CN106129145A - 1064nm增强型Si‑PIN光电探测器及其制作方法 - Google Patents

1064nm增强型Si‑PIN光电探测器及其制作方法 Download PDF

Info

Publication number
CN106129145A
CN106129145A CN201610538986.7A CN201610538986A CN106129145A CN 106129145 A CN106129145 A CN 106129145A CN 201610538986 A CN201610538986 A CN 201610538986A CN 106129145 A CN106129145 A CN 106129145A
Authority
CN
China
Prior art keywords
district
type substrate
electrode
enhancement mode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610538986.7A
Other languages
English (en)
Inventor
黄烈云
廖乃镘
罗春林
王艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN201610538986.7A priority Critical patent/CN106129145A/zh
Publication of CN106129145A publication Critical patent/CN106129145A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种1064nm增强型Si‑PIN光电探测器,该光电探测器由N型衬底层、P+区、黑硅层、N+区、钝化膜、增透膜、P电极和N电极组成;本发明还公开了前述光电探测器的制作方法;本发明的有益技术效果是:该1064nm增强型Si‑PIN光电探测器在1064nm波长处的响应度达到0.6A/W,比普通器件响应度提高了一倍,同时还具有成本低、易于集成、响应速度快和响应度高、稳定可靠等特点,在大规模市场化方面具有显著的优势。

Description

1064nm增强型Si-PIN光电探测器及其制作方法
技术领域
本发明涉及一种光电探测器,尤其涉及一种1064nm增强型Si-PIN光电探测器及其制作方法。
背景技术
通常硅材料对长波光子的吸收系数小、穿透深度大,即使优化设计硅光电探测器耗尽区宽度和有源区增透膜,其对1064nm波长的响应度都小于0.30A/W。
黑硅层是一种对硅表面进行微结构化处理后获得的材料层,它对可见光及近红外光的吸收率可达到90%以上,且其光谱吸收范围覆盖了近紫外~近红外波段(0.25μm~2.5μm)。在现有“黑硅”技术中,一般是在Si-PIN光电探测器的光敏面形成黑硅层,然后再在黑硅层上形成P+区;发明人对前述现有技术进行了深入研究,并发现前述的现有技术存在如下问题:黑硅层表面钝化效果较差,器件暗电流控制较难,可靠性和稳定性较差,难以实现产品化生产。
发明内容
针对背景技术中的问题,本发明提出了一种1064nm增强型Si-PIN光电探测器,其创新在于:所述1064nm增强型Si-PIN光电探测器由N型衬底层、P+区、黑硅层、N+区、钝化膜、增透膜、P电极和N电极组成;
所述P+区形成于N型衬底层的正面;所述黑硅层形成于N型衬底层的背面;所述增透膜覆盖在P+区表面,增透膜上设置有P电极孔,P电极设置于P电极孔内并与P+区接触;所述N+区覆盖在黑硅层表面;所述钝化膜覆盖在N+区表面,钝化膜上设置有N电极孔,N电极设置于N电极孔内并与N+区接触;所述P+区形成有源区。
采用前述方案后,黑硅层形成于Si-PIN光电探测器的背面,提高了对可见光及近红外光的吸收率,解决了传统Si光电探测器对1064nm波长响应度较小等问题。经实验验证,相比于现有技术,本发明的器件具备如下优点:易于与现有标准工艺兼容,且制备工艺过程简单,“黑硅”表面损伤小,暗电流小、响应度高、稳定可靠,容易实现器件产品化生产。
优选地,所述P+区由N型衬底层表层经高温硼扩散掺杂而得,掺杂浓度范围为1×1019/cm3 ~ 5×1020/cm3,结深为2.0μm ~ 4.0μm。
优选地,所述黑硅层由N型衬底层背面经高能飞秒激光脉冲扫描、瞬态熔融N型衬底层表面而得,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
优选地,所述N+区由黑硅层表层经高温磷扩散掺杂而得,掺杂浓度为1×1019 /cm3~ 5×1020 /cm3,结深为1.0μm ~ 3.0μm。
为了便于本领域技术人员实施,本发明还公开了一种1064nm增强型Si-PIN光电探测器制作方法,其创新在于:所述方法的工艺步骤如下:1)提供N型衬底层;
2)在N型衬底层正面生长氧化层;
3)在氧化层上光刻出有源区;
4)对有源区进行掺杂处理,形成P+区;
5)在N型衬底层正面生长增透膜;
6)对N型衬底层背面进行减薄处理;
7)采用高能飞秒激光脉冲对N型衬底层背面进行扫描,使N型衬底层表面的硅瞬态熔融,获得黑硅层;
8)对黑硅层的表层进行掺杂处理,形成N+区;
9)在黑硅层表面生长钝化膜;
10)在增透膜和钝化膜上分别光刻出P电极孔和N电极孔;
11)在P电极孔和N电极孔内分别制作出P电极和N电极。
优选地,步骤4)中,采用高温硼扩散掺杂形成P+区,掺杂浓度范围为1×1019/cm3 ~5×1020/cm3,结深为2.0μm ~ 4.0μm。
优选地,步骤7)中,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
优选地,步骤8)中,采用高温磷扩散掺杂形成N+区,掺杂浓度为1×1019 /cm3 ~ 5×1020 /cm3,结深为1.0μm ~ 3.0μm。
本发明的有益技术效果是:本发明的光电探测器在1064nm波长处的响应度可达0.6A/W,比普通器件响应度提高了一倍,同时,该光电探测器还具有成本低、易于集成、响应速度快和响应度高、稳定可靠等特点,在大规模市场化方面具有显著的优势。
附图说明
图1、本发明的结构示意图;
图中各个标记所对应的名称分别为:N型衬底层1、P+区2、黑硅层3、N+区4、钝化膜5、增透膜6、P电极7、N电极8。
具体实施方式
一种1064nm增强型Si-PIN光电探测器,其创新在于:所述1064nm增强型Si-PIN光电探测器由N型衬底层1、P+区2、黑硅层3、N+区4、钝化膜5、增透膜6、P电极7和N电极8组成;
所述P+区2形成于N型衬底层1的正面;所述黑硅层3形成于N型衬底层1的背面;所述增透膜6覆盖在P+区2表面,增透膜6上设置有P电极孔,P电极7设置于P电极孔内并与P+区2接触;所述N+区4覆盖在黑硅层3表面;所述钝化膜5覆盖在N+区4表面,钝化膜5上设置有N电极孔,N电极8设置于N电极孔内并与N+区4接触;所述P+区2形成有源区。
进一步地,所述P+区2由N型衬底层1表层经高温硼扩散掺杂而得,掺杂浓度范围为1×1019/cm3 ~ 5×1020/cm3,结深为2.0μm ~ 4.0μm。
进一步地,所述黑硅层3由N型衬底层1背面经高能飞秒激光脉冲扫描、瞬态熔融N型衬底层1表面而得,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
进一步地,所述N+区4由黑硅层3表层经高温磷扩散掺杂而得,掺杂浓度为1×1019 /cm3 ~ 5×1020 /cm3,结深为1.0μm ~ 3.0μm。
一种1064nm增强型Si-PIN光电探测器制作方法,其创新在于:所述方法的工艺步骤如下:1)提供N型衬底层1;
2)在N型衬底层1正面生长氧化层;
3)在氧化层上光刻出有源区;
4)对有源区进行掺杂处理,形成P+区2;
5)在N型衬底层1正面生长增透膜6;
6)对N型衬底层1背面进行减薄处理;
7)采用高能飞秒激光脉冲对N型衬底层1背面进行扫描,使N型衬底层1表面的硅瞬态熔融,获得黑硅层3;
8)对黑硅层3的表层进行掺杂处理,形成N+区4;
9)在黑硅层3表面生长钝化膜5;
10)在增透膜6和钝化膜5上分别光刻出P电极孔和N电极孔;
11)在P电极孔和N电极孔内分别制作出P电极7和N电极8。
进一步地,步骤4)中,采用高温硼扩散掺杂形成P+区2,掺杂浓度范围为1×1019/cm3 ~ 5×1020/cm3,结深为2.0μm ~ 4.0μm。
进一步地,步骤7)中,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
进一步地,步骤8)中,采用高温磷扩散掺杂形成N+区4,掺杂浓度为1×1019 /cm3 ~5×1020 /cm3,结深为1.0μm ~ 3.0μm。

Claims (8)

1.一种1064nm增强型Si-PIN光电探测器,其特征在于:所述1064nm增强型Si-PIN光电探测器由N型衬底层(1)、P+区(2)、黑硅层(3)、N+区(4)、钝化膜(5)、增透膜(6)、P电极(7)和N电极(8)组成;
所述P+区(2)形成于N型衬底层(1)的正面;所述黑硅层(3)形成于N型衬底层(1)的背面;所述增透膜(6)覆盖在P+区(2)表面,增透膜(6)上设置有P电极孔,P电极(7)设置于P电极孔内并与P+区(2)接触;所述N+区(4)覆盖在黑硅层(3)表面;所述钝化膜(5)覆盖在N+区(4)表面,钝化膜(5)上设置有N电极孔,N电极(8)设置于N电极孔内并与N+区(4)接触;所述P+区(2)形成有源区。
2.根据权利要求1所述的1064nm增强型Si-PIN光电探测器,其特征在于:所述P+区(2)由N型衬底层(1)表层经高温硼扩散掺杂而得,掺杂浓度范围为1×1019/cm3 ~ 5×1020/cm3,结深为2.0μm ~ 4.0μm。
3.根据权利要求1所述的1064nm增强型Si-PIN光电探测器,其特征在于:所述黑硅层(3)由N型衬底层(1)背面经高能飞秒激光脉冲扫描、瞬态熔融N型衬底层(1)表面而得,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
4.根据权利要求1所述的1064nm增强型Si-PIN光电探测器,其特征在于:所述N+区(4)由黑硅层(3)表层经高温磷扩散掺杂而得,掺杂浓度为1×1019 /cm3 ~ 5×1020 /cm3,结深为1.0μm ~ 3.0μm。
5.一种1064nm增强型Si-PIN光电探测器制作方法,其特征在于:所述方法的工艺步骤如下:1)提供N型衬底层(1);
2)在N型衬底层(1)正面生长氧化层;
3)在氧化层上光刻出有源区;
4)对有源区进行掺杂处理,形成P+区(2);
5)在N型衬底层(1)正面生长增透膜(6);
6)对N型衬底层(1)背面进行减薄处理;
7)采用高能飞秒激光脉冲对N型衬底层(1)背面进行扫描,使N型衬底层(1)表面的硅瞬态熔融,获得黑硅层(3);
8)对黑硅层(3)的表层进行掺杂处理,形成N+区(4);
9)在黑硅层(3)表面生长钝化膜(5);
10)在增透膜(6)和钝化膜(5)上分别光刻出P电极孔和N电极孔;
11)在P电极孔和N电极孔内分别制作出P电极(7)和N电极(8)。
6.根据权利要求5所述的1064nm增强型Si-PIN光电探测器制作方法,其特征在于:步骤4)中,采用高温硼扩散掺杂形成P+区(2),掺杂浓度范围为1×1019/cm3 ~ 5×1020/cm3,结深为2.0μm ~ 4.0μm。
7.根据权利要求5所述的1064nm增强型Si-PIN光电探测器制作方法,其特征在于:步骤7)中,高能飞秒激光脉冲的激光波长为800nm,脉冲宽度为100fs,频率为1kHz。
8.根据权利要求5所述的1064nm增强型Si-PIN光电探测器制作方法,其特征在于:步骤8)中,采用高温磷扩散掺杂形成N+区(4),掺杂浓度为1×1019 /cm3 ~ 5×1020 /cm3,结深为1.0μm ~ 3.0μm。
CN201610538986.7A 2016-07-11 2016-07-11 1064nm增强型Si‑PIN光电探测器及其制作方法 Pending CN106129145A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610538986.7A CN106129145A (zh) 2016-07-11 2016-07-11 1064nm增强型Si‑PIN光电探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610538986.7A CN106129145A (zh) 2016-07-11 2016-07-11 1064nm增强型Si‑PIN光电探测器及其制作方法

Publications (1)

Publication Number Publication Date
CN106129145A true CN106129145A (zh) 2016-11-16

Family

ID=57283547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610538986.7A Pending CN106129145A (zh) 2016-07-11 2016-07-11 1064nm增强型Si‑PIN光电探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN106129145A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898947A (zh) * 2017-04-05 2017-06-27 青岛海信宽带多媒体技术有限公司 一种激光器及其制作方法
CN108231920A (zh) * 2018-01-23 2018-06-29 中国电子科技集团公司第四十四研究所 带氮化硅致应力结构的硅基探测器及制作方法
CN108281505A (zh) * 2018-01-29 2018-07-13 中国电子科技集团公司第四十四研究所 基于硅微结构的1064nm增强型四象限光电探测器
CN109841701A (zh) * 2017-11-24 2019-06-04 宁波比亚迪半导体有限公司 光电二极管及其制造工艺
CN114678431A (zh) * 2022-03-21 2022-06-28 上海集成电路制造创新中心有限公司 一种光电探测器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
CN102903781A (zh) * 2012-08-28 2013-01-30 中国科学院半导体研究所 硅基近红外光电探测器结构及其制作方法
US20130206222A1 (en) * 2012-02-13 2013-08-15 Jungmin Ha Solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
US20130206222A1 (en) * 2012-02-13 2013-08-15 Jungmin Ha Solar cell
CN102903781A (zh) * 2012-08-28 2013-01-30 中国科学院半导体研究所 硅基近红外光电探测器结构及其制作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898947A (zh) * 2017-04-05 2017-06-27 青岛海信宽带多媒体技术有限公司 一种激光器及其制作方法
CN109841701A (zh) * 2017-11-24 2019-06-04 宁波比亚迪半导体有限公司 光电二极管及其制造工艺
CN109841701B (zh) * 2017-11-24 2021-09-10 比亚迪半导体股份有限公司 光电二极管及其制造工艺
CN108231920A (zh) * 2018-01-23 2018-06-29 中国电子科技集团公司第四十四研究所 带氮化硅致应力结构的硅基探测器及制作方法
CN108281505A (zh) * 2018-01-29 2018-07-13 中国电子科技集团公司第四十四研究所 基于硅微结构的1064nm增强型四象限光电探测器
CN114678431A (zh) * 2022-03-21 2022-06-28 上海集成电路制造创新中心有限公司 一种光电探测器的制备方法

Similar Documents

Publication Publication Date Title
CN106129145A (zh) 1064nm增强型Si‑PIN光电探测器及其制作方法
CN102290481B (zh) 具有宽光谱响应的硅探测器结构及其制作方法
CN103400872B (zh) 表面电场增强的pin光电探测器的结构及其制备方法
KR101430650B1 (ko) 광검출 소자
CN105702775B (zh) 一种基于黑磷/二硫化钼异质结能量带隙可调的光探测器
CN102903781A (zh) 硅基近红外光电探测器结构及其制作方法
CN102169918B (zh) 一种低偏置电压下具有增益的硅光电探测器及其制备方法
Pandey et al. High-performance self-powered perovskite photodetector with a rapid photoconductive response
RU2012149561A (ru) Легирование графена дырками
CN104362198B (zh) 透明电极栅控横向pin蓝紫光探测器及其制备方法
CN106206831A (zh) 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
CN110047957A (zh) 一种中红外光探测器及其制备方法
CN102856423A (zh) 一种以二氧化钛纳米管阵列为基体的紫外光探测器及其制备方法
CN102496638A (zh) 深能级杂质掺杂的晶体硅红外探测器及其制备方法
KR100946797B1 (ko) 레이저를 이용한 고효율 태양전지의 제조방법
CN102227005B (zh) 具有红外响应的表面纳米点硅光电探测器结构的制作方法
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
CN108666382B (zh) Soi基lsambm雪崩光电二极管及其制备方法
CN106024922B (zh) 基于GeSn材料的光电晶体管及其制作方法
Parida et al. Enhanced photocurrent of Si solar cell with the inclusion of a transparent indium tin oxide thin film
Kou et al. Optimization strategy of 4H-SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency
CN105185845A (zh) 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
Yu et al. Enhanced photoelectric properties of multilayer Graphene Mg 2 Si/Si heterojunction photodetector
Huang et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
US20130312813A1 (en) Solar cell and module thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication