CN106179439B - 一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法 - Google Patents

一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法 Download PDF

Info

Publication number
CN106179439B
CN106179439B CN201610483582.2A CN201610483582A CN106179439B CN 106179439 B CN106179439 B CN 106179439B CN 201610483582 A CN201610483582 A CN 201610483582A CN 106179439 B CN106179439 B CN 106179439B
Authority
CN
China
Prior art keywords
catalyst
composite photo
visible light
preparation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610483582.2A
Other languages
English (en)
Other versions
CN106179439A (zh
Inventor
蒋银花
田苏君
黄刚林
李凡
刘佩佩
张文莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610483582.2A priority Critical patent/CN106179439B/zh
Publication of CN106179439A publication Critical patent/CN106179439A/zh
Application granted granted Critical
Publication of CN106179439B publication Critical patent/CN106179439B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米复合材料的制备及环境治理领域,具体公开了具有可见光活性的二元g‑C3N4/Zn3(VO4)2复合光催化剂的制备方法。该方法以g‑C3N4和Zn3(OH)2V2O7·2H2O为原料,采用煅烧法制备不同比例的g‑C3N4/Zn3(VO4)2复合可见光型光催化剂。本发明制备的复合光催化剂可应用于可见光下降解罗丹明B和亚甲基蓝染料。本发明具有制备方法简单,能耗少,成本低,原料丰富清洁,反应条件温和等优点。g‑C3N4/Zn3(VO4)2是良好的可见光响应型复合光催化剂,为首次进行报导,g‑C3N4/Zn3(VO4)2复合光催化剂表现出优良的光催化降解活性,在处理有机废水方面具有重要的应用前景。

Description

一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法
技术领域
本发明涉及一种有可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,属纳米复合材料的制备及环境治理领域。
背景技术
随着全球工业化的不断发展,环境污染问题日益严重,治理环境已成为当今社会最迫切需要解决的难题之一,尤其是水环境污染,已经影响到人类的生活和社会的可持续发展。近年来,基于金属氧化物纳米材料的光催化氧化技术为治理废水,清除环境中的有毒物质提供了一条新途径。常见的光催化剂有二氧化钛、钒酸铋、钨酸铋、磷酸银和钒酸锌等,均具有优良的光催化活性,对甲基橙,亚甲基蓝及罗丹明B等染料都有很好的光降解效果。
g-C3N4作为光催化材料具有特殊的半导体性能,其禁带宽度为2.7 eV,较窄的能带隙,对可见光有响应,在水溶液中稳定性好而且无毒,原料来源比较丰富且制备简单,可以作为优良的可见光催化剂用于多个催化反应中。但是g-C3N4吸收可见光的能力较差,不适合单独作为光催化材料,并且g-C3N4的比表面积小、光生载流子复合率较高,所以其降解有机物的光催化活性并不是很高。
过渡金属钒酸盐作为一类重要的功能材料,由于其价态和结构的多样性和灵活性,近年来逐渐成为人们研究的热点,并在磁性、催化、储能、光电器件和离子交换等领域得到了广泛的应用。随着纳米技术的发展,纳米材料由于具有表面效应及小尺寸效应等性质,使得具有纳米结构的过渡金属钒酸盐材料展现出更加优异的性能,并展现出更加广阔的应用前景。Zn3(VO4)2纳米材料由于具有较好的荧光性能及光催化性能,逐渐引起了研究人员的关注。Wang Miao等人采用氨基乙酸作为模板剂水热法高温热处理获得了Zn3(VO4)2微米球结构,Shi Rui等人水热法得到了Zn3(VO4)2的花状结构。但这些方法均采用水热技术,反应条件较为苛刻,不利于放大生产。并且Zn3(VO4)2的能隙宽度为3.09 eV,对紫外光有较强的吸收能力,对太阳光的利用率低,光生电子-空穴对易发生复合,光子效率低。故为了拓宽其吸光范围,提高对太阳光的利用率,本发明将g-C3N4和Zn3(VO4)2两种材料进行复合,采用煅烧法制备一种新型的可见光活性的二元g-C3N4/Zn3(VO4)2复合光催化剂,利用两者的协同效应来提高光能利用率和复合光催化剂的可见光催化性能,促进光生电子-空穴对的快速分离,为水环境污染治理技术提供新光催化剂和合成催化剂的新方法。然而对于g-C3N4/Zn3(VO4)2复合光催化剂的构建及制备,并将其应用于可见光下对染料进行光催化降解,国内外并无文献报导。
发明内容
为了提高光催化剂的可见光催化降解性能,本发明的目的在于提供一种具有可见光活性的二元g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,属于纳米复合材料的制备及环境治理领域。其制备工艺简单,复合光催化剂具有良好的可见光活性和较高的量子效率,对有机染料降解有较好的降解效果。
本发明采用的技术方案是:具有可见光活性的二元g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,按照下述步骤进行:
将g-C3N4和Zn3(OH)2V2O7·2H2O按比例混合研磨,然后加入去离子水搅拌0.5~24h,将溶液旋转蒸发,真空烘干,然后按照加热速率3~10℃·min-1升温至煅烧温度,煅烧,得g-C3N4/Zn3(VO4)2样品。
所述Zn3(OH)2V2O7·2H2O是由大小为80~200 nm的纳米片交叉形成的三维立体结构。
所述g-C3N4,Zn3(OH)2V2O7·2H2O和去离子水的用量比为0.1~30g:0.0113~5.0709g:50~500 mL。
所述真空烘干的温度为30~80℃;
所述煅烧温度为300~550℃,煅烧时间为2.0~4.0 h。
所述g-C3N4/Zn3(VO4)2复合光催化剂样品中,Zn3(VO4)2的质量比为0.5%~20%。
本发明所制备的g-C3N4/Zn3(VO4)2,在可见光下或太阳光下用于降解染料罗丹明B或亚甲基蓝。
本发明的有益效果在于:
(1) 本发明所用原料来源丰富、价格低廉,清洁无污染。
(2) g-C3N4和Zn3(VO4)2形成异质结构,利用两者的协同作用大大提高了对太阳光的利用率和可见光活性,促进了光生载流子的分离效率,提高了光子效率。
(3) 首次提出了一种新型的g-C3N4/Zn3(VO4)2复合光催化剂,提供了制备新方法,与单体的催化剂相比表现出更高的光催化活性对水中有机染料有较好的降解效果。
(4) 本发明的制备方法简单易行、流程较短、操作易控,反应条件温和,适于大量生产和推广使用。
附图说明
图1 是为按实施例2和实施例7制得样品的SEM图,a-实施例2样品,b-实施例7样品。
图2 是g-C3N4、Zn3(VO4)2,实施例3,实施例4和实施例5的g-C3N4/Zn3(VO4)2复合光催化剂的XRD图,a-实施例3样品,b-实施例4样品,c-实施例5样品。
图3是g-C3N4、Zn3(VO4)2,实施例1,实施例6,实施例8的g-C3N4/Zn3(VO4)2复合光催化剂的固体紫外图,a-实施例1样品,b-实施例6样品,c-实施例8样品。
具体实施方式
为了阐明本发明的技术方案及技术目的,下面结合附图及具体实施例对本发明做进一步的介绍。
g-C3N4/Zn3(VO4)2复合光催化剂模拟太阳光催化活性测试:以罗丹明B(RhB)和亚甲基蓝(MB)水溶液为模拟污染物,250 W的氙灯为光源,通过检测罗丹明B和亚甲基蓝浓度随反应时间的变化分析复合光催化剂的可见光催化活性。具体操作步骤如下:
将70 mL一定浓度的染料加入到反应容器中,先测定其初始值,暗反应30 min,达到吸附平衡后光照,每隔一定时间取一次样,光照5.0 h,离心分离后取上清液,用紫外可见分光光度计测定吸光度,根据光照前后吸光度的变化,计算染料的降解效率,η=(CO-Ct)/ CO×100%,其中CO和Ct分别为暗反应结束后样品的吸光度和光照一定时间样品的吸光度。
实施例1:
分别称取0.1 g的g-C3N4和0.0226 g的Zn3(OH)2V2O7·2H2O,然后一起加入50 mL去离子水搅拌0.5 h,将溶液旋转蒸发,30℃真空烘干,最后在300℃下煅烧2.0 h,加热速率为3℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为20%。Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构。
可见光照5.0 h,对罗丹明B染料的光降解效率为60.13%。
附图3曲线(a)为实例1的固体紫外图。从图中可知,与g-C3N4和Zn3(VO4)2相比,复合光催化剂的光吸收发生红移,且在400~600 nm处有较强吸收,说明该复合光催化剂有可见光效应。
实施例2:
分别称取1.0 g的g-C3N4和0.0113 g Zn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构,加入100 mL去离子水搅拌3.5 h,将溶液旋转蒸发,40℃下烘干,最后在350℃下煅烧2.5 h,加热速率为4 ℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为1%。
可见光照5.0 h,对罗丹明B染料的光降解效率为65.47%。
附图1(a)为实例2的SEM图。
实施例3:
分别称取5.0 g的g-C3N4和0.1691 gZn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构,加入150 mL去离子水搅拌6.0 h,将溶液旋转蒸发,50℃下烘干,最后在350 ℃下煅烧2.5 h,加热速率为5 ℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为3%。
可见光照5.0 h,对罗丹明B染料的光降解效率为76.27%。
附图2曲线(a)为实例3的XRD图。从图中可知,复合光催化剂g-C3N4/Zn3(VO4)2的衍射峰中都出现了g-C3N4和Zn3(VO4)2的特征峰,说明两者很好地复合在一起,由于Zn3(VO4)2含量较少,所以峰型不太明显。
实施例4:
分别称取10 g的g-C3N4和0.5635 gZn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构,加入200 mL去离子水搅拌8.0 h,将溶液旋转蒸发,60℃下烘干,最后在400℃下煅烧3.0 h,加热速率为6 ℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为5%。
可见光照5.0 h,对罗丹明B染料的光降解效率为81.33%,对亚甲基蓝的可见光降解率达96.65%。
附图2曲线(b)为实例4的XRD图。从图中可知,复合光催化剂g-C3N4/Zn3(VO4)2的衍射峰中都出现了g-C3N4和Zn3(VO4)2的特征峰,说明两者很好地复合在一起,由于Zn3(VO4)2含量较少,所以峰型不太明显。
实施例5:
分别称取15 g的g-C3N4和1.1833 g Zn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构。加入300 mL去离子水搅拌24 h,将溶液旋转蒸发,60℃下烘干,最后在450℃下煅烧3.5 h,加热速率为7℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为7%。
可见光照5.0 h,对罗丹明B染料的光降解效率为86.63%。
附图2曲线(c)为实例5的XRD图。从图中可知,复合光催化剂g-C3N4/Zn3(VO4)2的衍射峰中都出现了g-C3N4和Zn3(VO4)2的特征峰,说明两者很好地复合在一起,由于Zn3(VO4)2含量较少,所以峰型不太明显。
实施例6:
分别称取20 g的g-C3N4和2.2538 gZn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构。加入400 mL去离子水搅拌12 h,将溶液旋转蒸发,70℃下烘干,最后在500℃下煅烧3.5 h,加热速率为8 ℃·min-1,得 g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为10%。
可见光照5.0 h,对亚甲基蓝染料的光降解效率为70.43%。
附图3曲线(b)为实例6的固体紫外图。从图中可知,与g-C3N4和Zn3(VO4)2相比,复合光催化剂的光吸收发生红移,且在可见光范围有较强吸收,说明该复合光催化剂有可见光效应。
实施例7:
分别称取30 g的g-C3N4和5.0709 gZn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构。加入450 mL去离子水搅拌20 h,将溶液旋转蒸发,70℃下烘干,最后在450℃下煅烧4.0 h,加热速率为9℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为15%。
可见光照5.0 h,对亚甲基蓝染料的光降解效率为82.17%。
附图1(b)为实例7的SEM图。
实施例8:
分别称取30 g的g-C3N4和0.1691 gZn3(OH)2V2O7·2H2O,其中Zn3(OH)2V2O7·2H2O由大小为80~200 nm的纳米片交叉形成三维立体结构。加入500 mL去离子水搅拌24.0 h,将溶液旋转蒸发,80℃下烘干,最后在550℃下煅烧4.0 h,加热速率为10℃·min-1,得g-C3N4/Zn3(VO4)2样品,其中样品所含Zn3(VO4)2的质量比为0.5%。
可见光照5.0 h,对罗丹明B染料的光降解效率为60.13%。
附图3曲线(c)为实例8的固体紫外图。从图中可知,与g-C3N4和Zn3(VO4)2相比,复合光催化剂的光吸收发生红移,且在400~600 nm处有较强吸收,说明该复合光催化剂有可见光效应。

Claims (6)

1.一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,其特征在于,包括如下步骤:将g-C3N4和Zn3(OH)2V2O7·2H2O按比例混合研磨,然后加入去离子水搅拌0.5~24h,将溶液旋转蒸发,真空烘干,然后按照加热速率3~10℃·min-1升温至煅烧温度,煅烧,得g-C3N4/Zn3(VO4)2复合光催化剂;所述g-C3N4,Zn3(OH)2V2O7·2H2O和去离子水的用量比为0.1~30g:0.0113~5.0709g:50~500mL。
2.根据权利要求1所述的一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,其特征在于,所述Zn3(OH)2V2O7·2H2O是由大小为80~200nm的纳米片交叉形成的三维立体结构。
3.根据权利要求1所述的一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,其特征在于,所述真空烘干的温度为30~80℃。
4.根据权利要求1所述的一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法,其特征在于,所述煅烧温度为300~550℃,煅烧时间为2.0~4.0h。
5.根据权利要求1~4中任一项所述的制备方法制得的g-C3N4/Zn3(VO4)2复合光催化剂,其特征在于,所述g-C3N4/Zn3(VO4)2复合光催化剂中Zn3(VO4)2的质量比为0.5%~20%。
6.根据权利要求5所述的g-C3N4/Zn3(VO4)2复合光催化剂,其特征在于,所述g-C3N4/Zn3(VO4)2复合光催化剂在可见光下或太阳光下用于降解染料罗丹明B或亚甲基蓝。
CN201610483582.2A 2016-06-28 2016-06-28 一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法 Expired - Fee Related CN106179439B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610483582.2A CN106179439B (zh) 2016-06-28 2016-06-28 一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610483582.2A CN106179439B (zh) 2016-06-28 2016-06-28 一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106179439A CN106179439A (zh) 2016-12-07
CN106179439B true CN106179439B (zh) 2018-10-09

Family

ID=57461554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610483582.2A Expired - Fee Related CN106179439B (zh) 2016-06-28 2016-06-28 一种可见光活性的g-C3N4/Zn3(VO4)2复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106179439B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534715B (zh) * 2022-02-28 2022-11-25 浙江会众环境工程有限公司 一种甲醛净化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900906A (zh) * 2015-06-09 2015-09-09 三峡大学 一种钒基化合物钒酸锌及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900906A (zh) * 2015-06-09 2015-09-09 三峡大学 一种钒基化合物钒酸锌及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
g-C3N4/BiVO4复合催化剂的制备及应用于光催化还原CO2的性能;黄艳 等;《物理化学学报》;20150630;第31卷(第6期);第1145-1152页 *
Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water;Chanchal Mondal,et.al.;《CrystEngComm》;20130625;第15卷;第6745-6751页 *
Sonochemical synthesis of Zn3V2O7(OH)2(H2O)2 and g-C3N4/Zn3V2O7(OH)2(H2O)2 with high photocatalytic activities;Su Zhan,et.al.;《Journal of Molecular Catalysis A: Chemical》;20151224;第401卷;第41-47页 *
Zn3(OH)2V2O7.2H2O/g-C3N4: A novel composite for efficient photodegradation of methylene blue under visible-light irradiation;Qizhao Wang,et.al.;《Applied Surface Science》;20150427;第347卷;摘要,第602页右栏第1段-第603页第1段,第603页第2.2节 *
杨凌玲.多元半导体光催化剂Zn3(OH)2V2O7•2H2O及Zn3V2O8制备和光解水产O2性能研究.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2015,(第06期), *

Also Published As

Publication number Publication date
CN106179439A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
Rohokale et al. A novel two-step co-precipitation approach of CuS/NiMn2O4 heterostructured nanocatalyst for enhanced visible light driven photocatalytic activity via efficient photo-induced charge separation properties
Feng et al. 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance
Wang et al. Enhanced photocatalytic activity and mechanism of CeO 2 hollow spheres for tetracycline degradation
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
Wang et al. Preparation of PVDF/CdS/Bi2WO6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water
Sabzehmeidani et al. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning
CN104014326B (zh) 一种钒酸铋纳米棒高效光催化剂及其制备方法
CN109847786A (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
CN103831093B (zh) 一种氧化锌基复合光催化纳米材料及其制备方法
CN103934012B (zh) SnS2/g-C3N4复合纳米片光催化剂及制备方法
CN103599802A (zh) 一种磷酸银/石墨烯纳米复合材料的制备方法
Lu et al. Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis
CN101947454A (zh) 具有可见光催化活性的过渡金属掺杂氧化锌介孔材料及其制备方法
CN110227453A (zh) 一种Ag/ZnO/GO复合可见光催化剂的制备方法
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
Pei et al. Flower-like CeO2/CdS quantum dots heterojunction nanocomposites with high photocatalytic activity for RhB degradation
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
Zhang et al. Bi2S3@ Ag2S nano-heterojunction decorated self-floating carbon fiber cloth and enhanced solar-driven photothermal-photocatalytic performance
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Sun et al. Facile synthesis of CaWO4 nanoparticles incorporated on porous carbons with improved photocatalytic degradation of tetracycline
Zhao et al. Enhanced photocatalytic performance of layered carbon microsphere/BiOCl composite with oxygen vacancies
Li et al. Tailoring hydrophily and composition of BiOI for an ultrafast photodegradation of tetracycline hydrochloride
CN105944712B (zh) 一种钼酸铈钠/三氧化钼复合光催化剂的制备方法
CN104368369B (zh) 一种磷酸银-硫化镉复合可见光光催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181009

Termination date: 20190628

CF01 Termination of patent right due to non-payment of annual fee