CN106167875B - 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法 - Google Patents

一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法 Download PDF

Info

Publication number
CN106167875B
CN106167875B CN201610867413.9A CN201610867413A CN106167875B CN 106167875 B CN106167875 B CN 106167875B CN 201610867413 A CN201610867413 A CN 201610867413A CN 106167875 B CN106167875 B CN 106167875B
Authority
CN
China
Prior art keywords
cold
strength
strip
20gpa
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610867413.9A
Other languages
English (en)
Other versions
CN106167875A (zh
Inventor
詹华
刘永刚
肖洋洋
张武
计遥遥
高光泽
霍俊
熊华报
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magang Group Holding Co Ltd
Maanshan Iron and Steel Co Ltd
Original Assignee
Magang Group Holding Co Ltd
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magang Group Holding Co Ltd, Maanshan Iron and Steel Co Ltd filed Critical Magang Group Holding Co Ltd
Priority to CN201610867413.9A priority Critical patent/CN106167875B/zh
Publication of CN106167875A publication Critical patent/CN106167875A/zh
Application granted granted Critical
Publication of CN106167875B publication Critical patent/CN106167875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

本发明涉及一种抗拉强度800MPa以上,强塑积大于20GPa·%的经济型高强度冷轧TRIP钢的生产方法,制造其的主要化学成分重量百分比为:C:0.15~0.25%,Si:1.3~1.7%,Mn:1.5%~2.5%,P:≤0.030%,S:≤0.020%,Al:0.02%~0.06%,余量为Fe和不可避免的杂质。制备方法包括如下步骤:(1)冶炼与凝固;(2)铸坯或铸锭的热连轧;(3)酸洗冷轧;(4)连续退火。本发明强塑积均在20GPa·%以上,最高达到26.3GPa·%。同时保证良好的板形、表面质量、冲压性能和焊接性能。

Description

一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制 备方法
技术领域
本发明涉及冷轧汽车用钢制造领域,具体涉及一种抗拉强度800MPa以上,强塑积大于20GPa·%的经济型高强度冷轧TRIP钢的生产方法。
背景技术
汽车减重、减排、高安全性的更高要求促使汽车用钢逐步趋于轻量化和高强化。随着强度的提高必然会造成材料韧性的降低,因此,在开发高强钢的同时也要兼顾材料的成形性能。目前传统高强钢强塑积一般在15GPa·%以下,而作为第一代先进高强钢中具有高强度和高塑性优良组合的TRIP钢,其强塑积也一般不超过20GPa·%。根据第三代汽车用钢的研究热点,为了进一步提高强塑积,一种方法可以通过添加Mn通过奥氏体你转变(ART)工艺获得成形性能优良的奥氏体,如中Mn-TRIP钢中Mn含量一般在5%以上,这造成了成本的提高并且对炼钢连铸工艺设备提出了更高的要求;另外一种方法通过淬火配分(Q&P)工艺获得具有一定含量残余奥氏体的马氏体钢,对退火工艺及设备提出更高的要求,如更高的退火温度、更快的冷却速率等,不利于大规模工业应用与推广。
例如:
申请号为CN 103088255的专利文献介绍了一种汽车用高强塑积的低合金高强钢冷轧板的生产工艺,其优点在于通过对成分、热轧、冷轧工艺的优化,生产出高强塑积的低合金高强钢冷轧板,强塑积最高达到15GPa·%;缺点为由于其低合金高强的成分设计,其抗拉强度仅为500MPa,由于强度的限制,应用后轻量化效果不明显。
申请号为CN 104264039的专利文献公开了一种含稀土La,抗拉强度不小于780MPa的TRIP钢板和制备方法,但由于其添加了稀有金属(稀土La),增加了生产制造成本,且其强塑积均在20GPa·%以下(延伸率转换为A80:A80=A50×1.15)。
申请号为CN 103555902的专利文献公开了一种980MPa级高强塑积汽车用钢的热处理工艺,其特点在于将经过处理的TRIP780冷轧钢板淬火后在加热到一定温度进行配分,得到强塑积26.3~26.8GPa·%、延伸率达到23.8~24.2%的980MPa级高强塑积汽车用钢;其不足之处在于退火后进行淬火到250℃以下,然后在进行快速加热到400℃左右进行配分,该工艺对退火后的冷速和加热速率要求较高,现行退火线不能满足该工艺条件,难以实现大规模工业应 用。
申请号为CN 101353761的专利文献公开了一种高强度含Al热镀锌TRIP钢的生产方法,其优点为由于采用低Si的成分设计,具有良好的可镀性,强塑积可达到15~22GPa;缺点在于Al含量过高,导致连铸生产困难,难以实现批量工业生产,同时会造成夹杂等表面缺陷;另外其合金体系中添加了Nb、Ti、Cu、Ni等合金元素,增加了生产制造成本。
申请号为CN 104694816的专利文献介绍了一种强塑积大于30GPa·%的高Al中锰钢的制备方法,其优点在于高强度和高延伸率,低密度,能够满足汽车轻量化的选材要求,不足之处在于Mn、Al含量过高,导致生产成本高,连铸和轧制困难,难以大批量工业应用。
申请号为CN 102912219的专利文献介绍了一种高强塑积中Mn-TRIP钢,其特点在于Mn含量在3~8%之间,优点在于该钢种具有良好的强度和延伸率,强塑积达到30GPa·%以上,不足之处在于Mn含量高,生产成本高,连铸和冷轧困难,难以实现稳定批量应用。
发明内容
针对以上现有技术问题,本发明的目的在于提供一种抗拉强度800MPa以上,强塑积大于20GPa·%的经济型高强度冷轧TRIP钢的生产方法,通过采用以C、Si、Mn为主的经济型TRIP钢化学成分设计,制定合适的连续退火温度制度,配合热轧、冷轧工艺,能够获得抗拉强度在800MPa以上、延伸率高于24%的高强度TRIP钢。具体技术方案如下:
一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢,制造其的主要化学成分重量百分比为:C:0.15~0.25%,Si:1.3~1.7%,Mn:1.5%~2.5%,P:≤0.030%,S:≤0.020%,Al:0.02%~0.06%,余量为Fe和不可避免的杂质。
上述强塑积大于20GPa·%的经济型高强度冷轧TRIP钢的制备方法,包括如下步骤:
(1)冶炼与凝固;
(2)铸坯或铸锭的热连轧;
(3)酸洗冷轧;
(4)连续退火。
进一步地,步骤(1)中适用于转炉、电炉和感应炉冶炼,采用连铸生产铸坯。
进一步地,步骤(1)中包括:
(1-1)铁水预处理:铁水脱硫后目标[S]≤0.0050%,前扒渣亮面大于70%,后扒渣亮面大于80%;
(1-2)转炉冶炼:全程吹氩,出钢进行脱氧合金化;
(1-3)合金微调站:加入小铝粒调Als,并进行强搅6min,顶吹6min操作对钢包顶渣初步还原;
(1-4)LF炉精炼:钢包在加热过程中强搅1~3min,搅拌结束后,向渣面加20~50Kg铝粒,进行加热升温操作,加入石灰或铝矾土;停止加热后强搅1~2min,调整[Als]、[C]、[Mn]含量,加入合金后强搅5min,加入铝粒,喂钙线前后弱搅时间均不小于6min,喂实心纯钙包芯线800~100m,喂线速度120~160m/min;
(1-5)连铸:中包目标温度控制在液相线温度以上15~30℃,浇注过程中采用动态轻压下和电磁搅拌。
进一步地,步骤(2)中,将铸坯经1200~1260℃加热,由粗轧机进行5-20道次轧制,热轧到30-50mm厚度规格,由热连轧机组进行5-7道次轧制,轧至目标厚度后在640-680℃范围内进行卷取成钢卷。
进一步地,步骤(2)中,铸坯出炉温度控制在1230±30℃;热轧终轧温度控制在880±20℃;热轧卷取温度控制在660±20℃。
进一步地,步骤(3)中,将热轧带钢经盐酸槽酸洗,去除表面氧化铁皮后,进行冷连轧或冷轧,冷轧压下率≥40%,轧至目标厚度。
进一步地,步骤(4)中,将酸轧后的钢卷进行连续退火,退火温度760~840℃,贝氏体保温温度350~450℃。
进一步地,步骤(4)包括:
(4-1)冷轧带钢首先加热到150℃预热,加热速度为5~8℃/s;
(4-2)经过预热的带钢进一步加热到780℃~840℃,其加热速度为2~3℃/s;
(4-3)加热后的带钢在780℃~840℃保温70s~110s进行两相区退火;
(4-4)将保温后的带钢缓慢冷却至660℃~690℃,冷却速度为4℃~7℃;
(4-5)通过吹气冷却使缓慢冷却后的带钢快速冷却至350℃~450℃,保温300s~450s进行时效处理,冷却速度为15℃/s~60℃/s;
(4-6)将经过时效处理的带钢最后冷却至150℃,冷却速度为2℃/s~4℃/s。
进一步地,步骤(1-2)中同时加强出钢挡渣操作,步骤(1-4)中根据合金微调站出站[Als]向渣面加20~50Kg铝粒,根据钢水温度进行加热升温操作,加热过程底吹若搅,根据渣子状况适当加入石灰或铝矾土,根据渣的颜色加入铝粒。
与目前现有技术相比,本发明强塑积均在20GPa·%以上,最高达到26.3GPa·%。同时保证良好的板形、表面质量、冲压性能和焊接性能。此外,对于生产工艺没有过高的要求,操 作具备可行性。本发明制备方法简单、成本低,应用前景广泛。具体来说:本发明所生产的钢,抗拉强度在800MPa以上、延伸率高于24%的高强度TRIP钢,其强塑积均在20GPa·%以上,最高达到26.3GPa·%。钢板在具有高强度的同时也有良好的冷成形性能及碰撞吸收能力。且本发明设计的钢中只添加了少量Si、Mn、Al等元素,无需添加贵重的金属或稀土元素。此外,对于生产工艺没有过高的要求,操作具备可行性。因此本发明设计的钢种性能优异,且成本低廉,适合市场推广,具有良好的应用前景。
附图说明
图1为产品金相组织照片(图1a:4%硝酸酒精腐蚀,图1b:金相);
图2为产品拉伸应力应变曲线;
图3为拉伸前后XRD衍射图;
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。
在一个优选实施例中,制造该冷轧钢板的主要化学成分重量百分比分别为:C:0.15~0.25%;Si:1.3~1.7%;Mn:1.5%~2.5%;P:≤0.030%;S:≤0.020%;Al:0.02%~0.06%;余量为Fe和不可避免的杂质。为实现本发明钢的制造,工艺过程和工艺内容如下:
1)炼钢:
a、铁水预处理:铁水脱硫后目标[S]≤0.0050%,前扒渣亮面大于70%,后扒渣亮面大于80%;
