CN106153045A - 一种抑制gnss信息异常的滤波增益动态调整方法 - Google Patents

一种抑制gnss信息异常的滤波增益动态调整方法 Download PDF

Info

Publication number
CN106153045A
CN106153045A CN201610525966.6A CN201610525966A CN106153045A CN 106153045 A CN106153045 A CN 106153045A CN 201610525966 A CN201610525966 A CN 201610525966A CN 106153045 A CN106153045 A CN 106153045A
Authority
CN
China
Prior art keywords
formula
moment
matrix
filtering
gnss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610525966.6A
Other languages
English (en)
Other versions
CN106153045B (zh
Inventor
王立辉
乔楠
余乐
张月新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610525966.6A priority Critical patent/CN106153045B/zh
Publication of CN106153045A publication Critical patent/CN106153045A/zh
Application granted granted Critical
Publication of CN106153045B publication Critical patent/CN106153045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种抑制GNSS信息异常的滤波增益动态调整方法,在标准卡尔曼滤波算法的基础上,通过新息向量构造符合χ2分布的指标量并进行χ2检验,对观测异常值进行检测。根据χ2检验的参数构造比例因子,使用比例因子对相应的滤波增益矩阵进行降低,达到抑制异常观测值对系统影响的目的。本发明对正常噪声无影响,对异常值无错检、漏检,且对单独时刻异常值和持续异常值均有较高效作用,可使系统性能提高90%以上,将异常值的作用时间降5倍左右,大大提高了组合导航系统的性能。

Description

一种抑制GNSS信息异常的滤波增益动态调整方法
技术领域
本发明涉及INS/GNSS组合导航系统,特别是涉及一种抑制GNSS信息异常的滤波增益动态调整方法。
背景技术
惯性导航系统(Inertial navigation system,INS)/全球导航卫星系统(Globalnavigation satellite system,GNSS)组合导航系统中INS数据信息更新率高、噪声低,在短时间内有较高精度,但其系统原理决定了导航误差会随时间增加而积累,GNSS误差与时间无关,可全天候、全球范围提供高精度的导航信息,但其信息更新率较低。INS/GNSS系统经过滤波方法进行信息融合,可实现优势互补,得到更加精确的导航结果。
卡尔曼滤波器(Kalman filter,KF)对于过程噪声和观测噪声为Gauss白噪声序列的线性系统,其滤波结果在无偏、一致和渐进有效的意义下是最优的。GNSS信号易受外界环境干扰的影响,尤其是在高楼林立的城市或是隧道峡谷等对信号遮挡严重的区域或者多径效应明显的环境中,GNSS会出现较大的观测异常值。此时观测值密度会表现为拖尾分布,观测噪声不再服从Gauss分布,不符合卡尔曼滤波的基本假设,滤波性能下降,无法满足需求。
在卡尔曼滤波的基础上,相继出现了粒子滤波、自适应滤波和H滤波等抗差性较好的滤波方法。粒子滤波可适用于非线性系统,抗差性能较好,但其计算量大、实时性较差,在组合导航领域应用较少;自适应滤波方法包括LMS和RLS方法,其跟踪性能较差;H滤波依据滤波器性能指标分析误差信息,能量最小,其牺牲平均估计精度来换取抗差性能。
发明内容
发明目的:本发明的目的是提供一种能够抑制INS/GNSS组合导航系统中GNSS信息异常的滤波增益动态调整方法。
技术方案:为达到此目的,本发明采用以下技术方案:
本发明所述的抑制GNSS信息异常的滤波增益动态调整方法,包括以下步骤:
S1:对标准卡尔曼滤波算法中的新息向量ik构建符合χ2分布的指标量I进行χ2检验,原假设H0:I~χ2(t),指标量I如式(1)所示:
I = i k T ( H k P k , k - 1 H k T + R k ) - 1 i k - - - ( 1 )
式(1)中,ik为新息向量,Hk为观测矩阵,Pk,k-1为由k-1时刻到k时刻的预测误差方差矩阵,Rk为观测噪声协方差矩阵;
S2:选取α为显著性水平;
S3:设通过查表方法得到α对应的上分位点为阈值;
S4:对各个时刻的指标量I进行检测:如果连续n个时刻的n≥预设时间,则放弃GNSS,仅采用INS导航,进行步骤S7;否则,则进行步骤S5;
S5:构建比例因子μ:
μ = I k χ α 2 - - - ( 2 )
式(2)中,Ik为新息向量矩阵;
S6:用代替Kk重新进行滤波计算,得到对异常值抑制后的滤波结果,如式(3)所示:
K ‾ k = K k / μ - - - ( 3 )
式(3)中,Kk是滤波器增益矩阵;
S7:结束。
有益效果:本发明在标准卡尔曼滤波算法的基础上提出了一种检测和抑制异常观测值影响的方法,对正常噪声无影响,对异常值无错检、漏检,且对单独时刻异常值和持续异常值均有较高效作用,可使系统性能提高90%以上,将异常值的作用时间降5倍左右,大大提高了组合导航系统的性能。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步的介绍。
本发明在标准卡尔曼滤波算法的基础上,公开了一种抑制GNSS信息异常的滤波增益动态调整方法。
下面先介绍一下标准卡尔曼滤波算法。
由于实际应用中噪声的不确定性,卡尔曼滤波算法采用了先预测再修正的思想将系统的状态方程和观测方程相结合,最终得到可实现状态最优估计的方程组。
假设有动态系统模型:
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Y k = H k X k + V k - - - ( 1 )
且有:
1)Wk和Vk是高斯白噪声;
2)Wk和Vk互不相关;
3)系统初始向量X0的均值和方差都已知;
4)Wk和Vk余初始向量X0是不相关的。
则有卡尔曼滤波方程组如下:
1)状态一步预测方程
X ^ k | k - 1 = Φ k | k - 1 X ^ k - 1 - - - ( 2 )
2)一步预测均方误差方程
P k | k - 1 = Φ k , k - 1 P k - 1 Φ T k , k - 1 + Γ k - 1 Q k - 1 Γ T k - 1 - - - ( 3 )
3)新息向量
i k = Y k - H k X ^ k - 1 - - - ( 4 )
4)滤波增益方程
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1 - - - ( 5 )
5)状态估值计算方程
X ^ k = X ^ k | k - 1 + K k i k - - - ( 6 )
6)估计均方误差方程
P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K k T - - - ( 7 )
式中,是通过k-1时刻的最优状态估计推算获得的预测状态向量;Φk|k-1是k-1时刻过渡到k时刻的状态转移矩阵;Pk|k-1是k-1时刻到k时刻的预测误差方差矩阵;Γk-1和Qk-1分别为系统的干扰矩阵和干扰方差矩阵;ik为新息向量,即ik包含了全新信息,这些信息由最新得的观测值提供;Kk是增益矩阵;Rk为观测噪声协方差矩阵,是对称正定矩阵;为最优估计状态向量,它是通过当前时刻的量测值和本次的预测状态向量估计得到的;Pk为k时刻的估计均方误差矩阵。
本发明提出了一种抑制GNSS信息异常的滤波增益动态调整方法,包括以下步骤:
S1:对标准卡尔曼滤波算法中的新息向量ik构建符合χ2分布的指标量I进行χ2检验,原假设H0:I~χ2(t),指标量I如式(8)所示:
I = i k T ( H k P k , k - 1 H k T + R k ) - 1 i k - - - ( 8 )
式(8)中,ik为新息向量,Hk为观测矩阵,Pk,k-1为由k-1时刻到k时刻的预测误差方差矩阵,Rk为观测噪声协方差矩阵;
S2:选取α为显著性水平;
S3:设通过查表方法得到α对应的上分位点为阈值;
S4:对各个时刻的指标量I进行检测:如果连续n个时刻的n≥预设时间,则放弃GNSS,仅采用INS导航,进行步骤S7;否则,则进行步骤S5;
S5:构建比例因子μ:
μ = I k χ α 2 - - - ( 9 )
式(9)中,Ik为新息向量矩阵;
S6:用代替Kk重新进行滤波计算,得到对异常值抑制后的滤波结果,如式(10)所示:
K ‾ k = K k / μ - - - ( 10 )
式(10)中,Kk是滤波器增益矩阵;
S7:结束。

Claims (1)

1.一种抑制GNSS信息异常的滤波增益动态调整方法,其特征在于:包括以下步骤:
S1:对标准卡尔曼滤波算法中的新息向量ik构建符合χ2分布的指标量I进行χ2检验,原假设H0:I~χ2(t),指标量I如式(1)所示:
I = i k T ( H k P k , k - 1 H k T + R k ) - 1 i k - - - ( 1 )
式(1)中,ik为新息向量,Hk为观测矩阵,Pk,k-1为由k-1时刻到k时刻的预测误差方差矩阵,Rk为观测噪声协方差矩阵;
S2:选取α为显著性水平;
S3:设通过查表方法得到α对应的上分位点为阈值;
S4:对各个时刻的指标量I进行检测:如果连续n个时刻的n≥预设时间,则放弃GNSS,仅采用INS导航,进行步骤S7;否则,则进行步骤S5;
S5:构建比例因子μ:
μ = I k χ α 2 - - - ( 2 )
式(2)中,Ik为新息向量矩阵;
S6:用代替Kk重新进行滤波计算,得到对异常值抑制后的滤波结果,如式(3)所示:
K ‾ k = K k / μ - - - ( 3 )
式(3)中,Kk是滤波器增益矩阵;
S7:结束。
CN201610525966.6A 2016-07-05 2016-07-05 一种抑制gnss信息异常的滤波增益动态调整方法 Active CN106153045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610525966.6A CN106153045B (zh) 2016-07-05 2016-07-05 一种抑制gnss信息异常的滤波增益动态调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610525966.6A CN106153045B (zh) 2016-07-05 2016-07-05 一种抑制gnss信息异常的滤波增益动态调整方法

Publications (2)

Publication Number Publication Date
CN106153045A true CN106153045A (zh) 2016-11-23
CN106153045B CN106153045B (zh) 2018-11-09

Family

ID=58061898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610525966.6A Active CN106153045B (zh) 2016-07-05 2016-07-05 一种抑制gnss信息异常的滤波增益动态调整方法

Country Status (1)

Country Link
CN (1) CN106153045B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515374A (zh) * 2017-07-31 2017-12-26 湖北工业大学 一种应用于agv车soc估算动态调整滤波增益的方法
CN109507697A (zh) * 2018-10-31 2019-03-22 安徽理工大学 一种新的gnss时间序列中异常值精确识别方法
CN111578928A (zh) * 2020-05-07 2020-08-25 北京邮电大学 一种基于多源融合定位系统的定位方法及装置
CN116086466A (zh) * 2022-12-28 2023-05-09 淮阴工学院 一种提高ins误差精度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983160A (en) * 1997-04-21 1999-11-09 Raytheon Company Increase jamming immunity by optimizing processing gain for GPS/INS systems
US7409289B2 (en) * 2004-02-13 2008-08-05 Thales Device for monitoring the integrity of information delivered by a hybrid INS/GNSS system
CN103383261A (zh) * 2013-07-02 2013-11-06 河海大学 一种改进型无损卡尔曼滤波室内动目标定位方法
CN103675844A (zh) * 2013-11-18 2014-03-26 航天恒星科技有限公司 一种gnss/ins组合导航同步模拟系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983160A (en) * 1997-04-21 1999-11-09 Raytheon Company Increase jamming immunity by optimizing processing gain for GPS/INS systems
US7409289B2 (en) * 2004-02-13 2008-08-05 Thales Device for monitoring the integrity of information delivered by a hybrid INS/GNSS system
CN103383261A (zh) * 2013-07-02 2013-11-06 河海大学 一种改进型无损卡尔曼滤波室内动目标定位方法
CN103675844A (zh) * 2013-11-18 2014-03-26 航天恒星科技有限公司 一种gnss/ins组合导航同步模拟系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIXIANG LIU ET AL.: "A Method for SINS Alignment with Large Initial Misalignment Angles Based on Kalman Filter with Parameters Resetting", 《MATHEMATICAL PROBLEMS IN ENGINEERING》 *
刘海颖等: "基于惯性传感器网络的分布式导航方法", 《系统工程与电子技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515374A (zh) * 2017-07-31 2017-12-26 湖北工业大学 一种应用于agv车soc估算动态调整滤波增益的方法
CN107515374B (zh) * 2017-07-31 2020-04-03 湖北工业大学 一种应用于agv车soc估算动态调整滤波增益的方法
CN109507697A (zh) * 2018-10-31 2019-03-22 安徽理工大学 一种新的gnss时间序列中异常值精确识别方法
CN109507697B (zh) * 2018-10-31 2023-08-18 安徽理工大学 一种新的gnss时间序列中异常值精确识别方法
CN111578928A (zh) * 2020-05-07 2020-08-25 北京邮电大学 一种基于多源融合定位系统的定位方法及装置
CN111578928B (zh) * 2020-05-07 2022-04-05 北京邮电大学 一种基于多源融合定位系统的定位方法及装置
CN116086466A (zh) * 2022-12-28 2023-05-09 淮阴工学院 一种提高ins误差精度的方法
CN116086466B (zh) * 2022-12-28 2024-03-26 淮阴工学院 一种提高ins误差精度的方法

Also Published As

Publication number Publication date
CN106153045B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US10018729B2 (en) Selected aspects of advanced receiver autonomous integrity monitoring application to kalman filter based navigation filter
CN110823217B (zh) 一种基于自适应联邦强跟踪滤波的组合导航容错方法
CN110161543B (zh) 一种基于卡方检验的部分粗差抗差自适应滤波方法
CN106153045A (zh) 一种抑制gnss信息异常的滤波增益动态调整方法
AU2009200190B2 (en) Methods and systems for underwater navigation
CN104977579B (zh) 一种基于随机协方差矩阵的多亮点目标空时检测方法
CN110954132B (zh) Grnn辅助自适应卡尔曼滤波进行导航故障识别的方法
CN109143224B (zh) 一种多目标关联方法和装置
CN109975839B (zh) 一种车辆卫星定位数据的联合滤波优化方法
CN101629997A (zh) 惯性辅助卫星导航完好性检测装置及检测方法
CN110231636A (zh) Gps与bds双模卫星导航系统的自适应无迹卡尔曼滤波方法
Xu et al. An improved robust Kalman filter for SINS/DVL tightly integrated navigation system
CN103592657B (zh) 一种基于钟差辅助的低可见星下单模raim实现方法
Saadeddin et al. Optimization of intelligent approach for low-cost INS/GPS navigation system
Chen et al. A novel fusion methodology to bridge GPS outages for land vehicle positioning
CN109977552A (zh) 一种考虑状态检测影响的设备剩余寿命预测方法及系统
CN111623703A (zh) 一种基于新型卡尔曼滤波的北斗变形监测实时处理方法
Liu et al. Residual-based fault detection and exclusion with enhanced localization integrity
CN108398704B (zh) 一种贝叶斯滤波的多车辆协作定位方法
CN113819911B (zh) Gnss失锁下基于自适应容错滤波的导航方法
Al Hage et al. Student's $ t $ information filter with adaptive degree of freedom for multi-sensor fusion
Li et al. Multiple Kalman filters model with shaping filter GPS real-time deformation analysis
Tmazirte et al. Multi-sensor data fusion based on information theory. Application to GNSS positionning and integrity monitoring
Saidani et al. High integrity multi-sensor navigation system for safety critical applications
CN111999750A (zh) 针对杆臂不准的实时单站周跳探测改进方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant