CN106129249B - 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法 - Google Patents

一种钙钛矿-量子点双吸收层太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106129249B
CN106129249B CN201610488458.5A CN201610488458A CN106129249B CN 106129249 B CN106129249 B CN 106129249B CN 201610488458 A CN201610488458 A CN 201610488458A CN 106129249 B CN106129249 B CN 106129249B
Authority
CN
China
Prior art keywords
quantum dot
layer
absorption layer
prepared
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610488458.5A
Other languages
English (en)
Other versions
CN106129249A (zh
Inventor
董文静
朱斌
汪宝元
王浚英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201610488458.5A priority Critical patent/CN106129249B/zh
Publication of CN106129249A publication Critical patent/CN106129249A/zh
Application granted granted Critical
Publication of CN106129249B publication Critical patent/CN106129249B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种钙钛矿‑量子点双吸收层太阳能电池及其制备方法,该电池由透明电极、致密层、氧化物纳米棒、钙钛矿结构吸光层、量子点层、空穴传输层和金属对电极构成。吸光层是有机金属卤化物钙钛矿材料,量子点是具有红外光电转换特性的量子点。量子点与钙钛矿结构吸光层分段填充于纳米棒之间。制备步骤为:在电极上制备致密层;再制备氧化物纳米棒;在纳米棒填充聚甲基丙烯酸甲酯作为阻挡层;刻蚀露出纳米棒顶部;在其顶部制备量子点层;去除聚甲基丙烯酸甲酯;在纳米棒上旋涂制备钙钛矿结构吸光层;再制作空穴传输层;再在其上制备金属对电极。本发明量子点与吸光层分段沿纳米棒轴向填充,具有宽光谱吸收的特点,电池光电转换效率高。

Description

一种钙钛矿-量子点双吸收层太阳能电池及其制备方法
技术领域
本发明属于太阳能电池领域,涉及光电材料制备技术,具体指一种钙钛矿-量子点双吸收层太阳能电池及其制备方法。
背景技术
随着全球能源需求的持续增长和对温室气体减排的关注,发展清洁、可再生新能源越来越受到世界各国的关注。利用光伏发电是解决能源问题和环境问题的重要途径之一。钙钛矿太阳能电池是近年来发展起来的一种新型太阳能电池,具有许多其他类型的电池无法比拟的优点。在短短6年多的时间内,其效率已经超过了20%,具有十分重要的研究价值及应用前景。
对于半导体太阳能电池而言,其光吸收范围主要由材料的禁带宽度决定。然而,与其他半导体太阳能电池相似,钙钛矿太阳能电池由于受其禁带宽度(1.57eV)的限制,能量转换主要集中在可见光部分(800nm以下)。即便是近两年新发现的FAPbI3(HC(NH2)2PbI3)型钙钛矿材料,其吸收光谱也只能扩展到840nm。我们知道红外光总能量在太阳辐射中所占比例超过40%,且其主要能量集中于近红外部分。也就是说,虽然目前钙钛矿电池已获得较高的转换效率,但是仍有很大部分的太阳光被浪费。充分利用近红外光对于提高钙钛矿电池的效率具有重要意义。
量子点是一类禁带宽度可调的新型半导体材料,可以通过对尺寸的调控获得量子点对不同波段光的响应。量子点太阳能电池近年来也获得了很好的发展,具有重要潜力。其中,将吸收不同波段太阳光的量子点在光阳极上分段复合敏化是提高量子点电池光吸收范围、进而提升电池效率的重要手段。利用红外光吸收量子点弥补钙钛矿材料对红外光吸收的不足,可以有效增加电池的光吸收范围,提高电池效率。
叠层太阳能电池是目前获得全光谱吸收太阳能电池的有效途径之一。叠层电池中不同禁带宽度的半导体材料按顺序堆叠,分别吸收不同波段的太阳能,达到对太阳光的有效吸收利用。量子点与钙钛矿材料的分层结构是以叠层电池的理念来优化吸光材料的分布,更有利于每种材料对不同波段光的充分吸收。纳米棒是近年来发展起来的一种具有优良电子传导性能的新型材料。利用纳米棒可有效实现钙钛矿层与量子点层的分段组装,获得具有双层结构的吸光层。综上所述,一种钙钛矿-量子点双吸收层太阳能电池及其制备方法具有非常重要的应用前景。
发明内容
本发明的目的是提供一种钙钛矿-量子点双吸收层太阳能电池及其制备方法。
本发明所涉及的一种钙钛矿-量子点双吸收层太阳能电池,由透明电极(1)、致密层(2)、氧化物纳米棒(3)、钙钛矿结构吸光层(4)、量子点层(5)、空穴传输层(6)和金属对电极(7)构成。电池的具体制备步骤如下:
(a)在透明导电的电极(1)上制备10-100纳米厚的致密层(2);
(b)在上述获得的致密层(2)基础上,利用水热法制备一层厚度为0.5-3微米长度的氧化物纳米棒(3);
(c)在上述制备得到的氧化物纳米棒(3)基础上,利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出0.1-1.5微米的纳米棒;
(d)利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备量子点层(5);
(e)去除剩余的PMMA;
(f)在上述样品上旋涂制备厚度为0.4-1.5微米的钙钛矿结构吸光层(4);
(g)在上述获得的样品表面制作厚度为0.2-2微米的空穴传输层(6);
(h)利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为50~100纳米的金属对电极(7)。
所述氧化物纳米棒是氧化锌或者氧化钛纳米棒/线;
所述的钙钛矿结构吸光层是指有机金属卤化物钙钛矿材料,如CH3NH3PbI3,CH3NH3PbCl3等;
所述量子点是具有红外光吸收特性的量子点,如PbS,PbSe等。
本发明的优点是:量子点与钙钛矿结构吸光层分段沿纳米棒轴向填充,有利于载流子的有效传输,双吸收层结构能有效拓宽电池的光谱吸收范围。本发明的太阳能电池具有宽光谱吸收的特点,电池光电转换效率高。
附图说明
图1为钙钛矿-量子点双吸收层太阳能电池的结构示意图
其中1----透明电极、2----致密层、3----氧化物纳米棒、4----钙钛矿结构吸光层、5----量子点层、6----空穴传输层、7----金属对电极。
具体实施方式
实施例1:
以透明导电玻璃FTO作为第一电极(1);在第一电极(1)上制备一层10纳米厚度的氧化锌薄膜致密层(2);接着制备0.5微米厚度的氧化锌纳米棒;利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出0.1微米的纳米棒;利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备PbS量子点层(5);去除剩余的PMMA;在上述样品上旋涂制备厚度为0.4微米的CH3NH3PbI3钙钛矿结构吸光层(4);在上述获得的样品表面制作0.2微米厚的Spiro-OMeTAD空穴传输层(6);利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为50纳米的金对电极(7)。
实施例2:
以透明导电玻璃ITO作为第一电极(1);在第一电极(1)上制备一层100纳米厚度的氧化钛薄膜致密层(2);接着制备1.5微米厚度的氧化钛纳米棒;利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出0.5微米的纳米棒;利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备PbSe量子点层(5);去除剩余的PMMA;在上述样品上旋涂制备厚度为1微米的钙钛矿结构吸光层(4);在上述获得的样品表面制作1微米厚的Spiro-OMeTAD空穴传输层(6);利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为100纳米的铂对电极(7)。
实施例3:
以透明导电玻璃FTO作为第一电极(1);在第一电极(1)上制备一层80纳米厚度的氧化钛薄膜致密层(2);接着制备3微米厚度的氧化锌纳米棒;利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出1.5微米的纳米棒;利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备PbS量子点层(5);去除剩余的PMMA;在上述样品上旋涂制备厚度为1.5微米的钙钛矿结构吸光层(4);在上述获得的样品表面制作1微米厚的3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)空穴传输层(6);利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为80纳米的金对电极(7)。
实施例4:
以透明导电玻璃ITO作为第一电极(1);在第一电极(1)上制备一层50纳米厚度的氧化钛薄膜致密层(2);接着制备2微米厚度的氧化锌纳米棒;利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出1.5微米的纳米棒;利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备PbSe量子点层(5);去除剩余的PMMA;在上述样品上旋涂制备厚度为1.5微米的钙钛矿结构吸光层(4);在上述获得的样品表面制作2微米厚的Spiro-OMeTAD空穴传输层(6);利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为80纳米的银对电极(7)。

Claims (2)

1.一种钙钛矿-量子点双吸收层太阳能电池,其特征在于,它由透明电极(1)、致密层(2)、氧化物纳米棒(3)、钙钛矿结构吸光层(4)、量子点层(5)、空穴传输层(6)和金属对电极(7)构成;
所述氧化物纳米棒是氧化锌或者氧化钛纳米棒;
所述的钙钛矿结构吸光层是指有机金属卤化物钙钛矿材料;
所述量子点是制备在纳米棒顶部的、具有红外光电转换特性的量子点。
2.一种钙钛矿-量子点双吸收层太阳能电池的制备方法,其特征在于具体制备步骤如下:
(a)在透明导电的电极(1)上制备10-100纳米厚的致密层(2);
(b)在步骤(a)获得的致密层基础上,利用水热法制备一层厚度为0.5-3微米长度的氧化物纳米棒(3);
(c)在上述制备得到的氧化物纳米棒(3)上,利用旋涂法在纳米棒阵列上填充一层聚甲基丙烯酸甲酯(PMMA)作为阻挡层,接着用等离子体刻蚀去除纳米棒顶部的PMMA,露出0.1-1.5微米的纳米棒;
(d)利用连续离子层吸附反应法在露出的氧化物纳米棒(3)上制备量子点层(5);
(e)去除剩余的PMMA;
(f)在步骤(e)样品上旋涂制备厚度为0.4-1.5微米的钙钛矿结构吸光层(4);
(g)在步骤(f)获得的样品表面制作厚度为0.2-2微米的空穴传输层(6);
(h)利用真空热蒸镀或电子束蒸镀在空穴传输层(6)表面蒸镀一层厚度为50~100纳米的金属对电极(7);
所述氧化物纳米棒是氧化锌或者氧化钛纳米棒/线;
所述-钙钛矿结构吸光层是指有机金属卤化物钙钛矿材料;
所述量子点是制备在纳米棒顶部的、具有红外光吸收特性的量子点。
CN201610488458.5A 2016-06-28 2016-06-28 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法 Expired - Fee Related CN106129249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610488458.5A CN106129249B (zh) 2016-06-28 2016-06-28 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610488458.5A CN106129249B (zh) 2016-06-28 2016-06-28 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN106129249A CN106129249A (zh) 2016-11-16
CN106129249B true CN106129249B (zh) 2019-01-01

Family

ID=57284762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610488458.5A Expired - Fee Related CN106129249B (zh) 2016-06-28 2016-06-28 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106129249B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603590B (zh) * 2017-08-23 2020-07-07 南京航空航天大学 量子点辐致荧光效应核电池
CN107513166A (zh) * 2017-09-01 2017-12-26 湖北大学 一种新型CH3NH3PbI3/聚酰亚胺复合材料及其制备方法
CN109830605A (zh) * 2019-01-31 2019-05-31 河北科技大学 一种双光电转换功能太阳能电池
CN111211230B (zh) * 2020-01-22 2023-04-18 苏州大学 一种全光谱吸收的多层钙钛矿/量子点太阳能电池器件及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576929A (zh) * 2014-11-26 2015-04-29 华北电力大学 一种钙钛矿-硫化铅量子点叠层太阳电池及其制备方法
CN105489383A (zh) * 2015-12-28 2016-04-13 华侨大学 一种量子点敏化太阳能电池光阳极的制备方法
CN105514277A (zh) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
WO2016081646A1 (en) * 2014-11-18 2016-05-26 University Of Washington Photovoltaic devices having plasmonic nanostructured transparent electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081646A1 (en) * 2014-11-18 2016-05-26 University Of Washington Photovoltaic devices having plasmonic nanostructured transparent electrodes
CN104576929A (zh) * 2014-11-26 2015-04-29 华北电力大学 一种钙钛矿-硫化铅量子点叠层太阳电池及其制备方法
CN105552236A (zh) * 2015-12-08 2016-05-04 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
CN105514277A (zh) * 2015-12-21 2016-04-20 成都新柯力化工科技有限公司 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
CN105489383A (zh) * 2015-12-28 2016-04-13 华侨大学 一种量子点敏化太阳能电池光阳极的制备方法

Also Published As

Publication number Publication date
CN106129249A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
Husain et al. A review of transparent solar photovoltaic technologies
CN104134711B (zh) 一种钙钛矿太阳能电池的制备方法
CN106129249B (zh) 一种钙钛矿-量子点双吸收层太阳能电池及其制备方法
CN104409642A (zh) 一种钙钛矿/p型量子点复合结构太阳能电池的制备方法
CN103904147A (zh) 基于纳米氧化物电子传输层的钙钛矿电池
CN101262024A (zh) 硅纳米线/非晶硅异质结太阳能电池
CN101369610A (zh) 一种新型结构硅纳米线太阳能电池
CN102184995B (zh) 用于太阳能电池的长程等离子体激元波导阵列增效单元
Hu et al. Flexible solar-rechargeable energy system
CN105609640A (zh) 一种机械叠层钙钛矿太阳能电池及其制备方法
Lin et al. Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes
CN106128772B (zh) 一种硫化铅量子点光伏电池的制备方法
Wang et al. High-performance ZnO nanosheets/nanocrystalline aggregates composite photoanode film in dye-sensitized solar cells
CN102437226A (zh) 一种碳纳米管-硅薄膜叠层太阳能电池及其制备方法
CN202094161U (zh) 用于太阳能电池的长程等离子体激元波导阵列增效单元
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN106449849A (zh) 一种石墨烯/铜锌锡硫薄膜太阳电池及其制造方法
CN101257094A (zh) 一种硅纳米线太阳能电池装置
CN104752063A (zh) 三维纳米棒片花结构的多孔TiO2纳米晶薄膜、制备方法及应用
CN100544035C (zh) 染料敏化太阳能电池光阳极及其制备方法
CN203573825U (zh) 一种量子点敏化有序TiO2阵列太阳电池
CN106098945A (zh) 一种带自体散热复合阴极缓冲层的光伏电池及其制备方法
CN103578775B (zh) 基于ZnO透明导电纳米线阵列电极的染料敏化太阳电池及其制备方法
Wei-Wei et al. A study on porosity distribution in nanoporous TiO2 photoelectrodes for output performance of dye-sensitized solar cells
KR101237369B1 (ko) 효율 향상 구조를 갖는 태양전지 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190101