b、转炉冶炼:全程吹氩,出钢进行脱氧合金化,同时加强出钢挡渣操作;
c、合金微调站:加入小铝粒调Als,并进行强搅6min,顶吹6min操作对钢包顶渣初步还原;
d、LF炉精炼:钢包在加热过程中强搅1~3min,搅拌结束后,根据合金微调站出战[Als]向渣面加20~50Kg铝粒。根据钢水温度进行加热升温操作,加热过程底吹若搅,根据渣子状况适当加入石灰或铝矾土。停止加热后强搅1~2min,调整[Als]、[C]、[Mn]含量,加入合金后强搅5min,根据渣的颜色加入铝粒。喂钙线前后弱搅时间均不小于6min,喂实心纯钙包芯线800~100m,喂线速度120~160m/min(或FeCa线喂线速度:200~220m/min);
e、连铸:中包目标温度控制在液相线温度以上15~30℃,浇注过程中采用动态轻压下和电磁搅拌以减少或者消除中心疏松和中心偏析缺陷;
2)热轧工艺:
a、铸坯出炉温度控制在1230±30℃,目的为减轻铸坯的成分偏析,使奥氏体充分均匀化, 以使合金在铸坯各处均匀,防止偏析而导致在轧制冷却过程中在中心形成珠光体带状组织或贝氏体条带。同时也要避免温度过高,时间过长而“过热”,使奥氏体晶粒度过大;
b、热轧终轧温度控制在880±20℃,防止形变诱导铁素体相变以及形变过大,铁素体在形变带形核,而形成带状组织;
c、热轧卷取温度控制在660±20℃,温度过高,形成的铁素体与珠光体粗大,而使之后退火的组织粗大;温度过低,形成贝氏体组织,使冷轧轧制负荷增大。
3)冷轧:
冷轧压下率≥40%,以利于退火工艺的进行。
4)连续退火工艺:
a、冷轧带钢首先加热到150℃预热,加热速度为5~8℃/s;
b、经过预热的带钢进一步加热到780℃~840℃,其加热速度为2~3℃/s。在此过程中冷轧铁素体发生再结晶,渗碳体部分溶解,当温度超过Ac1时开始有奥氏体产生;
c、加热后的带钢在780℃~840℃保温70s~110s进行两相区退火。退火温度主要促使冷轧后的钢板组织再结晶,温度过低则再结晶不完全,过高则晶粒粗大、析出物分解而降低强度,因此要求退火温度控制在780℃~840℃。该过程中实现部分奥氏体化,铁素体中的C、Mn等奥氏体稳定元素向奥氏体中转移;
d、将保温后的带钢缓慢冷却至660℃~690℃,冷却速度为4℃~7℃。该过程中部分奥氏体转化为铁素体,C、Mn元素进一步向奥氏体中富集;
e、通过吹气冷却使缓慢冷却后的带钢快速冷却至350℃~450℃,保温300s~450s进行时效处理,冷却速度为15℃/s~60℃/s,冷却速度过慢会出现珠光体降低钢板性能,冷却速度过快会导致生产困难程度和制造成本的增加。时效过程中部分奥氏体转变为贝氏体,提高带钢的强度,相变后贝氏体中的碳向没有发生贝氏体转变的奥氏体中转移使其足够稳定保存到室温。此阶段决定着残余奥氏体的3个最重要的量:残余奥氏体的碳含量、体积分数以及大小。从很多方面来讲这一阶段是最关键的;
将经过时效处理的带钢最后冷却至150℃,冷却速度为2℃/s~4℃/s。在此过程中可能会出现不稳定的奥氏体发生马氏体相变,有利于提高带钢的强度。
在另一个优选实施例中,本发明的抗拉强度大于800MPa,强塑积大于20GPa·%的经济型冷轧TRIP钢制造方法如下:
(1)冶炼与凝固:适用于转炉、电炉和感应炉冶炼,采用连铸生产铸坯;
(2)铸坯或铸锭的热连轧:将铸坯经1200~1260℃加热,由粗轧机进行5-20道次轧制, 热轧到30-50mm厚度规格,由热连轧机组进行5-7道次轧制,轧至目标厚度后在640-680℃范围内进行卷取成钢卷;
(3)酸洗冷轧:将热轧带钢经盐酸槽酸洗,去除表面氧化铁皮后,进行冷连轧或冷轧,冷轧压下率>40%,轧至目标厚度;
(4)连续退火:将酸轧后的钢卷进行连续退火,退火温度760~840℃,贝氏体保温温度350~450℃,具体工艺及性能如下表所示。
表.实施案例
本发明所生产的钢,抗拉强度在800MPa以上、延伸率高于24%的高强度TRIP钢,其强塑积均在20GPa·%以上,最高达到26.3GPa·%。钢板在具有高强度的同时也有良好的冷成形性能及碰撞吸收能力。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。

Claims (5)

1.一种强塑积大于20GPa•%的经济型高强度冷轧TRIP钢的制备方法,其特征在于,包括如下步骤:(1)冶炼与凝固;(2)铸坯或铸锭的热连轧;(3)酸洗冷轧;(4)连续退火;
步骤(1)中包括:(1-1)铁水预处理:铁水脱硫后目标[S]≤0.0050%,前扒渣亮面大于70%,后扒渣亮面大于80%;(1-2)转炉冶炼:全程吹氩,出钢进行脱氧合金化;(1-3)合金微调站:加入小铝粒调Als,并进行强搅6min,顶吹6min操作对钢包顶渣初步还原;(1-4)LF炉精炼:钢包在加热过程中强搅1~3min,搅拌结束后,向渣面加20~50Kg铝粒,进行加热升温操作,加入石灰或铝矾土;停止加热后强搅1~2min,调整[Als]、[C]、[Mn]含量,加入合金后强搅5min,加入铝粒,喂钙线前后弱搅时间均不小于6min,喂实心纯钙包芯线800~100m,喂线速度120~160m/min;(1-5)连铸:中包目标温度控制在液相线温度以上15~30℃,浇注过程中采用动态轻压下和电磁搅拌;
步骤(2)中,铸坯出炉温度控制在1230±30℃;热轧终轧温度控制在880±20℃;热轧卷取温度控制在660±20℃;
步骤(3)中,将热轧带钢经盐酸槽酸洗,去除表面氧化铁皮后,进行冷连轧或冷轧,冷轧压下率≥40%,轧至目标厚度;
步骤(4)包括:(4-1)冷轧带钢首先加热到150℃预热,加热速度为5~8℃/s;(4-2)经过预热的带钢进一步加热到780℃~840℃,其加热速度为2~3℃/s;(4-3)加热后的带钢在780℃~840℃保温70s~110s进行两相区退火;(4-4)将保温后的带钢缓慢冷却至660℃~690℃,冷却速度为4℃~7℃;(4-5)通过吹气冷却使缓慢冷却后的带钢快速冷却至350℃~450℃,保温300s~450s进行时效处理,冷却速度为15℃/s~60℃/s;(4-6)将经过时效处理的带钢最后冷却至150℃,冷却速度为2℃/s~4℃/s;
所述强塑积大于20GPa•%的经济型高强度冷轧TRIP钢,制造其的主要化学成分重量百分比为:C:0.15~0.25%,Si:1.3~1.7%,Mn:1.5%~2.5%,P:≤0.030%,S:≤0.020%,Al:0.02%~0.06%,余量为Fe和不可避免的杂质。
2.如权利要求1所述强塑积大于20GPa•%的经济型高强度冷轧TRIP钢的制备方法,其特征在于,步骤(1)中适用于转炉、电炉和感应炉冶炼,采用连铸生产铸坯。
3.如权利要求1或2所述强塑积大于20GPa•%的经济型高强度冷轧TRIP钢的制备方法,其特征在于,步骤(2)中,将铸坯经1200~1260℃加热,由粗轧机进行5-20道次轧制,热轧到30-50mm厚度规格,由热连轧机组进行5-7道次轧制,轧至目标厚度后在640-680℃范围内进行卷取成钢卷。
4.如权利要求1所述强塑积大于20GPa•%的经济型高强度冷轧TRIP钢的制备方法,其特征在于,步骤(4)中,将酸洗冷轧后的钢卷进行连续退火,退火温度760~840℃,贝氏体保温温度350~450℃。
5.如权利要求1所述强塑积大于20GPa•%的经济型高强度冷轧TRIP钢的制备方法,其特征在于,步骤(1-2)中同时加强出钢挡渣操作,步骤(1-4)中根据合金微调站出站[Als]向渣面加20~50Kg铝粒,根据钢水温度进行加热升温操作,加热过程底吹弱搅,根据渣子状况适当加入石灰或铝矾土,根据渣的颜色加入铝粒。
CN201610867413.9A 2016-09-29 2016-09-29 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法 Active CN106167875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610867413.9A CN106167875B (zh) 2016-09-29 2016-09-29 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610867413.9A CN106167875B (zh) 2016-09-29 2016-09-29 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法

Publications (2)

Publication Number Publication Date
CN106167875A CN106167875A (zh) 2016-11-30
CN106167875B true CN106167875B (zh) 2017-09-19

Family

ID=57377222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610867413.9A Active CN106167875B (zh) 2016-09-29 2016-09-29 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法

Country Status (1)

Country Link
CN (1) CN106167875B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868403B (zh) * 2017-03-28 2019-07-02 马钢(集团)控股有限公司 一种高表面质量热镀锌trip钢板及其制造方法
CN107400828B (zh) * 2017-08-04 2019-01-04 攀钢集团攀枝花钢铁研究院有限公司 一种含钒高强塑积冷轧钢板及其制备方法
CN109943769B (zh) * 2017-12-20 2021-06-15 宝山钢铁股份有限公司 780MPa级别低碳低合金TRIP钢及其快速热处理方法
CN108441765A (zh) * 2018-04-03 2018-08-24 本钢板材股份有限公司 一种冷轧相变诱导塑性钢及其制备方法
CN108950392B (zh) * 2018-07-19 2020-10-30 首钢集团有限公司 一种超高延性低密度钢及其制备方法
CN109136761B (zh) * 2018-09-26 2020-10-30 首钢集团有限公司 一种980MPa级高延性低密度汽车用奥氏体钢及其制备方法
CN110117755B (zh) * 2019-05-21 2020-11-03 安徽工业大学 一种980MPa级低屈强比冷轧中锰钢的制备方法
CN110129673B (zh) * 2019-05-21 2020-11-03 安徽工业大学 一种800MPa级高强塑积Q&P钢板及其制备方法
CN111020129A (zh) * 2019-10-25 2020-04-17 本钢板材股份有限公司 一种700MPa级冷轧TRIP钢板及其生产方法
CN110964882B (zh) * 2019-11-27 2021-11-02 本钢板材股份有限公司 一种基于碳配分工艺的一钢两用冷轧高强钢及其制造方法
CN112375979A (zh) * 2020-10-31 2021-02-19 日照钢铁控股集团有限公司 一种抗拉强度800MPa级高强高塑低成本热轧薄钢板工艺
CN115181896B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 980MPa级低碳低合金热镀锌TRIP钢及快速热处理热镀锌制造方法
CN114804671A (zh) * 2022-04-28 2022-07-29 中国恩菲工程技术有限公司 富铁镍渣制备球墨铸铁磨球协同制备胶凝材料的方法
CN116377320A (zh) * 2023-03-23 2023-07-04 鞍钢股份有限公司 一种高强塑积的冷轧汽车用超高强钢及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409235A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法
CN102732786A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种经济型540MPa级铁素体贝氏体热轧双相钢及其生产方法
CN102952996A (zh) * 2013-01-04 2013-03-06 鞍钢股份有限公司 一种高延伸率冷轧trip钢板及其制备方法
CN103088261A (zh) * 2013-02-17 2013-05-08 马钢(集团)控股有限公司 一种抗拉强度600MPa级高强度冷轧钢板及其生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716358B2 (ja) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 強度と加工性のバランスに優れた高強度冷延鋼板およびめっき鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409235A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 高强度冷轧相变诱导塑性钢板及其制备方法
CN102732786A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种经济型540MPa级铁素体贝氏体热轧双相钢及其生产方法
CN102952996A (zh) * 2013-01-04 2013-03-06 鞍钢股份有限公司 一种高延伸率冷轧trip钢板及其制备方法
CN103088261A (zh) * 2013-02-17 2013-05-08 马钢(集团)控股有限公司 一种抗拉强度600MPa级高强度冷轧钢板及其生产方法

Also Published As

Publication number Publication date
CN106167875A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106167875B (zh) 一种强塑积大于20GPa·%的经济型高强度冷轧TRIP钢及其制备方法
CN107177770B (zh) 冷轧低合金高强钢板的生产方法
CN109943778B (zh) 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
CN106086685B (zh) 用薄板坯直接轧制的抗拉强度≥1500MPa薄热成形钢及生产方法
CN102162065B (zh) 一种屈服强度550MPa低碳贝氏体工程机械用钢及其制备方法
CN111996467B (zh) 一种980MPa级镀锌高强钢及其制备方法
CN107502819B (zh) 一种600MPa级0.6mm以下薄规格冷轧双相钢及其制备方法
CN111349771B (zh) 一种具有优异塑性的980MPa级冷轧Q&P钢及其制造方法
CN106399857A (zh) 一种抗拉强度800MPa级含Si的冷轧热镀锌双相钢的生产方法
CN102242322B (zh) 一种改进型40CrNiMo钢及其制备方法
CN111455278A (zh) 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法
CN102199732B (zh) 一种含硼热处理用钢板及其制造方法
CN107475627B (zh) 基于CSP流程的600MPa级热轧TRIP钢及制造方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN106222555B (zh) 用薄板坯直接轧制的抗拉强度≥1300MPa薄热成形钢及生产方法
CN106811684B (zh) 屈服强度750Mpa级集装箱用热轧钢板及其制造方法
CN110129673A (zh) 一种800MPa级高强塑积Q&P钢板及其制备方法
CN106636898A (zh) 一种屈服强度420MPa级冷轧钢板及其制备方法
CN107488814B (zh) 基于CSP流程的800MPa级热轧TRIP钢及制造方法
CN106119722A (zh) 超高强包装用钢带热轧原板及其制备方法
CN106086632B (zh) 用薄板坯直接轧制的抗拉强度≥1100MPa薄热成形钢及生产方法
CN113751679B (zh) 一种无钴马氏体时效钢冷轧薄带的制造方法
CN110747405A (zh) 适用于辊压的一千兆帕级冷轧贝氏体钢板及其制备方法
CN114000064A (zh) 一种厚度<4mm的超高强热轧钢带及其生产方法
CN106381451A (zh) 一种CSP流程生产1000MPa级热轧马氏体钢及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant