CN106159961A - 一种考虑时空特性的双馈风电场无功电压协调控制方法 - Google Patents

一种考虑时空特性的双馈风电场无功电压协调控制方法 Download PDF

Info

Publication number
CN106159961A
CN106159961A CN201510166070.9A CN201510166070A CN106159961A CN 106159961 A CN106159961 A CN 106159961A CN 201510166070 A CN201510166070 A CN 201510166070A CN 106159961 A CN106159961 A CN 106159961A
Authority
CN
China
Prior art keywords
reactive
voltage
idle
dfig
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510166070.9A
Other languages
English (en)
Inventor
王阳
卢锦玲
杨月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201510166070.9A priority Critical patent/CN106159961A/zh
Publication of CN106159961A publication Critical patent/CN106159961A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本文公开了一种既考虑风电场内各无功源之间协调控制,又考虑风电机组无功电压时空分布特性影响的无功电压控制方法,包括以下步骤:在分析典型的放射式集电系统无功补偿特点基础上提出了相应的无功优化控制策略;建立了相应的优化控制模型;应用粒子群算法进行求解,并基于网络分析对数据进行预处理,提高了算法的收敛速度。该控制方法能够在满足风电场并网点电压要求的基础上均衡各风电机组机端电压裕度和提高风电场动态无功储备容量。从而更有效的降低风电机组机端电压差异,提高风电场整体电压水平。在电网电压扰动或电网故障期间,有效的预防风电机组连锁脱网,提高了风电场并网的安全稳定性和经济效益。

Description

一种考虑时空特性的双馈风电场无功电压协调控制方法
技术领域
本发明涉及双馈风电场无功电压协调控制领域,更具体的说涉及一种既考虑风电场内各无功源之间协调控制,又考虑风电机组无功电压时空分布特性影响的无功电压控制方法。
背景技术
近年来,风电发展迅速,风电对电网安全稳定影响越来越突出。为提高并网风电场运行的安全性、经济性,许多国家都制定了风电场并网技术要求,包括:低电压穿越能力、有功与频率调节能力、无功电压控制能力,2011年制定的国家电网《风电场接入电力系统技术规定》要求风电场配置无功电压控制系统,能够根据电网调度指令实时控制风电场的无功出力,满足电网对并网点的无功和电压要求。
双馈风电机组(Doubly-fed Induction Generator,DFIG)是重要的无功源,利用DFIG进行就近无功补偿,并进行无功功率在各台机组间的分配。根据风功率预测数据的优化结果预先投切电容器的电压控制策略,DFIG对风电场实时无功功率差额进行调控,并按比例分配原则分配无功差额。此外在风电场升压站加装静止同步补偿器(STATCOM),也可以提高了恒速异步风电场的暂态电压稳定性。
以往的控制方法大多以稳定系统关键节点电压为控制目标,对机组机端电压的均衡性考虑较少。而实际上,大型风电场是许多空间分布具有分散性的单台机组通过集电系统连接在一起的,对大规模风电场连锁脱网事故分析表明,并非风电场中所有的机组均脱网,这是由于风电机组机端电压存在较大差异,导致机组动作不一致。
发明内容
本发明的目的在于,针对风电场并网电压调控问题,提出了一种既考虑风电场内各无功源之间协调控制,又考虑风电机组无功电压时空分布特性影响的无功电压控制方法。
为实现上述目的,本发明采用的技术方案是:
首先根据典型的放射式集电系统无功电压时空分布特性及其无功补偿特点,针对放射式集电系统提出了无功优化控制方法,并建立了相应的优化控制模型,应用粒子群算法进行求解,以实现均衡风电机组机端电压裕度和提高风电场动态无功储备容量的目标。所述方法包括如下步骤:
a.确定双馈风电场无功电压优化控制策略:(1)静止同步补偿器(STATCOM)和双馈风电机组(DFIG)之间无功分配;(2)各台DFIG间无功分配;(3)DFIG内部无功分配。
b.建立风电场无功电压优化控制数学模型:包括建立(1)PCC电压偏差指标模型;(2)风电机组机端电压偏差指标模型;(3)动态无功储备容量指标模型;(4)目标函数;(5)优化控制约束条件
c.模型计算,基于粒子群算法的双馈风电场无功电压优化控制,通过网络分析粗略地估计各无功源的出力大小,可以为粒子群算法提供较好的初值,加快粒子群迭代寻优的速度。步骤如下:(1)从风电场数据监控平台获取实时运行数据、PCC电压和风电机组机端电压控制指令;(2)判断是否为控制死区;(3)计算各无功源出力范围;(4)基于网络分析粗略估计各无功源的出力大小,生成一个初始粒子;(5)设置粒子群算法种群规模N、惯性权重系数ω等参数,随机初始化其他N-1个粒子,得到N个可行解;(6)将每个粒子代入潮流计算,计算各粒子的适应值,得到粒子的个体最优值pbest和全局最优值gbest;(7)更新每个粒子的位置和速度;(8)检查是否满足停止条件(本文设定为达到迭代次数),若满足则停止搜索,否则转步骤(6);(9)判断数据是否合理,若合理则下发执行,若不合理则报警。
本发明的技术方案,能够在满足风电场并网点电压要求的基础上均衡各风电机组机端电压裕度和提高风电场动态无功储备容量。从而更有效的降低风电机组机端电压差异,提高风电场整体电压水平。在电网电压扰动或电网故障期间,有效的预防风电机组连锁脱网,提高了风电场并网的安全稳定性和经济效益。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1是仿真系统结构图
图2是放射式集电系统典型结构
图3是典型放射式集电系统等值电路
图4是风速日变化曲线
图5是风电场的有功功率、无功功率日变化曲线
图6是并网点电压日变化曲线
图7是不同无功源无功输出曲线
图8是40%风电出力工况下不同控制方式机端电压控制效果
图9是80%风电出力工况下不同控制方式机端电压控制效果
图10是80%风电出力工况下不同控制方式无功出力
具体实施方式
下面将结合附图和具体实施例对本发明进行进一步详细说明。
本实例以吉林西部某风电场为例进行仿真计算,算例系统如图1所示。该风电场有33台MY1.5se/1500型双馈风电机组,每台风电机组经690V/35kV箱变接入35kV集电系统,再通过一台50MW的220/35kV变压器接入吉林西部系统。33风电台风机分为3组(发电一线、发电二线、发电三线),每组11台,风机间距600m,集电线路型号为LGJ-185。该风电场升压站装有10Mvar的STATCOM。
a.本发明采用无功电压优化控制策略:(1)在协调STATCOM和DFIG的无功出力时,优先调整DFIG的无功功率,充分发挥DFIG的无功调节能力,可为系统储备更多的动态无功。(2)无功功率在各台DFIG间的分配是实现无功优化控制的关键。本文不仅考虑各动态无功源的相互配合,而且考虑各DFIG空间分布对其无功出力的影响,降低同一馈线上各台机组机端电压差异,从而提高风电机组运行的可靠性。(3)无功功率在风电机组内部分配时优先考虑定子侧。当第i台DFIG无功出力小于定子侧无功出力极限时,全部无功功率由定子侧提供,网侧变流器无功出力为零;当无功出力大于定子侧无功极限时,定子侧和网侧变流器同时发出无功功率。这一级的无功分配由每台机组的控制器完成。
b.建立风电场无功电压优化控制数学模型
(1)PCC电压偏差指标,双馈风电场无功电压控制的第一要务为保证风电场并网点电压稳定。引入PCC电压偏差指标:
f 1 = Δ U PC 2 = ( U PC - U PC - ref ) 2
式中,UPC、UPC-ref分别为PCC电压测量值和参考值,本文取UPC-ref=1.00pu。
为避免对风电场进行频繁控制,当PCC电压在控制偏差允许范围内不对风电场进行控制,即满足:
UPC-ref+UPC-err≤UPC≤UPC-ref+UPC-err
式中,UPC-err为PCC允许的控制误差,本文取UPC-err=0.001pu。
(2)风电机组机端电压偏差指标,为降低同一馈线上各台风电机组机端电压差异、提高风电机组运行的可靠性。引入DFIG机端电压偏差指标:
f 2 = Δ U Gi 2 = ( U Gi - U Gi - ref ) 2
式中,UGi、UGi-ref分别为DFIG机端电压测量值和参考值,本文取UGi-ref=1.02pu。
(3)动态无功储备容量指标,一方面为充分发挥DFIG的无功潜力,另一方面为风电场暂态故障储备充足的动态无功裕度,使DFIG优先承担无功调节任务。引入动态无功裕度指标:
f 3 = Q statcom / Q stat max Q statcom > 0 Q statcom / Q stat min Q statcom < 0
式中,Qstatcom,Qstatmax,Qstatmin分别为STATCOM无功出力、可调无功上限和可调无功下限。
(4)目标函数,综合考虑风电场对电压和无功的要求,得到风电场PCC电压稳定性水平最好、DFIG机端电压裕度最均衡、动态无功储备容量最大为综合目标的无功电压优化控制策略目标函数,即:
min F=α1f12f23f3
式中,α1、α2、α3分别为f1、f2和f3在目标函数中的权重系数。
(5)优化控制约束条件
1.潮流约束条件
P i = U i &Sigma; j = 1 N S U j ( G ij cos &theta; ij + B ij sin &theta; ij ) Q i = U i &Sigma; j = 1 N S U j ( G ij sin &theta; ij - B ij cos &theta; ij )
式中,i∈[1,NS],NS为节点总数;Pi、Qi为节点i注入的有功和无功;Gij、Bij、δij分别为节点i、j之间的电导、电纳和电压相角差。
2.变量约束条件
U i min &le; U i &le; U i max i &Element; N S Q Ci min &le; Q i &le; Q Ci max i &Element; N C &Delta;
式中,Uimax、Uimin分别表示节点i的电压上、下限;QCimax、QCimin分别表示无功源i的可调无功上、下限;NC为参与无功调节的节点集合。
c.求解模型,采用粒子群算法。
基于网络分析生成初始粒子。根据图2典型的放射式集电系统结构,可作出某一条馈线的等值电路如图3所示,图中R+jX为同一馈线上相邻风机之间的集电线路阻抗(假设各DFIG之间的距离相等);RL+jXL为馈线上第1台风机到风电场升压站低压侧之间阻抗;Rt+jXt为风机箱变阻抗;Ulow为升压站低压侧电压;Ui为风机i机端电压;Pi+jQi为风机i的有功、无功出力。为了将各台风电机组机端电压调整到同一水平,将PCC电压调整到参考值,根据网络分析,粗略地估计风电机组i和STATCOM的无功调节量为满足式Δ变量约束约束条件:
&Delta;Q gi - ref = ( U Gi - ref - U Gi ) &times; U Gi - ref X t + X Gi &Delta; Q statcom = ( U low - ref - U low ) &times; U low - ref X zt - &Sigma; i = 1 N &Delta; Q gi - ref
式中,ΔQgi-ref、ΔQstatcom分别为风电机组i和STATCOM的无功调整量;Ulow-ref为升压站低压侧电压参考值,可由UPC-ref归算得到;XGi为风电机组i与升压站高压侧之间的电抗;Xzt为升压站主变电抗;N为风电机组总数。
基于粒子群算法的双馈风电场无功电压优化控制步骤如下:(1)从风电场数据监控平台获取实时运行数据、PCC电压和风电机组机端电压控制指令;(2)判断是否为控制死区;(3)计算各无功源出力范围;(4)基于网络分析粗略估计各无功源的出力大小,生成一个初始粒子;(5)设置粒子群算法种群规模N、惯性权重系数ω等参数,随机初始化其他N-1个粒子,得到N个可行解;(6)将每个粒子代入潮流计算,计算各粒子的适应值,得到粒子的个体最优值pbest和全局最优值gbest;(7)更新每个粒子的位置和速度;(8)检查是否满足停止条件(本文设定为达到迭代次数),若满足则停止搜索,否则转步骤6;(9)判断数据是否合理,若合理则下发执行,若不合理则报警。
从图5可以看出,随着风电场出力的增加,风电场从电网吸收的无功功率也增加,导致风电场电网点电压下降,易引起电网故障和电网电压扰动时风电机组连锁脱网,不利于电网和风电场安全稳定运行。图6中Uref为电压控制参考值,从图6可以看出,采用本文的控制策略对风电场进行无功控制能够稳定并网点电压,并网点电压最大值为1.001pu,最小值为0.996pu,电压波动仅为0.5%,满足电压控制要求。从图7可以看出,本文控制策略优化DFIG和STATCOM无功输出,优先调节DFIG无功功率,这充分发挥了风电机群无功潜力,提高了风电场动态无功裕度。
为验证本文控制策略在均衡DFIG机端电压裕度和提高风电场动态无功裕度方面的优势,本文采用以下3种方式进行仿真
1)方式1:仅采用STATCOM进行风电场无功电压控制;
2)方式2:STATCOM和DFIG均参与风电场无功电压协调控制,优先调节DFIG无功功率,无功功率在各DFIG之间按比例分配算法[8]进行分配;
3)方式3:STATCOM和DFIG均参与风电场无功电压协调控制,各无功源之间的无功输出按本文所提方法分配。
从图8和图9可以看出,方式1由于DFIG不输出无功,集电线路上电压降落小,DFIG机端电压相对较低。方式2DFIG参与系统电压调节,无功功率在各DFIG均衡分配,集电线路上电压降落大,DFIG机端电压差扩大明显,且各条馈线末端DFIG机端电压升高过大,不利于DFIG稳定运行。与方式1和方式2相比,本文所提出的控制策略能够提高风电机组机端电压稳定性,有利于DFIG安全稳定运行。图10给出了80%风电出力时各台风电机组在不同控制方式下的无功出力,可以看出本文控制方式下,各台机组无功出力随着距离并网点电气距离的增加而减小,从而减小了集电系统无功传输过程中的电压降落和功率损耗。
表1为不同运行和控制方式下风电场无功出力、机组机端电压、并网点电压、动态无功裕度和有功损耗统计信息。
表1不同运行工况和控制方式下风电场优化控制结果
从表1可以看出,三种控制策略均能够满足系统对并网点电压要求,但本文控制方式优化DFIG和STATCOM之间的无功出力,与方式1相比,充分利用了DFIG无功调控能力,提高了风电场动态无功储备容量,与方式2相比,降低了风电机组机端电压差异,提高了风电机组运行可靠性;同时,通过对不同控制方式下集电系统网损比较可发现,采用本文控制策略,风电机组输出无功功率后,风电场网损小于方式2,与方式1相比并无大幅增加,满足经济性要求。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种考虑时空特性的双馈风电场无功电压协调控制方法,其特征是,在风电机组运行在低风况下,将双馈风电机组(DFIG)做为风电场重要的无功源。同时,为了平抑风电场的无功波动,加之故障情况下机组低电压穿越等因素的要求,采用静止同步补偿器(STATCOM)为风电场提供动态无功补偿。
2.根据权利要求1所述的考虑时空特性的双馈风电场无功电压协调控制方法,其特征是以在线实时监测数据为基础,以动态无功储备容量最大为目标协调STATCOM和DFIG无功出力,以降低风电机组机端电压差异为目标协调各DFIG之间、以及DFIG内部无功出力。
(1)STATCOM和DFIG之间无功分配方法。在协调STATCOM和DFIG的无功出力时,优先调整DFIG的无功功率,充分发挥DFIG的无功调节能力,可为系统储备更多的动态无功。
(2)各台DFIG间无功分配方法。无功功率在各台DFIG间的分配是实现无功优化控制的关键。本文不仅考虑各动态无功源的相互配合,而且考虑各DFIG空间分布对其无功出力的影响,降低同一馈线上各台机组机端电压差异,从而提高风电机组运行的可靠性。
(3)DFIG内部无功分配方法。无功功率在风电机组内部分配时优先考虑定子侧。当第i台DFIG无功出力小于定子侧无功出力极限时,全部无功功率由定子侧提供,网侧变流器无功出力为零;当无功出力大于定子侧无功极限时,定子侧和网侧变流器同时发出无功功率。这一级的无功分配由每台机组的控制器完成。
3.根据权利要求1和2所述的考虑时空特性的双馈风电场无功电压协调控制方法,其特征在于,建立风电场无功电压优化控制数学模型,其中优化目标函数包括:
(1)PCC电压偏差指标:
f 1 = &Delta; U PC 2 = ( U PC - U PC - ref ) 2
式中,UPC、UPC-ref分别为PCC电压测量值和参考值,本文取UPC-ref=1.00pu。
(2)风电机组机端电压偏差指标:
f 2 = &Delta; U Gi 2 = ( U Gi - U Gi - ref ) 2
式中,UGi、UGi-ref分别为DFIG机端电压测量值和参考值,本文取UGi-ref=1.02pu。
(3)动态无功储备容量指标:
f 3 = Q statcom / Q stat max Q statcom > 0 Q statcom / Q stat min Q statcom < 0
式中,Qstatcom,Qstatmax,Qstatmin分别为STATCOM无功出力、可调无功上限和可调无功下限。
最终目标函数综合考虑风电场对电压和无功的要求,得到风电场PCC电压稳定性水平最好、DFIG机端电压裕度最均衡、动态无功储备容量最大为综合目标的无功电压优化控制策略目标函数,即:
min F=α1f12f23f3
式中,α1、α2、α3分别为f1、f2和f3在目标函数中的权重系数。
优化控制约束条件
1.潮流约束条件
P i = U i &Sigma; j = 1 N S U j ( G ij cos &theta; ij + B ij sin &theta; ij ) Q i = U i &Sigma; j = 1 N S U j ( G ij sin &theta; ij - B ij cos &theta; ij )
式中,i∈[1,NS],NS为节点总数;Pi、Qi为节点i注入的有功和无功;Gij、Bij、δij分别为节点i、j之间的电导、电纳和电压相角差。
2.变量约束条件
U i min &le; U i &le; U i max i &Element; N S Q Ci min &le; Q i &le; Q Ci max i &Element; N C - - - &Delta;
式中,Uimax、Uimin分别表示节点i的电压上、下限;QCimax、QCimin分别表示无功源i的可调无功上、下限;NC为参与无功调节的节点集合。
4.根据权利要求3所述的虑时空特性的双馈风电场无功电压协调控制方法,其特征在于,粒子群算法的双馈风电场无功电压优化控制步骤如下:
基于粒子群算法的双馈风电场无功电压优化控制步骤如下:(1)从风电场数据监控平台获取实时运行数据、PCC电压和风电机组机端电压控制指令;(2)判断是否为控制死区;(3)计算各无功源出力范围;(4)基于网络分析粗略估计各无功源的出力大小,生成一个初始粒子;(5)设置粒子群算法种群规模N、惯性权重系数ω等参数,随机初始化其他N-1个粒子,得到N个可行解;(6)将每个粒子代入潮流计算,计算各粒子的适应值,得到粒子的个体最优值pbest和全局最优值gbest;(7)更新每个粒子的位置和速度;(8)检查是否满足停止条件(本文设定为达到迭代次数),若满足则停止搜索,否则转步骤6;(9)判断数据是否合理,若合理则下发执行,若不合理则报警。
CN201510166070.9A 2015-04-10 2015-04-10 一种考虑时空特性的双馈风电场无功电压协调控制方法 Pending CN106159961A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510166070.9A CN106159961A (zh) 2015-04-10 2015-04-10 一种考虑时空特性的双馈风电场无功电压协调控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510166070.9A CN106159961A (zh) 2015-04-10 2015-04-10 一种考虑时空特性的双馈风电场无功电压协调控制方法

Publications (1)

Publication Number Publication Date
CN106159961A true CN106159961A (zh) 2016-11-23

Family

ID=57336156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510166070.9A Pending CN106159961A (zh) 2015-04-10 2015-04-10 一种考虑时空特性的双馈风电场无功电压协调控制方法

Country Status (1)

Country Link
CN (1) CN106159961A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786629A (zh) * 2017-01-13 2017-05-31 国网山西省电力公司 一种风场内部无功电压协调控制方法
CN109474028A (zh) * 2018-12-04 2019-03-15 三峡大学 基于电网友好型dfig控制策略下系统稳定性优化控制方法
CN109888844A (zh) * 2019-01-28 2019-06-14 国网浙江省电力有限公司电力科学研究院 一种风电场无功电压控制方法
CN110460063A (zh) * 2018-05-07 2019-11-15 南京理工大学 一种风电场自动电压系统的控制方法
CN110661270A (zh) * 2019-11-06 2020-01-07 电子科技大学 含风电的电力系统电压稳定性协调控制方法
CN110707713A (zh) * 2019-09-30 2020-01-17 贵州电网有限责任公司凯里供电局 一种基于历史数据的配网无功电压时空分布特性获取方法
CN111245032A (zh) * 2020-02-07 2020-06-05 华北电力大学 一种计及风电场集电线路降损优化的电压预测控制方法
CN111509699A (zh) * 2020-04-02 2020-08-07 贵州电网有限责任公司 一种考虑容抗器归整的电压越限控制决策方法
CN114336789A (zh) * 2021-11-22 2022-04-12 华能新能源股份有限公司 基于最优潮流的风电场电压无功分布式协调控制方法和系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786629A (zh) * 2017-01-13 2017-05-31 国网山西省电力公司 一种风场内部无功电压协调控制方法
CN110460063A (zh) * 2018-05-07 2019-11-15 南京理工大学 一种风电场自动电压系统的控制方法
CN109474028A (zh) * 2018-12-04 2019-03-15 三峡大学 基于电网友好型dfig控制策略下系统稳定性优化控制方法
CN109474028B (zh) * 2018-12-04 2021-11-23 三峡大学 基于电网友好型dfig控制策略下系统稳定性优化控制方法
CN109888844A (zh) * 2019-01-28 2019-06-14 国网浙江省电力有限公司电力科学研究院 一种风电场无功电压控制方法
CN110707713A (zh) * 2019-09-30 2020-01-17 贵州电网有限责任公司凯里供电局 一种基于历史数据的配网无功电压时空分布特性获取方法
CN110661270A (zh) * 2019-11-06 2020-01-07 电子科技大学 含风电的电力系统电压稳定性协调控制方法
CN110661270B (zh) * 2019-11-06 2023-03-24 电子科技大学 含风电的电力系统电压稳定性协调控制方法
CN111245032A (zh) * 2020-02-07 2020-06-05 华北电力大学 一种计及风电场集电线路降损优化的电压预测控制方法
CN111245032B (zh) * 2020-02-07 2023-12-22 华北电力大学 一种计及风电场集电线路降损优化的电压预测控制方法
CN111509699A (zh) * 2020-04-02 2020-08-07 贵州电网有限责任公司 一种考虑容抗器归整的电压越限控制决策方法
CN114336789A (zh) * 2021-11-22 2022-04-12 华能新能源股份有限公司 基于最优潮流的风电场电压无功分布式协调控制方法和系统

Similar Documents

Publication Publication Date Title
CN106159961A (zh) 一种考虑时空特性的双馈风电场无功电压协调控制方法
CN105591392B (zh) 提高风电场经济运行的风机无功优化方法
CN102299527B (zh) 一种风电场无功功率控制方法和系统
CN101860044B (zh) 风电场无功电压的协调控制方法
CN103346577B (zh) 降低风电场功率损耗的风电场avc无功控制系统及方法
CN106026113A (zh) 一种具有无功自动补偿的微电网系统的监控方法
CN103151795B (zh) 降低风机损耗的分散式风电场无功优化控制方法及系统
WO2021088442A1 (zh) 协调控制风电场无功电压的方法和系统
CN106505613A (zh) 一种风电场功率控制器
CN105846456A (zh) 一种交直流互联电网风、火协调动态经济调度优化方法
CN102354992A (zh) 风电场无功功率控制方法
CN104682437B (zh) 一种风电场的有功/无功实时闭环下垂控制方法
CN108711868A (zh) 一种计及孤岛运行电压安全的配电网无功优化规划方法
CN103532150B (zh) 一种考虑风电场无功调节能力的协调二级电压控制方法
CN108258699A (zh) 一种考虑dfig无功出力能力的风电场无功优化控制方法
CN101917002B (zh) 基于特高压电网联络线运行状态的电压控制方法
CN105262098A (zh) 基于风电场发电功率波动评估的敏捷自动电压控制方法
CN105762838A (zh) 一种风电集群无功电压多目标控制方法
CN109004687A (zh) 风电场参与电网调频的智能惯量响应控制方法及系统
CN107134785A (zh) 一种考虑网络结构优化的输电网电压协调优化控制方法
CN106712044A (zh) 一种风电场内无功电压多目标优化方法
CN105470978B (zh) 一种静止无功补偿装置成组协调控制方法
CN109888775B (zh) 一种考虑风电接入的低负荷运行日输电网结构优化方法
CN107482639A (zh) 适用于电网中风电系统的动态无功设备无功功率优化方法
CN107196343A (zh) 一种多端柔性直流孤岛电网送端的日前电压计划生成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161123