CN106147165B - 高阻隔性增强聚己内酯复合薄膜及其制备方法 - Google Patents
高阻隔性增强聚己内酯复合薄膜及其制备方法 Download PDFInfo
- Publication number
- CN106147165B CN106147165B CN201610515632.0A CN201610515632A CN106147165B CN 106147165 B CN106147165 B CN 106147165B CN 201610515632 A CN201610515632 A CN 201610515632A CN 106147165 B CN106147165 B CN 106147165B
- Authority
- CN
- China
- Prior art keywords
- ldhs
- pcl
- polycaprolactone
- laminated film
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明提供一种高阻隔性增强聚己内酯复合薄膜的制备方法,包括以下步骤:S1,称取LDHs和ε‑己内酯并超声处理,然后升温至100‑140℃,加入催化剂并在惰性气体保护下反应得到粘稠状聚合物,并去除所述粘稠状聚合物中的杂质及未反应完的单体,获得到LDHs‑g‑PCL白色粉末;S2,将所述LDHs‑g‑PCL白色粉末与PCL以一定比例下在40‑80℃下溶解在溶剂中,然后升温到60‑80℃继续搅拌并用超声波处理获得混合溶液;S3,将所述混合液转移到水平的聚四氟乙烯模具中,在50‑80℃干燥成膜。本发明还提供一种通过上述方法获得的高阻隔性增强聚己内酯复合薄膜。
Description
技术领域
本发明涉及一种高阻隔性增强聚己内酯复合薄膜及其制备方法。
背景技术
近年来,聚合物-层状粘土纳米复合材料凭借其超细相尺寸和相结构,一直受到人们的极大关注。聚合物-层状粘土纳米复合材料在材料属性上相比纯聚合物和传统的微相复合材料表现出显著的增强作用。层状粘土材料能够改善模量和强度,增强阻隔性能和热稳定性,减少阻燃性。
在这些层状粘土材料中,层状双羟基复合金属氧化物(Layered doublehydroxides,LDHs)具有形貌可控、结构可调、易分散等优异性能,已经广泛作为功能性纳米填料制备出了LDHs-聚合物纳米复合材料。层状粘土材料由于不可渗透的层状结构而延长气体分子穿过纳米复合材料的曲折路径,被认为是天然阻隔材料。理论上说,每个层状粘土粒子高的长宽比会使气体渗透路径增加,曲折性增加,结果导致气体渗透性降低,阻隔性能增强。
在文献中已经报道了层状硅酸盐材料在聚合物气体阻隔性能方面的研究成果,如Zhang等(Zhang Y,Liu Q,Zhang S,et al.Gas barrier properties and mechanism ofkaolin/styrene–butadiene rubber nanocomposites[J].Applied Clay Science,2015,111:37-43.)研究了高岭土对丁苯橡胶中的气体阻隔性及机理研究,发现高岭土填充体系的气体阻隔性能比二氧化硅和炭黑填充体系好,高岭土填料在复合高分子材料中的阻隔机理归因于体积效应和阻隔效应。Bharadwaj等(Bharadwaj R K.Modeling the BarrierProperties of Polymer-Layered Silicate Nanocomposites[J].Macromolecules,2001,34(26):9189-9192.)也研究了蒙脱土(MMT)对聚合物-层状粘土纳米复合材料的影响,进一步完善了适合层状材料的阻隔机理和阻隔模型,并发现MMT能够显著改善复合材料的阻隔性能。然而,同样作为层状粘土材料,LDHs在气体阻隔性能上研究报道相对很少。
脂肪族聚酯作为高性能环境友好可降解塑料是目前最有潜力的高分子材料之一。脂肪族聚酯的生物可降解性表现为微生物产生的生物酶攻击聚合物导致分子链断裂。最有潜力的脂肪族聚酯是聚己内酯(PCL),其来源于ε-CL开环聚合,在一次性食品和保健品包装以及农业薄膜等方面得到了较为广泛的应用。尽管PCL是最易生物降解的合成脂肪族聚酯,但其表现出比较差的结构和功能上的稳定性阻碍了生产应用,特别是难以满足阻隔性能、热稳定性等需要改善的迫切需求。
目前尚未检索到有关LDHs用于聚己内酯的改善阻隔性能的专利。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种高阻隔性增强聚己内酯复合薄膜的制备方法。
为解决上述技术问题,本发明采用了以下技术措施:
本发明提供一种高阻隔性增强聚己内酯复合薄膜的制备方法,包括以下步骤:
S1,称取LDHs和ε-己内酯并超声处理,然后升温至100-140℃,加入催化剂并在惰性气体保护下反应得到粘稠状聚合物,并去除所述粘稠状聚合物中的杂质及未反应完的单体,获得到LDHs-g-PCL白色粉末;
S2,将所述LDHs-g-PCL白色粉末与PCL以一定比例下在40-80℃下溶解在溶剂中,然后升温到60-80℃继续搅拌并用超声波处理获得混合溶液;
S3,将所述混合液转移到水平的聚四氟乙烯模具中,在50-80℃干燥成膜。
进一步的,在步骤S1中,所述LDHs为MgAl-LDHs、MgAlZn-LDHs、MgAlZnFe-LDHs、MgAlZnLa-LDHs、MgAlZnCe-LDHs中的至少一种。
进一步的,在步骤S1中,所述加入催化剂并在惰性气体保护下反应得到粘稠状聚合物的步骤包括:加入辛酸亚锡催化剂并在氮气保护下反应20h~30h得到粘稠状聚合物。
进一步的,在步骤S1中,所述去除所述粘稠状聚合物中的杂质及未反应完的单体的步骤包括:将所述粘稠状聚合物溶解于二氯甲烷中过滤并洗涤以除去杂质,将去除杂质后的粘稠状聚合物在冰己烷中沉淀洗涤以除去未反应完的单体。
进一步的,在步骤S1中,去除所述粘稠状聚合物中的杂质及未反应完的单体后,进一步包括:在真空条件下,通过冷冻干燥法获得LDHs-g-PCL白色粉末。
进一步的,在步骤S1中,所述LDHs在反应物中的质量浓度为0.1-5wt%。
进一步的,所述LDHs-g-PCL白色粉末在复合薄膜中的质量分数为5-50wt%。
进一步的,所述PCL的分子量介于30000-80000。
进一步的,所述溶剂为二甲基甲酰胺。
进一步的,所述LDHs-g-PCL白色粉末与PCL的按克称量的总质量与所述二甲基甲酰胺的按毫升称量的总体积之比介于1:10和1:15之间。
本发明还提供一种上述方法获得的高阻隔性增强聚己内酯复合薄膜。
本发明提供的高阻隔性增强聚己内酯复合薄膜及其制备方法具有以下优点:
其一,本发明利用LDHs表面多羟基引发ε-己内酯原位开环聚合,从而在含LDHs上形成大量PCL高分子链,实现化学键合牢固的PCL包覆含LDHs纳米无机层状粒子,使得LDHs达到更好的分散效果。
其二,相比于其他小分子改性,本发明原位接枝聚合改性得到的LDHs-g-PCL与PCL存在更好的相容性。
其三,由于本发明所提供的复合薄膜配方简单,易于操作,在阻隔性能和力学性能同时得到增强,具有较大的应用价值。
附图说明
图1为本发明提供的高阻隔性增强聚己内酯复合薄膜的制备方法流程图。
图2为本发明实施例1及实施例2提供的高阻隔性增强聚己内酯复合薄膜的测试图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
实施例1
请参照图1,称量0.9g的MgAl-LDHs和29.1g的ε-己内酯加入三口瓶中,超声30min,升温至110℃,加入催化剂辛酸亚锡,N2保护下反应24h,反应结束后,将粘稠状的聚合物溶解于二氯甲烷中,过滤、洗涤后除去杂质,在冰己烷中沉淀,洗涤除去未反应完的单体,40℃下真空干燥24h得到白色粉末LDHs-g-PCL;
将LDHs-g-PCL与PCL以10:90的比例在50℃下在溶解在二甲基甲酰胺中,然后升温到60℃继续搅拌30min,转移到超声波清洗器中超声10min。
将混合液转移到已经调整至水平的聚四氟乙烯模具中,60℃干燥成膜。性能如表1所示,紫外吸收图谱如图2所示。
实施例2
请参照图1,称量0.6g的MgAlZnCe-LDHs和28.4g的ε-己内酯加入三口瓶中,超声30min,升温至120℃,加入催化剂辛酸亚锡,N2保护下反应24h,反应结束后,将粘稠状的聚合物溶解于二氯甲烷中,过滤、洗涤后除去杂质,在冰己烷中沉淀,洗涤除去未反应完的单体,40℃下真空干燥24h得到白色粉末LDHs-g-PCL。
将LDHs-g-PCL与PCL以20:80比例下在40℃下在溶解在二甲基甲酰胺中,然后升温到60℃继续搅拌30min,转移到超声波清洗器中超声10min。
将混合液转移到已经调整至水平的聚四氟乙烯模具中,70℃干燥成膜。性能如表1所示,紫外吸收图谱如图2所示。
对比例1
将PCL在40℃下在溶解在二甲基甲酰胺中,然后升温到80℃继续搅拌30min,转移到超声波清洗器中超声10min。
将其转移到已经调整至水平的聚四氟乙烯模具中,80℃干燥成膜。性能如表1所示。
表1对比例1、实施例1和2中复合薄膜的性能
对比例1 | 实施例1 | 实施例2 | |
拉伸强度(MPa) | 34.4±2.29 | 36.2±2.5 | 45.2±1.21 |
断裂伸长率(%) | 612±15 | 652±20 | 838±25 |
氧气透过率(cm<sup>3</sup>/m<sup>2</sup>·24h·atm) | 514.6 | 502.9 | 413.7 |
渗透系数(cm<sup>3</sup>·μm/m<sup>2</sup>·24h·atm) | 79764 | 40236 | 24819 |
测试及分析
请参考表1,将对比例1、实施例1和2进行了力学性能分析,对比例1中的拉伸强度和断裂伸长率分别为34.4MPa和612%,实例1—2分别将拉伸强度提升了5%和31%,实例1—2分别将断裂伸长率提高了7%和37%,这表明LDHs-g-PCL的加入确实对PCL起到了增强增韧的效果,复合薄膜力学强度得到增强。
请参考表1,将对比例1、实施例1和2进行了氧气阻隔性能分析,对比例1中的氧气透过率和渗透系数分别为514.6cm3/m2·24h·atm和79764cm3·μm/m2·24h·atm,实施例1-2分别将氧气透过率降低了2%和20%,分别将渗透系数降低了50%和69%,这表明,复合薄膜的氧气阻隔性能得到明显提升,改善效果明显。
请参考图2,将实施例1和2中LDHs-g-PCL的紫外吸收性能进行了分析,结果表明,LDHs-g-PCL(MgAlZnCe-LDHs)表现出更好的紫外吸收性能,从而赋予复合薄膜更好的抗紫外性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
Claims (7)
1.一种高阻隔性增强聚己内酯复合薄膜的制备方法,包括以下步骤:
S1,称取LDHs和ε-己内酯并超声处理,然后升温至100-140℃,加入催化剂并在惰性气体保护下反应得到粘稠状聚合物,并去除所述粘稠状聚合物中的杂质及未反应完的单体,获得到LDHs-g-PCL白色粉末,所述LDHs为MgAl-LDHs、MgAlZn-LDHs、MgAlZnFe-LDHs、MgAlZnLa-LDHs、MgAlZnCe-LDHs中的至少一种,所述LDHs在反应物中的质量浓度为0.1-5wt%;
S2,将所述LDHs-g-PCL白色粉末与PCL按所述LDHs-g-PCL白色粉末在复合薄膜中的质量分数为5-50wt%的比例在40-80℃下溶解在溶剂中,然后升温到60-80℃继续搅拌并用超声波处理获得混合溶液;
S3,将所述混合液转移到水平的聚四氟乙烯模具中,在50-80℃干燥成膜。
2.根据权利要求1所述的高阻隔性增强聚己内酯复合薄膜的制备方法,其特征在于:在步骤S1中,所述加入催化剂并在惰性气体保护下反应得到粘稠状聚合物的步骤包括:加入辛酸亚锡催化剂并在氮气保护下反应20h~30h得到粘稠状聚合物。
3.根据权利要求1所述的高阻隔性增强聚己内酯复合薄膜的制备方法,其特征在于:在步骤S1中,所述去除所述粘稠状聚合物中的杂质及未反应完的单体的步骤包括:将所述粘稠状聚合物溶解于二氯甲烷中过滤并洗涤以除去杂质,将去除杂质后的粘稠状聚合物在冰己烷中沉淀洗涤以除去未反应完的单体。
4.根据权利要求1所述的高阻隔性增强聚己内酯复合薄膜的制备方法,其特征在于:在步骤S1中,去除所述粘稠状聚合物中的杂质及未反应完的单体后,进一步包括:在真空条件下,通过冷冻干燥法获得LDHs-g-PCL白色粉末。
5.根据权利要求1所述的高阻隔性增强聚己内酯复合薄膜的制备方法,其特征在于:所述PCL的分子量介于30000-80000。
6.根据权利要求1所述的高阻隔性增强聚己内酯复合薄膜的制备方法,其特征在于:所述溶剂为二甲基甲酰胺,所述LDHs-g-PCL白色粉末与PCL按克称量的总质量与所述二甲基甲酰胺的按毫升称量的总体积之比介于1:10和1:15之间。
7.一种高阻隔性增强聚己内酯复合薄膜,其特征在于,所述高阻隔性增强聚己内酯复合薄膜为根据权利要求1-6任一项所述的制备方法获得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610515632.0A CN106147165B (zh) | 2016-07-01 | 2016-07-01 | 高阻隔性增强聚己内酯复合薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610515632.0A CN106147165B (zh) | 2016-07-01 | 2016-07-01 | 高阻隔性增强聚己内酯复合薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106147165A CN106147165A (zh) | 2016-11-23 |
CN106147165B true CN106147165B (zh) | 2019-05-28 |
Family
ID=58061015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610515632.0A Active CN106147165B (zh) | 2016-07-01 | 2016-07-01 | 高阻隔性增强聚己内酯复合薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106147165B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107011590B (zh) * | 2017-03-07 | 2019-09-10 | 厦门理工学院 | 一种增韧耐增塑剂迁移聚氯乙烯材料及其制备方法、应用 |
CN107022152B (zh) * | 2017-03-07 | 2019-09-10 | 厦门理工学院 | 一种抗老化耐迁移增塑聚氯乙烯材料及其制备方法、应用 |
CN106977887B (zh) * | 2017-03-17 | 2019-11-22 | 湖南工业大学 | 一种增韧改性聚乳酸材料及其制备方法 |
CN107033563B (zh) * | 2017-03-17 | 2019-12-03 | 湖南工业大学 | 一种增强增韧聚乳酸材料及其制备方法 |
CN107254152B (zh) * | 2017-07-17 | 2019-08-02 | 厦门理工学院 | 一种高阻隔性增韧聚乳酸薄膜及其制备方法 |
CN109880267A (zh) * | 2019-01-30 | 2019-06-14 | 华南理工大学 | 一种高阻氧性聚合物纳米复合膜及其制备方法 |
CN110078957B (zh) * | 2019-04-18 | 2021-07-02 | 厦门理工学院 | 一种聚吡咯-聚己内酯抗菌纳米复合薄膜的制备方法 |
CN110330678B (zh) * | 2019-07-03 | 2022-02-08 | 厦门理工学院 | 一种抗菌阻燃聚己内酯薄膜及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104448260A (zh) * | 2014-12-01 | 2015-03-25 | 沈阳工业大学 | 一种糯米粉/蒙脱土生物纳米复合材料的制备方法 |
-
2016
- 2016-07-01 CN CN201610515632.0A patent/CN106147165B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104448260A (zh) * | 2014-12-01 | 2015-03-25 | 沈阳工业大学 | 一种糯米粉/蒙脱土生物纳米复合材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
ano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications: Mechanical and barrier properties;Valeria Bugatti et al.;《European Polymer Journal》;20091110;第46卷;第418-427页 |
Methods of Preparation of Novel Composites of Poly(ε-caprolactone) and a Modified Mg/Al Hydrotalcite;LOREDANA TAMMARO et al.;《Journal of Polymer Science: Part A: Polymer Chemistry》;20051231;第43卷;摘要、第2282页右栏第14-16行、倒数第1-6行、第2283页左栏第1-24行、第2284页右栏第1-2行 |
Also Published As
Publication number | Publication date |
---|---|
CN106147165A (zh) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106147165B (zh) | 高阻隔性增强聚己内酯复合薄膜及其制备方法 | |
Abral et al. | Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film | |
Svagan et al. | Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties | |
Dahham et al. | Synthesis and structural studies of an epoxidized natural rubber/titania (ENR-50/TiO2) hybrid under mild acid conditions | |
Pandey et al. | Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay‐filled starch | |
Faraguna et al. | Preparation of polystyrene nanocomposites with functionalized carbon nanotubes by melt and solution mixing: Investigation of dispersion, melt rheology, electrical and thermal properties | |
Noël et al. | Electrical and mechanical percolation in graphene-latex nanocomposites | |
Wang et al. | Strong nanocomposite reinforcement effects in poly (vinyl alcohol) with melanin nanoparticles | |
Xue et al. | A systematic study of the effect of molecular weights of polyvinyl alcohol on polyvinyl alcohol–graphene oxide composite hydrogels | |
Gao et al. | Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release | |
Romero et al. | The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites | |
Wei et al. | Synthesis, characterization and hydrophobicity of silylated starch nanocrystal | |
Aframehr et al. | Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid | |
Li et al. | The effect of peanut protein nanoparticles on characteristics of protein-and starch-based nanocomposite films: A comparative study | |
Dalmas et al. | Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites | |
Zhang et al. | Novel nanocomposites based on hydroxyethyl cellulose and graphene oxide | |
Lu et al. | Mechanical and thermal properties of poly (vinyl chloride) composites filled with carbon microspheres chemically modified by a biopolymer coupling agent | |
Zhao et al. | Morphology and thermomechanical properties of natural rubber vulcanizates containing octavinyl polyhedral oligomeric silsesquioxane | |
Abd El-Rehim et al. | Use of gamma rays to improve the mechanical and barrier properties of biodegradable cellulose acetate nanocomposite films | |
Cao et al. | Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials | |
Peng et al. | Relationship between interface chemistry and reinforcement in polybutadiene/cellulose nanocrystal nanocomposites | |
Li et al. | Synthesis and self-assembly behavior of thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature | |
Marinho et al. | Ceramic nanoparticles and carbon nanotubes reinforced thermoplastic materials for piezocapacitive sensing applications | |
Song et al. | Vertically aligned carbon nanotubes/graphene/cellulose nanofiber networks for enhancing electrical conductivity and piezoresistivity of silicone rubber composites | |
Ma et al. | Novel poly (xylitol sebacate)/hydroxyapatite bio-nanocomposites via one-step synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |