CN106167400A - 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用 - Google Patents

一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用 Download PDF

Info

Publication number
CN106167400A
CN106167400A CN201610533556.6A CN201610533556A CN106167400A CN 106167400 A CN106167400 A CN 106167400A CN 201610533556 A CN201610533556 A CN 201610533556A CN 106167400 A CN106167400 A CN 106167400A
Authority
CN
China
Prior art keywords
nano
porous ceramic
surface area
specific surface
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610533556.6A
Other languages
English (en)
Inventor
郭鹏峰
蔡鹤欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Pharmaceutical University
Original Assignee
Guangdong Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Pharmaceutical University filed Critical Guangdong Pharmaceutical University
Priority to CN201610533556.6A priority Critical patent/CN106167400A/zh
Publication of CN106167400A publication Critical patent/CN106167400A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明提出了一种高比表面积的纳米多孔陶瓷材料的制备方法,包括以下步骤:①取5~50W%的纳米氧化铝、50~80W%的气相白碳黑、1~10W%的添加剂、5~50W%的造孔剂混匀,成型;②升温至900~1300℃脱造孔剂,烧结固化,得纳米多孔陶瓷材料,制备成本低,制备的得到的纳米多孔陶瓷材料产品具有高比表面积,机械强度高,为产品的进一步应用提供了更好的基础。

Description

一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产 品和应用
技术领域
本发明涉及多孔材料的制备及应用领域,特别是具有大比表面积的多孔陶瓷材料的制备方法,本发明还涉及大比表面积的多孔陶瓷材料及其应用。
背景技术
多孔材料相对于普通材料而言,它的质量轻、密度比较小、比表面积较大等优异的物理化学性能使它越来越多地被人们所认识和发展。这里所说的多孔材料根据其孔径分布一般分为大孔材料、介孔材料(孔径在2~50nm)和微纳孔材料。通过特定工艺设计出富含纳米孔道结构的多孔材料可以极大地增加材料的比表面积,使材料获得更多的与外界物质发生相互作用的界面,进一步拓宽多孔材料的应用领域。如目前应用较广的活性炭材料、分子筛系列多孔材料等都具有巨大的比表面积,在工业上广泛用来作为吸附材料或者催化剂。但这样的材料作为吸附材料吸附选择性差,吸附后脱附再生困难,作为催化剂因对其结构和性能的进一步设计途径有限而限制了它的应用。
在维持吸附材料巨大比表面积的同时,要赋予多孔材料更广泛的应用,一种有效的途径就是在多孔材料的表面设计特定的化学功能基团,这样的设计人为控制多孔材料对不同物质吸附的选择性,或者人为控制多孔材料作为催化剂对不同反应的催化选择性。然而进行这样的设计需要多孔材料具有合适的孔径尺寸,通常可操作的孔径应大于5nm。介孔材料为这种设计提供了可能。如介孔分子筛经过表面分子设计后,对污水中汞离子的吸附就具有极高的吸附容量。介孔分子筛经过表面分子设计后制成的催化剂具有高的催化活性并可以循环使用。
然而,要推广介孔材料在相关领域的应用出现了问题,主要是该类材料制备成本高、介孔材料本身因孔壁较薄致使其强度较低(如当前的SBA、MCM系列介孔分子筛)。发展制备成本低、机械强度高、孔径分布在介孔尺度的多孔陶瓷材料可以解决上面这两类问题。陶瓷材料另一方面的优点在于其本身具有很强的环境适应性(如耐酸、耐碱、耐高温等),这一方面远优于有机多孔泡沫材料,进一步拓宽了该类材料在工业领域的应用前景。
鉴于多孔陶瓷材料广阔的应用前景,已经发展了一系列的多孔陶瓷制备方法,不同制备方法制备的多孔材料具有不同的孔隙率和微观孔结构。如模板法可以制备出孔隙率25~95%,孔径10um~3mm的多孔陶瓷;添加造孔剂法可以制备出孔隙率20~90%,孔径1um~700um的多孔陶瓷;发泡法可以制备孔隙率40~97%,孔径10um~1.2mm的多孔陶瓷;溶胶-凝胶法可以制备出纳米级孔道结构、大比表面积的硅基多孔陶瓷,但生产效率低、成本较高。太原理工大学马非2012年的博士论文《重金属离子吸附材料的制备及性能研究》描述了一类通过烧结方法获得微米级孔道多孔材料的方法,并用于开展吸附重金属离子的研究。但微米级的孔道结构致使材料的比表面积较低,材料吸附重金属离子的容量较小。
发明内容
本发明提出一种高比表面积的纳米多孔陶瓷材料的制备方法,制备成本低,制备的得到的纳米多孔陶瓷材料产品具有高比表面积,机械强度高,为产品的进一步应用提供了更好的基础。
本发明的技术方案是这样实现的:
一种高比表面积的纳米多孔陶瓷材料的制备方法,包括以下步骤:
①取5~50W%的纳米氧化铝、50~80W%的气相白碳黑、1~10W%的添加剂、5~50W%的造孔剂混匀,成型;
②采用程序升温至900~1300℃脱造孔剂,烧结固化,得纳米多孔陶瓷材料;
优选的,选用的原材料所述纳米氧化铝、所述白碳黑、均为纳米级的颗粒或溶胶,所述造孔剂也为纳米级尺寸均匀的材料,所述添加剂包括粘结剂、助熔剂,如PVA,氧化镁等。
优选的,步骤②中,烧结固化过程使用助溶剂实现均匀、低温烧结,降低烧结成本。
一种高比表面积的纳米多孔陶瓷材料,采用所述高比表面积的纳米多孔陶瓷材料的制备方法制备得到。
进一步,所述高比表面积的纳米多孔陶瓷材料的孔径范围分布在5~100nm,比表面积在20~500m2/g范围。
所述高比表面积的纳米多孔陶瓷材料在重金属离子吸附材料或异相催化材料中的应用。
一种制备重金属离子吸附材料或异相催化材料的方法,采用所述高比表面积的纳米多孔陶瓷材料,并包括步骤:
(1)对所述高比表面积的纳米多孔陶瓷材料进行前期预处理;
(2)然后对所述高比表面积的纳米多孔陶瓷材料进行表面功能化改性,设计成重金属离子吸附材料或异相催化材料。
其中,所述前期预处理为使用0.5~10W%双氧水、0.1~5W%硝酸在50~80℃条件下对所述高比表面积的纳米多孔陶瓷材料进行前期预处理10min~2h,80~150℃烘干。
所述表面功能改性包括:A:将能和重金属离子发生较强配位的有机功能基团密集地接枝在所述高比表面积的纳米多孔陶瓷材料表面,获得重金属离子吸附材料;或B:将能和催化活性金属离子发生较强配位的有机功能基团密集地接枝在所述高比表面积的纳米多孔陶瓷材料表面,发展异相催化材料。
本发明的所述高比表面积的纳米多孔陶瓷材料的制备方法,制备成本低,适于工业推广,同时,制得的高比表面积的纳米多孔陶瓷材料优势明显,具有高比表面积,机械强度高,具有更好的工业应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明高比表面积的纳米多孔陶瓷材料的制备方法以及应用方法流程示意图;
图2为本发明实施例得到的高比表面积的纳米多孔陶瓷材料的孔分布情况;
图3为实施例2中不同氧化镁添加剂加入的孔隙率和比表面积;
图4为产品照片;
图5为产品照片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
高比表面积的纳米多孔陶瓷材料的制备,步骤如下:
①取35W%的纳米氧化铝、50W%的气相白碳黑、5W%的粘结剂、10W%的造孔剂混匀,成型。
②程序升温至1200℃烧结固化,脱造孔剂,降温得高比表面积的纳米多孔陶瓷材料。高比表面积的纳米多孔陶瓷材料的孔分布情况见图2所示。
实施例2
高比表面积的纳米多孔陶瓷材料的制备方,步骤如下:
①取20W%的纳米氧化铝、65W%的气相白碳黑、4W%的粘结剂、1W%的氧化镁、10W%的造孔剂混匀,成型。
②程序升温至1000℃烧结固化,脱造孔剂,降温得高比表面积的纳米多孔陶瓷材料。不同氧化镁添加剂加入的孔隙率和比表面积见图3所示。
实施例3
高比表面积的纳米多孔陶瓷材料的制备和应用工艺,步骤如下:
①取20W%的铝溶胶、66W%的气相白碳黑、3W%的粘结剂、1W%的烧结助剂、10W%的造孔剂混匀,成型;
②程序升温至1000℃烧结固化,脱造孔剂,降温得纳米多孔陶瓷材料。
③使用2%双氧水、1%硝酸在60℃条件下对高比表面积的纳米多孔陶瓷材料进行前期预处理0.5h,120℃烘干备用。
④对步骤③得到的高比表面积的纳米多孔陶瓷材料经乙醇、KH560、催化剂改性,获得富含巯基的多孔陶瓷材料。经巯基改性的多孔陶球,其表面及陶球内部都呈现不易被水润湿的特性,见图4所示。
⑤将富含巯基的多孔陶瓷材料经氢氧化钠溶液处理,以改善巯基改性多孔陶瓷材料的亲水性特征,即得用于水体、淤泥重金属污染治理的重金属离子吸附材料。
实施例4
高比表面积的纳米多孔陶瓷材料的制备方法和应用,步骤如下:
①取35W%的纳米氧化铝、50W%的气相白碳黑、5W%的添加剂、10W%的造孔剂混匀,成型。
②程序升温至1100℃烧结固化,脱造孔剂,降温得纳米多孔陶瓷材料。
③使用2%双氧水、0.1%硝酸在80℃条件下对纳米多孔陶瓷材料进行前期预处理1h,150℃烘干备用。
④对步骤③得到的纳米多孔陶瓷经乙醇、KH550、催化剂改性,获得富含氨基的多孔陶瓷材料,即得重金属离子吸附材料。
实施例5
一种具有高比表面积的纳米多孔陶瓷材料的制备方法及其应用,步骤如下:
①取实施例3所得重金属离子吸附材料吸附含汞污水中的重金属离子Hg2+,汞的吸附容量达~50mg/g;
②使用10mol/L的盐酸浸泡①中吸附Hg2+的多孔陶瓷材料,实现重金属离子吸附材料的再生。
实施例6
一种具有高比表面积的纳米多孔陶瓷材料的制备方法及其应用,步骤如下:
①取35W%的纳米氧化铝、50W%的气相白碳黑、5W%的添加剂、10W%的造孔剂混匀,成型;
②程序升温至1000℃烧结固化,脱造孔剂,降温得纳米多孔陶瓷材料;
③使用2%双氧水、0.5%硝酸在80℃条件下对纳米多孔陶瓷材料进行前期预处理2h,120℃烘干备用。
④对步骤③得到的纳米多孔陶瓷经乙醇、KH550、催化剂改性,获得富含氨基的多孔陶瓷材料。
利用表面氨基化学接枝强金属离子配体(如:卡宾类配体),制备异相催化剂。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高比表面积的纳米多孔陶瓷材料的制备方法,其特征在于,包括以下步骤:
①取5~50W%的纳米氧化铝、50~80W%的气相白碳黑、1~10W%的添加剂、5~50W%的造孔剂混匀,成型;
②升温至900~1300℃脱造孔剂,烧结固化,得纳米多孔陶瓷材料。
2.如权利要求1中所述高比表面积的纳米多孔陶瓷材料的制备方法,其特征在于:选用的原材料所述纳米氧化铝、所述白碳黑、均为纳米级的颗粒或溶胶,所述造孔剂也为纳米级尺寸均匀的材料,所述添加剂包括粘结剂、助熔剂。
3.如权利要求1中所述高比表面积的纳米多孔陶瓷材料的制备方法,其特征在于:步骤②中,烧结固化过程使用助溶剂实现均匀、低温烧结。
4.一种高比表面积的纳米多孔陶瓷材料,其特征在于:采用权利要求1-3中任一所述高比表面积的纳米多孔陶瓷材料的制备方法制备得到。
5.如权利要求4中所述高比表面积的纳米多孔陶瓷材料,其特征在于:所述高比表面积的纳米多孔陶瓷材料的孔径范围分布在5~100nm,比表面积在20~500m2/g范围。
6.如权利要求4或5中所述高比表面积的纳米多孔陶瓷材料在重金属离子吸附材料或异相催化材料中的应用。
7.一种制备重金属离子吸附材料或异相催化材料的方法,其特征在于,采用权利要求4或5中所述高比表面积的纳米多孔陶瓷材料,并包括步骤:
(1)对所述高比表面积的纳米多孔陶瓷材料进行前期预处理;
(2)然后对所述高比表面积的纳米多孔陶瓷材料进行表面功能化改性,设计成重金属离子吸附材料或异相催化材料。
8.如权利要求8中所述制备重金属离子吸附材料或异相催化材料的方法,其特征在于:所述前期预处理为使用0.5~10W%双氧水、0.1~5W%硝酸在50~80℃条件下对所述高比表面积的纳米多孔陶瓷材料进行前期预处理10min~2h,80~150℃烘干。
9.如权利要求8中所述制备重金属离子吸附材料或异相催化材料的方法,其特征在于:表面功能改性包括:A:将能和重金属离子发生较强配位的有机功能基团密集地接枝在所述高比表面积的纳米多孔陶瓷材料表面,获得重金属离子吸附材料;或B:将能和催化活性金属离子发生较强配位的有机功能基团密集地接枝在所述高比表面积的纳米多孔陶瓷材料表面,发展异相催化材料。
CN201610533556.6A 2016-07-07 2016-07-07 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用 Pending CN106167400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610533556.6A CN106167400A (zh) 2016-07-07 2016-07-07 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610533556.6A CN106167400A (zh) 2016-07-07 2016-07-07 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用

Publications (1)

Publication Number Publication Date
CN106167400A true CN106167400A (zh) 2016-11-30

Family

ID=58066116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610533556.6A Pending CN106167400A (zh) 2016-07-07 2016-07-07 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用

Country Status (1)

Country Link
CN (1) CN106167400A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108726623A (zh) * 2018-06-06 2018-11-02 大连理工大学 一种基于可重复利用改性多孔陶瓷材料的污水处理方法
CN110193382A (zh) * 2019-05-08 2019-09-03 兰州大学 利用凹凸棒制备孔隙度可调的网眼陶瓷催化剂载体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412620A (zh) * 2008-11-14 2009-04-22 西安交通大学 溶胶作为助剂制备多孔氧化铝陶瓷支撑体的方法
CN104163654A (zh) * 2014-07-04 2014-11-26 北京大学深圳研究生院 一种多孔陶瓷的制备方法及多孔陶瓷
CN105060861A (zh) * 2015-08-06 2015-11-18 河南工程学院 具有二维纳米孔道的多孔陶瓷类催化剂载体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412620A (zh) * 2008-11-14 2009-04-22 西安交通大学 溶胶作为助剂制备多孔氧化铝陶瓷支撑体的方法
CN104163654A (zh) * 2014-07-04 2014-11-26 北京大学深圳研究生院 一种多孔陶瓷的制备方法及多孔陶瓷
CN105060861A (zh) * 2015-08-06 2015-11-18 河南工程学院 具有二维纳米孔道的多孔陶瓷类催化剂载体及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108726623A (zh) * 2018-06-06 2018-11-02 大连理工大学 一种基于可重复利用改性多孔陶瓷材料的污水处理方法
CN110193382A (zh) * 2019-05-08 2019-09-03 兰州大学 利用凹凸棒制备孔隙度可调的网眼陶瓷催化剂载体的方法

Similar Documents

Publication Publication Date Title
Huang et al. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals
Yuan et al. Insights into hierarchically meso–macroporous structured materials
Bao et al. Recent progress in hollow silica: Template synthesis, morphologies and applications
Akhtar et al. Structuring adsorbents and catalysts by processing of porous powders
Xin et al. Mesoporous carbons: recent advances in synthesis and typical applications
Su et al. Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science
Zhang et al. Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk–shell@ shell nanoreactors for tandem catalysis
Lee et al. Low-cost and facile synthesis of mesocellular carbon foams
TW200633772A (en) Ultraporous sol gel monoliths
CN102557714A (zh) 一种多孔陶瓷微球的孔道扩增方法
CN102824898B (zh) 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
Wei et al. Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis
CN110743626B (zh) 一种3d打印多孔催化器件的方法及一种多孔催化器件
Nguyen et al. Enhanced protein adsorption capacity of macroporous pectin particles with high specific surface area and an interconnected pore network
CN106215869A (zh) 多孔二氧化硅陶瓷负载Cu‑MOF吸附剂及其制备方法
Guo et al. Synthesis of 3D-ordered macro/microporous yolk–shelled nanoreactor with spatially separated functionalities for cascade reaction
Liu et al. Recent advances in the direct fabrication of millimeter-sized hierarchical porous materials
CN106467304A (zh) 一种二氧化硅气凝胶微球及其制备方法
Zhao et al. A novel microfluidic approach for preparing chitosan–silica core–shell hybrid microspheres with controlled structures and their catalytic performance
CN108610505B (zh) 一种聚合物基可调控的分级孔材料的制备方法
CN106167400A (zh) 一种高比表面积的纳米多孔陶瓷材料的制备方法及得到的产品和应用
CN111040234B (zh) 一种多级孔甲壳素材料的制备方法
Qiao et al. High-surface-area interconnected macroporous nanofibrous cellulose microspheres: a versatile platform for large capacity and high-throughput protein separation
Li et al. Preparation of templated materials and their application to typical pollutants in wastewater: a review
US10570065B1 (en) Method of fabricating green desiccant wheel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161130