感器隔2小时测定一次氨氮浓度,根据所测值不断修正细菌的投加量,直至将循环水养殖池中的氨氮浓度维持在设定值范围内。
随着养殖品种的生长,对系统的水处理性能提出了更高的要求,此时,若氨氮传感器所测值超过设定的允许最大偏差值,可定时开启小型生物滤器支路,为细菌的附着与繁殖创造更大的场所,以提升系统的水处理效率,直至将循环水养殖池中的氨氮浓度维持在设定值范围内。
通过氨氮传感器采集到氨氮浓度进行处理使得程序能够识别出,然后参照设定的值来判断氨氮浓度是否符合系统的要求,并结合投饲、换水时间、细菌作用时间等参数,摸清投加一定量菌液后养殖水体中氨氮浓度的历史变化规律,进而给计量泵一个合适的输出值,从而控制整个系统的氨氮变化。
定期检测培养池中功能性细菌的浓度,若发生变化,及时做出调整,以确保功能性细菌的活性及数量稳定。
本发明可以采用如下方法进行控制:①对工控机11输入包括养殖池水体体积、换水率、投饵量等基础数据;②输入设定的氨氮浓度值及允许的最大偏差值;③在养殖池5内置入氨氮传感器8,测量氨氮值;④工控机12对设定值与测量值进行比较分析;⑤工控机11对比较的结果进行预判;若超过允许设定偏差值,开启电磁阀7,启动小型生滤过滤器6,工控机11按程序计算控制值,并向计量泵12输出控制值;⑥若没超过允许设定偏差值,工控机11直接按程序计算控制值,并向计量泵12输出控制值;⑦计量泵12按控制值运行,以改变流量大小连续方式添加菌液;⑧工控机11再对设定值与测量值进行比较分析,过程与上述一样,直至将养殖水体中的氨氮浓度控制在设定值。
以上是本发明的优选实施例,本领域的普通技术人员还可以进行各种简单的变换,这些变换应当视为与本发明要求保护的技术方案等同。
本发明改变传统循环水养殖系统中以生物滤器为核心的生物膜法水处理方式,提供了一种作用于养殖水体污染物的高效去除的高精度,可控,高效,成本低的水处理模式。

Claims (4)

1.一种用于循环水养殖的水处理系统,其特征在于:
包括相互信号连接的工控机(11)、电气控制柜(10);
还包括养殖池(5)、细菌培养池(2)、调节池(3)、一体化水处理设备(9)、小型生物过滤器(6);
所述细菌培养池(2)通过计量泵(12)与调节池(3)连接,将调制完成/中的细菌培养液泵送至调节池(3);所述调节池(3)通过蠕动泵(13)与细菌培养池(2)连接,将调节池(3)中的水体泵送至细菌培养池(2),为细菌培养池(2)补充液体;
所述调节池(3)通过离心泵(4)与一体化水处理设备(9)连接,所述一体化水处理设备(9)与养殖池(5)连接;所述一体化水处理设备(9)还通过电磁阀(7)与小型生物过滤器(6)连接,所述小型生物过滤器(6)与养殖池(5)连接;
所述养殖池(5)内设置氨氮传感器(8),所述细菌培养池(2)内设置液位开关(1);所述氨氮传感器(8)、液位开关(1)、计量泵(12)、蠕动泵(13)、电磁阀(7)分别与电气控制柜(10)信号连接;当氨氮传感器(8)检测数据达到第一临界点时,所述计量泵(12)开启/关闭,当氨氮传感器(8)检测数据达到第二临界点时,所述电磁阀(7)开启/关闭;当液位开关(1)检测的液位数据下降至临界点时,所述蠕动泵(13)开启,反之蠕动泵(13)关闭。
2.如权利要求1所述的用于循环水养殖的水处理系统,其特征在于:所述调节池(3)的容量远大于所述细菌培养池(2)的容量。
3.如权利要求1所述的用于循环水养殖的水处理系统,其特征在于:氨氮传感器(8)对于养殖水体的氨氮浓度维持在第一临界点附近±0.1mg/L的范围内。
4.一种权利要求1所述的用于循环水养殖的水处理系统的水处理方法,其特征在于,包括以下步骤:
将功能性细菌放入细菌培养池(2)中,引入调节池(3)中的水,并投加适量的营养盐,对功能性细菌进行培养;
在工作状态,细菌培养池(2)中的液体逐渐减少,液位开关(1)发出信号,传至工控机(11),工控机(11)控制蠕动泵(13)开启,从调节池抽水补充至细菌培养池(2)中,并定期根据所补充的水增加一定量的功能性细菌及营养盐;
通过氨氮传感器(8)把采集到的氨氮参数传输给工控机(11),通过软件进行处理,发布命令给计量泵(12)进行调节,将细菌培养池(2)中的菌液加至调节池(3)后,功能性细菌快速分解养殖水体中的氨氮;功能性细菌随离心泵(4)的抽取,转移至一体化水处理设备(9)及养殖池(5)中,电磁阀(7)根据氨氮传感器(8)的检测数据进行开启或关闭,进而完成整个系统中养殖水体的净化。
CN201610570803.XA 2016-07-19 2016-07-19 一种用于循环水养殖的水处理系统及方法 Active CN106186515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610570803.XA CN106186515B (zh) 2016-07-19 2016-07-19 一种用于循环水养殖的水处理系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610570803.XA CN106186515B (zh) 2016-07-19 2016-07-19 一种用于循环水养殖的水处理系统及方法

Publications (2)

Publication Number Publication Date
CN106186515A true CN106186515A (zh) 2016-12-07
CN106186515B CN106186515B (zh) 2019-05-21

Family

ID=57494576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610570803.XA Active CN106186515B (zh) 2016-07-19 2016-07-19 一种用于循环水养殖的水处理系统及方法

Country Status (1)

Country Link
CN (1) CN106186515B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358323A (zh) * 2018-04-24 2018-08-03 福州科力恩生物科技有限公司 一种净水微生物自动接种配套装置及其方法
CN115259401A (zh) * 2022-07-29 2022-11-01 福州文泽生物科技有限公司 稀土采矿氨氮废水原位处理微生物制备及自动接种设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203877970U (zh) * 2014-06-09 2014-10-15 普罗生物技术(上海)有限公司 污水处理系统氨氮预警达标一体化装置
CN104304134A (zh) * 2014-11-12 2015-01-28 中国水产科学研究院渔业机械仪器研究所 一种新型工厂化循环水养殖系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203877970U (zh) * 2014-06-09 2014-10-15 普罗生物技术(上海)有限公司 污水处理系统氨氮预警达标一体化装置
CN104304134A (zh) * 2014-11-12 2015-01-28 中国水产科学研究院渔业机械仪器研究所 一种新型工厂化循环水养殖系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358323A (zh) * 2018-04-24 2018-08-03 福州科力恩生物科技有限公司 一种净水微生物自动接种配套装置及其方法
CN115259401A (zh) * 2022-07-29 2022-11-01 福州文泽生物科技有限公司 稀土采矿氨氮废水原位处理微生物制备及自动接种设备

Also Published As

Publication number Publication date
CN106186515B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN106259137B (zh) 一种跑道式高密度封闭水产养殖系统及养殖水产的方法
CN103563818B (zh) 藻菌水系对虾循环水养殖系统
CN101664010B (zh) 变流式循环水养殖方法
CN105417856A (zh) 一种封闭循环的多级生物净化系统
CN100548902C (zh) 一种处理城镇污水的好氧颗粒污泥法及其好氧颗粒污泥
CN104911133A (zh) 一种铜绿假单胞菌及应用
CN104973685A (zh) 一种好氧颗粒污泥的培养方法
CN204667126U (zh) 湖库流域的生态因子及基因表达纳米调控设备
CN108029598A (zh) 哲罗鱼工厂化循环水养殖方法
CN106186515B (zh) 一种用于循环水养殖的水处理系统及方法
CN108358323A (zh) 一种净水微生物自动接种配套装置及其方法
CN104531522A (zh) 一种重组毕赤酵母表达外源蛋白过程的专家控制系统
CN102139953B (zh) 好氧颗粒污泥快速培养系统及快速培养方法
CN203505333U (zh) 一种分质利用河水梯级养殖鱼虾的装置
CN104876330A (zh) 一种处理养殖沼液的好氧颗粒污泥系统构建及运行方法
CN205455446U (zh) 淡水轮虫培育系统
CN202285903U (zh) 循环水养殖系统生物滤池自维护免接种专用装置
CN106020259A (zh) 用于水环境治理的溶氧智能调控装置及其方法
CN109502914A (zh) 一种利用小球藻处理沼液的污水处理系统
CN103548727B (zh) 一种分质利用河水梯级养殖鱼虾的装置的养殖方法
CN209383619U (zh) 一种利用小球藻处理沼液的污水处理系统
CN208657690U (zh) 一种循环水养鱼装置及其系统
CN202358957U (zh) 序批式处理工艺在非do状态下的自动控制装置
CN202038914U (zh) 好氧颗粒污泥快速培养系统
CN207313378U (zh) 微污染水体修复一体机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant