CN106137171B - 生物信号测量系统及方法 - Google Patents

生物信号测量系统及方法 Download PDF

Info

Publication number
CN106137171B
CN106137171B CN201510121056.7A CN201510121056A CN106137171B CN 106137171 B CN106137171 B CN 106137171B CN 201510121056 A CN201510121056 A CN 201510121056A CN 106137171 B CN106137171 B CN 106137171B
Authority
CN
China
Prior art keywords
signal
sensor
environment
measurement set
afe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510121056.7A
Other languages
English (en)
Other versions
CN106137171A (zh
Inventor
李政
吴国扬
许文彬
钟享陵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUGANG ELECTRONIC (KUNSHAN) CO LTD
Cheng Uei Precision Industry Co Ltd
Original Assignee
FUGANG ELECTRONIC (KUNSHAN) CO LTD
Cheng Uei Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUGANG ELECTRONIC (KUNSHAN) CO LTD, Cheng Uei Precision Industry Co Ltd filed Critical FUGANG ELECTRONIC (KUNSHAN) CO LTD
Priority to CN201510121056.7A priority Critical patent/CN106137171B/zh
Publication of CN106137171A publication Critical patent/CN106137171A/zh
Application granted granted Critical
Publication of CN106137171B publication Critical patent/CN106137171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本发明公开一种生物信号测量系统,包括激励信号源、生物信号感测器、环境感测器、模拟前端感测器及处理器模块,激励信号源产生照射信号向受测者皮肤照射;生物信号感测器接收受测者皮肤反射的照射信号并转换成数个类比合成信号;环境感测器接收外在环境的光信号并转换成数个环境数字指标;模拟前端感测器接收类比合成信号并其放大且转换成生物数字信号;处理器模块电性连接于激励信号源、环境感测器、生物信号感测器及模拟前端感测器,根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器调整其采样频率,并根据调整采样频率后所收集的生物数字信号进行生物体征估算及检测。综上所述,本发明生物信号测量系统测量准确度高。

Description

生物信号测量系统及方法
技术领域
本发明涉及一种生物信号测量系统,尤其涉及一种可提高生物信号测量准确度的生物信号测量系统及方法。
背景技术
传统的用于检测心率变异性的生物信号测量装置,如耳机及腕带,其包括一主体、一发光源、一光感测器或一生物阻抗感测器。由发光源把光线射入受验者的皮肤后反射,再由光感测器感应反射光于一段时间内的变化以获得光体积变化信号(Photoplethysmography,PPG),从而通过信号检测到心率的变异性。
然而,对于基于光感测器的生物信号测量装置而言,制造材料具有对人体皮肤透射率的影响,比如主体材料容易吸收光等影响,此外,由于环境光及紫外线的影响,容易导致感测信号受到干扰,因此,环境光的干扰会影响光感测器获得PPG信号从而最终影响检测心率变异的准确性。而且,对于基于生物阻抗感测器的生物信号测量装置而言,生物阻抗感测器的生物电信号极其微弱,极为容易受到环境光及紫外线的干扰。
因此,为克服上述问题,急待开发一种可提高生物信号测量准确度的生物信号测量系统。
发明内容
本发明的目的在于克服上述现有技术中的不足,提供一种生物信号测量系统及方法,可提高生物信号测量的准确性。
为了实现上述目的,本发明所提供一种生物信号测量系统,包括激励信号源、生物信号感测器、环境感测器、模拟前端感测器及处理器模块,其中,处理器模块控制激励信号源产生照射信号向受测者皮肤照射;生物信号感测器接收由受测者皮肤反射的照射信号并转换成数个类比合成信号;环境感测器接收生物信号测量系统所在的外在环境的光信号并转换成数个环境数字指标;模拟前端感测器接收生物信号感测器的类比合成信号并将类比合成信号放大且转换成生物数字信号;处理器模块电性连接于激励信号源、环境感测器、生物信号感测器及模拟前端感测器,根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器调整其采样频率,并根据调整采样频率后所收集的生物数字信号进行生物体征估算及检测类比合成信号转换成的生物数字信号进行生物体征估算及检测。
进一步的,所述激励信号源产生光信号向受测者皮肤照射,所述生物信号感测器包括光感测器,光感测器收集被受测者皮肤反射的光信号。
进一步的,当感测所述生物信号测量系统所在的外在环境的光强度大时,模拟前端感测器对光感测器的采样频率为8ms;当感测生物信号测量系统所在的外在环境的光强度小时,模拟前端感测器对光感测器的采样频率为32ms。
进一步的,所述激励信号源产生生物电脉冲信号并向受测者皮肤照射,所述生物信号感测器包括生物阻抗感测器,生物阻抗感测器收集被受测者皮肤反射的生物电脉冲信号。
进一步的,当感测所述生物信号测量系统所在的外在环境的光强度大时,模拟前端感测器对生物阻抗感测器的采样频率为5s;当感测生物信号测量系统所在的外在环境的光强度小时,模拟前端感测器对生物阻抗感测器的采样频率为10s。
进一步的,所述环境感测器包括紫外线感测器,紫外线感测器收集生物信号测量系统所在的外在环境的紫外线,所述处理器模块根据紫外线感测器收集的紫外线计算紫外线指数。
进一步的,所述环境感测器还包括环境光感测器,环境光感测器收集生物信号测量系统所在的外在环境的环境光,所述处理器模块根据环境光感测器收集的环境光计算环境光强度大小。
为了实现上述目的,本发明还提供一种生物信号测量方法,包括:
处理器模块控制激励信号源产生照射信号向受测者皮肤照射;
生物信号感测器接收由受测者皮肤反射的照射信号并转换成数个类比合成信号;
环境感测器接收生物信号测量系统所在的外在环境的光信号并转换成数个环境数字指标;
模拟前端感测器接收类比合成信号并将类比合成信号放大且转换成生物数字信号,处理器模块根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器调整其采样频率;
模拟前端感测器调整采样频率并将类比合成信号放大且转换成数个调整采样频率后的生物数字信号,处理器模块根据数个调整采样频率后的生物数字信号进行生物体征估算及检测。
综上所述,本发明生物信号测量系统,通过光感测器及生物阻抗感测器分别依照紫外线感测器及环境光感测器感测的紫外线及环境光的改变,进而调整模拟前端感测器对光感测器及生物阻抗感测器感测到的类比合成信号的采样频率,当紫外线或环境光强烈时,采样频率随之增强;当紫外线或环境光减弱时,采样频率随之减弱,以平衡生物信号测量值受到的外在环境的影响,确保生物信号测量的准确度。
附图说明
图1为本发明生物信号测量系统的电路方块图。
图2为本发明生物信号测量方法的步骤流程图。
图中各零部件的附图标记说明如下。
生物信号测量系统 100 激励信号源 10
生物信号感测器 20 光感测器 21
生物阻抗感测器 22 环境感测器 30
紫外线感测器 31 环境光感测器 32
模拟前端感测器 40 处理器模块 50。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
请参阅图1及图2,本发明一种生物信号测量系统100,包括激励信号源10、生物信号感测器20、环境感测器30、模拟前端感测器40及处理器模块50。
所述处理器模块50控制激励信号源10产生照射信号向受测者皮肤发射且分别照射不同区块,使光源穿透皮肤后由被受测者皮肤向外反射。具体地,激励信号源10产生光信号或产生生物电脉冲信号向受测者皮肤照射。
所述生物信号感测器20接收由受测者皮肤反射的照射信号并转换成数个类比合成信号。具体地,生物信号感测器20包括光感测器21及生物阻抗感测器22至少一种,光感测器21收集被受测者皮肤反射的光信号,生物阻抗感测器22收集被受测者皮肤反射的生物电脉冲信号。
所述环境感测器30接收生物信号测量系统100所在的外在环境的光信号并转换成数个环境数字指标。环境感测器,包括紫外线感测器31及环境光感测器32至少一种,紫外线感测器31收集生物信号测量系统100所在的外在环境的紫外线,环境光感测器32收集生物信号测量系统所在的外在环境的环境光。
模拟前端感测器40接收生物信号感测器20的类比合成信号并将类比合成信号放大且转换成生物数字信号。
处理器模块50电性连接于激励信号源10、环境感测器30、生物信号感测器20及模拟前端感测器40,根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器40调整其采样频率,并根据调整采样频率后的生物数字信号进行生物体征估算及检测。具体地,处理器模块50根据紫外线感测器31收集的紫外线及环境光感测器32收集的环境光分别计算紫外线指数及环境光强度大小。当感测生物信号测量系统所在的外在环境的光强度大时,即当紫外线指数或环境光索引强烈时,模拟前端感测器40对光感测器21的采样频率为8ms,对生物阻抗感测器22的采样频率为5s;当感测生物信号测量系统所在的外在环境的光强度小时,即当紫外线指数或环境光索引低落时,模拟前端感测器40对光感测器21的采样频率为32ms,对生物阻抗感测器22的采样频率为10s。
本发明生物信号测量系统100的生物信号测量方法,包括:
处理器模块50控制激励信号源10产生照射信号向受测者皮肤照射;
生物信号感测器20接收由受测者皮肤反射的照射信号并转换成数个类比合成信号;
环境感测器30接收生物信号测量系统所在的外在环境的光信号并转换成数个环境数字指标;
模拟前端感测器40接收类比合成信号并将类比合成信号放大且转换成生物数字信号,处理器模块50根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器40调整其采样频率;
模拟前端感测器40调整据采样频率并将类比合成信号放大且转换成数个调整采样频率后的生物数字信号,处理器模块50根据数个调整采样频率后的生物数字信号进行生物体征估算及检测。
综上所述,本发明生物信号测量系统100,通过光感测器21及生物阻抗感测器22分别依照紫外线感测器31及环境光感测器32感测的紫外线及环境光的改变,进而调整模拟前端感测器40对光感测器21及生物阻抗感测器22感测到的类比合成信号的采样频率,当紫外线或环境光强烈时,模拟前端感测器40的采样频率随之增强;当紫外线或环境光减弱时,模拟前端感测器40的采样频率随之减弱,以平衡生物信号测量值受到的外在环境的影响,确保生物信号测量的准确度。

Claims (8)

1.一种生物信号测量系统,其特征在于:包括激励信号源、生物信号感测器、环境感测器、模拟前端感测器及处理器模块,其中,处理器模块控制激励信号源产生照射信号向受测者皮肤照射;生物信号感测器接收由受测者皮肤反射的照射信号并转换成数个类比合成信号;环境感测器接收生物信号测量系统所在的外在环境的光信号并转换成数个环境数字指标;模拟前端感测器接收生物信号感测器的类比合成信号并将类比合成信号放大且转换成生物数字信号;处理器模块电性连接于激励信号源、环境感测器、生物信号感测器及模拟前端感测器,根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器调整其采样频率,并根据调整采样频率后所收集的生物数字信号进行生物体征估算及检测。
2.如权利要求1所述的生物信号测量系统,其特征在于:所述激励信号源产生光信号向受测者皮肤照射,所述生物信号感测器包括光感测器,光感测器收集被受测者皮肤反射的光信号。
3.如权利要求2所述的生物信号测量系统,其特征在于:当感测所述生物信号测量系统所在的外在环境的光强度大时,模拟前端感测器对光感测器的采样频率为8ms;当感测生物信号测量系统所在的外在环境的光强度小时,模拟前端感测器对光感测器的采样频率为32ms。
4.如权利要求1所述的生物信号测量系统,其特征在于:所述激励信号源产生生物电脉冲信号并向受测者皮肤照射,所述生物信号感测器包括生物阻抗感测器,生物阻抗感测器收集被受测者皮肤反射的生物电脉冲信号。
5.如权利要求4所述的生物信号测量系统,其特征在于:当感测所述生物信号测量系统所在的外在环境的光强度大时,模拟前端感测器对生物阻抗感测器的采样频率为5s;当感测生物信号测量系统所在的外在环境的光强度小时,模拟前端感测器对生物阻抗感测器的采样频率为10s。
6.如权利要求1所述的生物信号测量系统,其特征在于:所述环境感测器包括紫外线感测器,紫外线感测器收集生物信号测量系统所在的外在环境的紫外线,所述处理器模块根据紫外线感测器收集的紫外线计算紫外线指数。
7.如权利要求1所述的生物信号测量系统,其特征在于:所述环境感测器还包括环境光感测器,环境光感测器收集生物信号测量系统所在的外在环境的环境光,所述处理器模块根据环境光感测器收集的环境光计算环境光强度大小。
8.一种生物信号测量方法,包括:
处理器模块控制激励信号源产生照射信号向受测者皮肤照射;
生物信号感测器接收由受测者皮肤反射的照射信号并转换成数个类比合成信号;
环境感测器接收生物信号测量系统所在的外在环境的光信号并转换成数个环境数字指标;
模拟前端感测器接收类比合成信号并将类比合成信号放大且转换成生物数字信号,处理器模块根据环境数字指标计算外在环境的光强度大小并发出调整指令给模拟前端感测器调整其采样频率;
模拟前端感测器调整采样频率并将类比合成信号放大且转换成数个调整采样频率后的生物数字信号,处理器模块根据数个调整采样频率后的生物数字信号进行生物体征估算及检测。
CN201510121056.7A 2015-03-13 2015-03-13 生物信号测量系统及方法 Active CN106137171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510121056.7A CN106137171B (zh) 2015-03-13 2015-03-13 生物信号测量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510121056.7A CN106137171B (zh) 2015-03-13 2015-03-13 生物信号测量系统及方法

Publications (2)

Publication Number Publication Date
CN106137171A CN106137171A (zh) 2016-11-23
CN106137171B true CN106137171B (zh) 2019-01-11

Family

ID=58063219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510121056.7A Active CN106137171B (zh) 2015-03-13 2015-03-13 生物信号测量系统及方法

Country Status (1)

Country Link
CN (1) CN106137171B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090024A (zh) * 2018-01-30 2019-08-06 深圳创达云睿智能科技有限公司 一种功率控制方法、系统及穿戴设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187231A (ja) * 1995-01-11 1996-07-23 Seiko Epson Corp 脈波測定装置
GB201114406D0 (en) * 2011-08-22 2011-10-05 Isis Innovation Remote monitoring of vital signs
CN102512178B (zh) * 2011-12-23 2014-04-09 深圳市理邦精密仪器股份有限公司 一种血氧测量装置
CN202553920U (zh) * 2012-05-05 2012-11-28 王洪 便携式脉搏监测装置
US9014790B2 (en) * 2013-06-03 2015-04-21 Fitbit, Inc. Heart rate data collection

Also Published As

Publication number Publication date
CN106137171A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
CN106994010A (zh) 一种基于ppg信号的心率检测方法及系统
CN101596107B (zh) 利用移动终端实现心率检测的方法及其移动终端
CN110785118A (zh) 一种可穿戴设备的佩戴提示方法及装置
CN110461226B (zh) 具有光学心脏监测的电子健身设备
EP3106086B1 (en) Photoelectric-type pulse signal measurement method and measurement device
JP2016537063A5 (zh)
RU2015124139A (ru) Устройство и способ для извлечения физиологической информации
JP2008516691A (ja) 生理的脈拍測定のための光入力信号の揺動排除
CN105249925B (zh) 一种中医脉象采集装置及降噪系统和降噪方法
JP2015531261A5 (zh)
GB2604346A (en) Dual-mode biosensor
US20160331249A1 (en) Vital sign measurement system and vital sign measurement method thereof
US20240285183A1 (en) Cardiovascular Monitoring Using Multiple Sensors
CN106137171B (zh) 生物信号测量系统及方法
JP2015054219A (ja) 脱水状態判定装置
CN105877729B (zh) 生物讯号量测系统、方法及耳机
CN105266759A (zh) 生理信号检测装置
CN107661094A (zh) 用于光体积描记传感器的电路及方法
JP2015139516A (ja) 生体情報測定装置
CN106650183A (zh) 一种信息获取方法和装置
JP7262079B2 (ja) 生体センサ
JP2017196474A (ja) 脱水状態判定装置
TWI743198B (zh) 濃度測定裝置及濃度測定方法
TWI554247B (zh) 生物訊號測量系統及方法
JP2017051342A (ja) 拍動情報測定装置及び拍動情報測定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant