CN106140307B - 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用 - Google Patents

一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用 Download PDF

Info

Publication number
CN106140307B
CN106140307B CN201610440254.4A CN201610440254A CN106140307B CN 106140307 B CN106140307 B CN 106140307B CN 201610440254 A CN201610440254 A CN 201610440254A CN 106140307 B CN106140307 B CN 106140307B
Authority
CN
China
Prior art keywords
composite material
conducting polymer
metal sulfide
redox graphene
trielement composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610440254.4A
Other languages
English (en)
Other versions
CN106140307A (zh
Inventor
卢晓峰
姜颜洲
王策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610440254.4A priority Critical patent/CN106140307B/zh
Publication of CN106140307A publication Critical patent/CN106140307A/zh
Application granted granted Critical
Publication of CN106140307B publication Critical patent/CN106140307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其在作为类过氧化物酶催化剂方面的应用,属于石墨烯基复合纳米材料可控制备技术领域。本发明先以氧化石墨为载体负载金属氧化物纳米粒子,再利用导电高分子作为还原剂,以硫脲作为硫源,通过简单的水热方法,一锅制备出还原氧化石墨烯/导电高分子/金属硫化物三元复合材料。金属硫化物与还原氧化石墨、导电聚合物之间的协同作用提升了金属硫化物的类酶催化性质。本方法得到的三元复合纳米材料,具有制备方法简单,形貌稳定的优点,另外对类过氧化物酶的催化氧化具有很好的催化活性,我们制备的材料对于促进类酶催化剂的发展和商业化进程将具有十分重要的意义。

Description

一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材 料、制备方法及其应用
技术领域
本发明属于石墨烯基复合纳米材料可控制备技术领域,具体涉及一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其在作为类过氧化物酶催化剂方面的应用。
背景技术
石墨烯是一种新兴的二维碳材料,具有优异的导电性、机械强度、韧性和超高的比表面积。石墨烯的衍生物,如还原氧化石墨烯(rGO)和功能化石墨烯,在催化、电容器、光电材料、吸附剂等领域表现出良好的性能。纳米结构导电高分子具有的大比表面积和高电导率等优点受到科研工作者的广泛关注,并成功应用在各个领域。金属硫化物通常是一类重要的半导体材料,优异的光、电、磁以及其它的物理化学性质,使其在催化、染料敏化太阳能电池、锂离子电池、热导材料等领域有着广泛的应用,但是材料形貌不易调控使其应用受到限制。
将还原氧化石墨烯与导电高分子或者金属硫化物材料进行复合,制备石墨烯基复合材料,是近年来纳米复合材料领域一个重要的研究课题。将金属硫化物生长在还原氧化石墨烯表面有效的克服了材料形貌不易调控和易团聚的缺点。由于导电高分子与无机纳米粒子之间的协同作用,复合纳米材料对比于单一组分材料能够展现出明显的优势,导电高分子与无机物在纳米尺度上的复合也使得催化剂拥有更大的比表面积,增大了反应物在催化剂表面上的物质交换,这也有助于提高复合催化剂的反应活性。
发明内容
本发明的目的是提供一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用。
本发明所述的一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料的制备方法,其步骤如下:
A.我们通过改进的Hummer法制备氧化石墨:将0.5~2.0g石墨和0.5~2.0g硝酸钠加入到50~100mL、浓度为95wt%~98wt%的浓硫酸中;然后缓慢加入10~20g高锰酸钾,在35~40℃条件下搅拌1~2h;再向上述溶液中加入100~300mL蒸馏水,90~95℃条件下搅拌30~60min;最后再向上述溶液中加入200~800mL蒸馏水和5~20mL、质量分数30%的H2O2,离心后水洗,反复数次,至溶液pH=6.0~7.0,离心产物干燥后得到氧化石墨;
B.合成氧化石墨烯(GO)/金属氧化物(MxOy,M为金属,x=1或2,y=1、2或3)二元纳米复合物:将0.02~0.1g氧化石墨与0.1~1g金属盐分散在50~100mL异丙醇中超声2~3h,取25~35mL分散液80~100℃回流30~60min,加入5~7.5mL蒸馏水,继续加热回流30~60min;离心后水洗,反复数次,将离心产物干燥后得到GO/MxOy二元纳米复合物;
C.利用一锅法制备还原氧化石墨烯/导电高分子/金属硫化物三元复合材料:取20~30mg GO/MxOy二元纳米复合物分散在20~30mL蒸馏水中,加入导电高分子单体100~150μL,0~30℃下搅拌2.5~3h,然后加入0.05~0.1g硫脲,10~30℃搅拌0.5~1h;再于120~150℃下水热反应4~8h;离心后水洗,反复数次,将离心产物干燥得到还原氧化石墨烯/导电高分子/金属硫化物三元复合材料。
进一步地,金属盐可以是硝酸铜、氯化铜、醋酸铜,硝酸铁、氯化铁,醋酸镉、氯化镉,钼酸钠、钼酸铵,氯化钨中的一种。导电高分子可以是3,4-乙烯二氧噻吩、吡咯、苯胺中的一种。
本发明所述的还原氧化石墨烯/导电高分子/金属硫化物三元复合材料可作为类过氧化物酶催化剂使用,具体是将三元复合材料超声分散到水中配制成浓度为1.0~3.0mg/mL的水分散液;在1~5mL醋酸缓冲溶液(0.6315g无水醋酸钠、2.540g冰醋酸用蒸馏水定容在500mL容量瓶中得到)中加入10~50μL、10~20mM的3,3',5,5'-四甲基联苯胺(TMB)的二甲基亚砜溶液以及10~50μL、1~100mM H2O2水溶液,然后加入10~50μL上述水分散液,从而实现类过氧化物酶催化性质方面的应用,同时利用紫外-可见吸收光谱检测催化剂的类过氧化物酶催化性质。
本发明的机制可做如下理解:
本发明先以氧化石墨为载体负载金属氧化物纳米粒子,再利用导电高分子作为还原剂,以硫脲作为硫源,通过简单的水热方法,一锅制备出还原氧化石墨烯/导电高分子/金属硫化物三元复合材料。Hummer法制备的氧化石墨上存在丰富的活性基团,有利于金属离子负载在其表面,通过回流的方法,使金属氧化物纳米粒子生长在氧化石墨表面。氧化石墨和高价态金属离子可以氧化导电高分子单体使其聚合生长氧化石墨烯表面,硫脲作为硫源可以将金属氧化物硫化得到金属硫化物,最后制备出还原氧化石墨烯/导电高分子/金属硫化物三元复合材料。金属硫化物与还原氧化石墨、导电聚合物之间的协同作用提升了金属硫化物的类酶催化性质。本方法得到的还原氧化石墨烯/导电高分子/金属硫化物三元复合纳米材料,具有制备方法简单,形貌稳定的优点,另外对类过氧化物酶的催化氧化具有很好的催化活性,我们制备的材料对于促进类酶催化剂的发展和商业化进程将具有十分重要的意义。
附图说明
图1:还原氧化石墨烯/PPy/Cu8S5三元复合材料的透射电镜照片;
图2:还原氧化石墨烯/PPy/Cu8S5三元复合材料的X射线衍射谱图;
图3:还原氧化石墨烯/PPy/Cu8S5的拉曼光谱;
图4:还原氧化石墨烯/PPy/Cu8S5三元复合材料的类过氧化物酶催化性质测试图。
如图1所示,实施例2所制得的还原氧化石墨烯/PPy/Cu8S5的透射电镜照片,可以看出Cu8S5离子直径分布约为100~300nm,均匀的生长在还原氧化石墨烯表面,复合材料呈二维纳米片结构。
如图2所示,实施例2所制得的PPy/Cu8S5/还原氧化石墨烯三元复合材料的X射线衍射谱图。可以看出材料表现出Cu8S5的(105),(1010),(113)面的衍射峰,这与Cu8S5的PDF#33-0491卡片相对应,证明了生成的是Cu8S5
如图3所示,实施例3所制得的还原氧化石墨烯/PPy/Cu8S5拉曼光谱中932cm-1和1055cm-1处的峰证明了聚吡咯的生成。1334cm-1和1592cm-1处印证了石墨烯基的存在。
如图4所示,我们通过紫外-可见吸收光谱印证了催化剂的类过氧化物酶催化性质。我们分别测试了(1)TMB(15mM,3.605mg 3,3',5,5'-四甲基联苯胺溶于1mL二甲基亚砜)、催化剂(20μg/ml);(2)过氧化氢(65mM,购买于北京化工厂)、催化剂(20μg/ml);(3)TMB(15mM)、过氧化氢(65mM);(4)TMB(15mM)、过氧化氢(65mM)、催化剂(20μg/ml)四种不同组分溶液,反应五分钟后的紫外-可见吸收光谱吸光度。其中包含TMB、H2O2、催化剂的溶液在651nm波长明显的吸收峰证实了催化剂优异的催化性质。
具体实施方式
以下是本发明的几个实施例,进一步说明本发明,但是本发明不仅限于此。
实施例1
将2.0g石墨和2.0g硝酸钠加入到92mL、浓度为98wt%的浓硫酸中;然后缓慢加入12g高锰酸钾,在35℃条件下搅拌1h;再向上述溶液中加入160mL蒸馏水,90℃条件下搅拌30min;最后再向上述溶液中加入400mL蒸馏水和12mL、质量分数30%的H2O2,离心后水洗,反复数次,至溶液pH=7.0,得到氧化石墨。
实施例2
将0.05g氧化石墨与0.5g Cu(Ac)2分散在50mL异丙醇中超声2h,取25mL分散液83℃回流45min,加入5mL蒸馏水,继续加热回流45min。离心洗涤数次,干燥后得到GO/CuO二元纳米复合物,产量大约100mg。第二步,取20mg GO/CuO二元纳米复合物分散在20mL水中,加入吡咯单体100μL,0℃下搅拌2.5h,加入0.05g硫脲,室温下搅拌0.5h。120℃下水热反应4.5h。离心洗涤数次后干燥得到还原氧化石墨烯/PPy/Cu8S5三元复合材料,产量大约为80mg。
实施例3
将0.02g氧化石墨与0.5g Cu(Ac)2分散在50mL异丙醇中超声2h,取25mL分散液83℃回流45min,加入5mL蒸馏水,继续加热回流45min。离心洗涤数次,干燥后得到GO/CuO二元纳米复合物,产量大约80mg。第二步,取20mg GO/CuO二元纳米复合物分散在20mL水中,加入吡咯单体100μL0℃下搅拌2.5h,加0.05g硫脲,室温下搅拌0.5h。120℃水热4.5h。离心洗涤数次后干燥得到还原氧化石墨烯/PPy/Cu8S5三元复合材料。与实施例1相比,实施例2得到还原氧化石墨烯/PPy/Cu8S5三元复合材料的Cu8S5纳米粒子略少,产量大约为80mg。
实施例4
将0.05g氧化石墨与0.5g Cu(Ac)2分散在50mL异丙醇中超声2h,取25mL分散液83℃回流30min,加入5mL蒸馏水,继续加热回流30min。离心洗涤数次,干燥后得到GO/CuO二元纳米复合物,产量大约100mg。第二步,取20mg GO/CuO二元纳米复合物分散在20mL水中,加入吡咯单体100μL0℃下搅拌2.5h,加0.05g硫脲,室温下搅拌0.5h。120℃水热4.5h。离心洗涤数次后干燥得到还原氧化石墨烯/PPy/Cu8S5三元复合材料。与实施例1相比,实施例3得到还原氧化石墨烯/PPy/Cu8S5三元复合材料Cu8S5纳米粒子略少,产量大约为80mg。
实施例5
将0.05g氧化石墨与0.5g Cu(Ac)2分散在50mL异丙醇中超声2h,取25mL分散液83℃回流45min,加入5mL蒸馏水,继续加热回流45min。离心洗涤数次,干燥后得到GO/CuO二元纳米复合物,产量大约100mg。第二步,取20mg GO/CuO二元纳米复合物分散在20mL水中,加入吡咯单体150μL0℃下搅拌2.5h,加0.05g硫脲,室温下搅拌0.5h。120℃水热4.5h。离心洗涤数次后干燥得到还原氧化石墨烯/PPy/Cu8S5三元复合材料。与实施例1相比,实施例3得到还原氧化石墨烯/PPy/Cu8S5三元复合材料中会有少量的聚吡咯呈球状游离,影响材料的有效成分,产量大约为80mg。
实施例6
将实施例1中的三元复合材料超声分散到水中配制成浓度为3.0mg/mL的水分散液;在3mL醋酸缓冲溶液中加入20μL、15mM的3,3',5,5'-四甲基联苯胺(TMB)的二甲基亚砜溶液,20μL的65mM H2O2水溶液,然后加入20μL上述水分散液,从而实现类过氧化物酶催化性质方面的应用。同时利用紫外-可见吸收光谱检测催化剂的类过氧化物酶催化性质。

Claims (6)

1.一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料的制备方法,其步骤如下:
A.通过改进的Hummer法制备氧化石墨:将0.5~2.0g石墨和0.5~2.0g硝酸钠加入到50~100mL、浓度为95wt%~98wt%的浓硫酸中;然后缓慢加入10~20g高锰酸钾,在35~40℃条件下搅拌1~2h;再向上述溶液中加入100~300mL蒸馏水,90~95℃条件下搅拌30~60min;最后再向上述溶液中加入200~800mL蒸馏水和5~20mL、质量分数30%的H2O2,离心后水洗,反复数次,至溶液pH=6.0~7.0,离心产物干燥后得到氧化石墨;
B.合成氧化石墨烯GO/金属氧化物MxOy二元纳米复合物:将0.02~0.1g氧化石墨与0.1~1g金属盐分散在50~100mL异丙醇中超声2~3h,取25~35mL分散液80~100℃回流30~60min,加入5~7.5mL蒸馏水,继续加热回流30~60min;离心后水洗,反复数次,离心产物干燥后,得到GO/MxOy二元纳米复合物;M为铜、铁、镉、钼或钨中的一种,x=1或2,y=1、2或3;
C.利用一锅法制备还原氧化石墨烯/导电高分子/金属硫化物三元复合材料:取20~30mg GO/MxOy二元纳米复合物分散在20~30mL蒸馏水中,加入导电高分子单体100~150μL,0~30℃下搅拌2.5~3h,然后加入0.05~0.1g硫脲,10~30℃搅拌0.5~1h;再于120~150℃下水热反应4~8h;离心后水洗,反复数次,离心产物干燥后,得到还原氧化石墨烯/导电高分子/金属硫化物三元复合材料;导电高分子是3,4-乙烯二氧噻吩、吡咯或苯胺中的一种。
2.如权利要求1所述的一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料的制备方法,其特征在于:金属盐是硝酸铜、氯化铜、醋酸铜、硝酸铁、氯化铁、醋酸镉、氯化镉、钼酸钠、钼酸铵或氯化钨中的一种。
3.一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料,其特征在于:是由权利要求1~2任何一项所述的方法制备得到。
4.权利要求3所述的还原氧化石墨烯/导电高分子/金属硫化物三元复合材料在作为类过氧化物酶催化剂方面的应用。
5.如权利要求4所述的还原氧化石墨烯/导电高分子/金属硫化物三元复合材料在作为类过氧化物酶催化剂方面的应用,其特征在于:是将三元复合材料超声分散到水中配制成浓度为1.0~3.0mg/mL的水分散液;在1~5mL醋酸缓冲溶液中加入10~50μL、10~20mM的3,3',5,5'-四甲基联苯胺TMB的二甲基亚砜溶液以及10~50μL、1~100mM H2O2水溶液,然后加入10~50μL上述水分散液,利用紫外-可见吸收光谱检测催化剂的类过氧化物酶催化性质。
6.如权利要求5所述的还原氧化石墨烯/导电高分子/金属硫化物三元复合材料在作为类过氧化物酶催化剂方面的应用,其特征在于:醋酸缓冲溶液是将0.6315g无水醋酸钠、2.540g冰醋酸用蒸馏水定容在500mL容量瓶中得到。
CN201610440254.4A 2016-06-20 2016-06-20 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用 Expired - Fee Related CN106140307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610440254.4A CN106140307B (zh) 2016-06-20 2016-06-20 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610440254.4A CN106140307B (zh) 2016-06-20 2016-06-20 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106140307A CN106140307A (zh) 2016-11-23
CN106140307B true CN106140307B (zh) 2018-07-27

Family

ID=57353097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610440254.4A Expired - Fee Related CN106140307B (zh) 2016-06-20 2016-06-20 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106140307B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144631B (zh) * 2017-12-25 2020-12-25 中国科学技术大学 过渡金属硫化物催化剂、其制备方法与芳香胺化合物的制备方法
CN108329470B (zh) * 2018-02-12 2020-10-20 吉林大学 一种在导电高分子纳米管管内制备无机纳米粒子的方法及其在类过氧化物酶催化中的应用
CN110155998B (zh) * 2019-05-13 2023-02-21 东南大学 一种条带状氮掺杂石墨烯及其制备方法和应用
CN111097452A (zh) * 2020-01-08 2020-05-05 济南大学 一种石墨烯负载硫化亚铁纳米材料的制备方法及电催化氮气还原应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543464A (zh) * 2011-12-13 2012-07-04 西北师范大学 ZnO/还原氧化石墨烯/聚吡咯三元复合材料的制备方法及三元复合材料的应用
CN102142548B (zh) * 2011-02-25 2014-01-01 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142548B (zh) * 2011-02-25 2014-01-01 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法
CN102543464A (zh) * 2011-12-13 2012-07-04 西北师范大学 ZnO/还原氧化石墨烯/聚吡咯三元复合材料的制备方法及三元复合材料的应用

Also Published As

Publication number Publication date
CN106140307A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
Lu et al. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine
CN106140307B (zh) 一种还原氧化石墨烯/导电高分子/金属硫化物三元复合材料、制备方法及其应用
CN101792137B (zh) 一种新型高性能复合纳米材料修饰电极的制备方法
Jian et al. Construction of carbon quantum dots/proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application
Guo et al. A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production
Zhang et al. Insightful understanding of charge carrier transfer in 2D/2D heterojunction photocatalyst: Ni-Co layered double hydroxides deposited on ornamental g-C3N4 ultrathin nanosheet with boosted molecular oxygen activation
CN104150471B (zh) 一种还原氧化石墨烯的方法
Gao et al. Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton
CN103521780B (zh) 具有表面增强拉曼光谱活性的氧化石墨烯负载金纳米溶胶的制备方法和应用
Zhao et al. Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering
CN104319102A (zh) 一种制备负载三维花状石墨烯/二硫化钼复合材料的纤维状对电极的方法
CN109749738B (zh) 磺化碳量子点、其制备方法以及作为催化剂在制备5-羟甲基糠醛中的应用
CN103537307A (zh) 石墨烯-磷酸银复合光催化剂及其制备方法和应用
CN104403275A (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
CN103301860A (zh) 多壁碳纳米管负载磷酸银可见光光催化剂的制备方法
CN106847530A (zh) 一种镍钴基-碳纳米管复合电极材料及其制备方法
CN105405975B (zh) 具有核壳结构的Cu@Cu‑Au纳米颗粒及其制备方法和应用
CN106521545A (zh) 一种MoS2‑CNT多级纳米结构电解水制氢材料的制备方法
Lu et al. Construction of an all-organic Z-scheme heterostructure based on 2D PDINH aggregates modified TCPP aggregates by co-assembly with enhanced photocatalytic performance
Peng et al. Co3O4-chitosan/biomass-derived porous carbon molecularly imprinted polymer integrated electrode for selective detection of glucose
Lu et al. Boosting photothermal-assisted photocatalytic H2 production over black g-C3N4 nanosheet photocatalyst via incorporation with carbon dots
Duan et al. Bowl-like carbon supported AuPd and phosphotungstic acid composite for electrooxidation of ethylene glycol and glycerol
Hao et al. Deciphering photocatalytic degradation of methylene blue by surface-tailored nitrogen-doped carbon quantum dots derived from Kraft lignin
CN107930611A (zh) 一种碳点二氧化钛中空微球复合纳米催化剂及其制备方法与应用
Gao et al. Construction of Cu2O/TiO2 heterojunction photoelectrodes for photoelectrochemical determination of glucose

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180727

CF01 Termination of patent right due to non-payment of annual fee