CN106121601B - 一种泡沫驱油物理模拟装置及方法 - Google Patents

一种泡沫驱油物理模拟装置及方法 Download PDF

Info

Publication number
CN106121601B
CN106121601B CN201610481727.5A CN201610481727A CN106121601B CN 106121601 B CN106121601 B CN 106121601B CN 201610481727 A CN201610481727 A CN 201610481727A CN 106121601 B CN106121601 B CN 106121601B
Authority
CN
China
Prior art keywords
electrically operated
operated valve
pressure
piston container
constant pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610481727.5A
Other languages
English (en)
Other versions
CN106121601A (zh
Inventor
刘宏生
韩培慧
陈广宇
孙刚
姜彬
王景芹
吕昌森
郭松林
崔长玉
潘峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daqing Oilfield Co Ltd
China Petroleum and Natural Gas Co Ltd
Original Assignee
Daqing Oilfield Co Ltd
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daqing Oilfield Co Ltd, China Petroleum and Natural Gas Co Ltd filed Critical Daqing Oilfield Co Ltd
Priority to CN201610481727.5A priority Critical patent/CN106121601B/zh
Publication of CN106121601A publication Critical patent/CN106121601A/zh
Application granted granted Critical
Publication of CN106121601B publication Critical patent/CN106121601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Accessories For Mixers (AREA)

Abstract

本发明提供一种泡沫驱油物理模拟装置及方法,该装置包括用于模拟油藏的模型部分、向模型部分注入原油或者高压驱替介质的注入部分以及对模型部分的流出液进行采集的流出液采集部分,所述注入部分包括用于储存气体介质的第一气体活塞容器或/和第二气体活塞容器、用于储存发泡剂溶液的液体活塞容器以及液体活塞容器和第一恒压恒速泵、第二恒压恒速泵相配合产生泡沫的泡沫生成装置,液体活塞容器的底部装有磁力搅拌装置和磁力棒。本发明采用恒压恒速泵对高压气体进行注入量和注入压力的精确控制,精度高,装置工作平稳;在液体活塞容器下部配备磁力搅拌装置,且下部侧面流出液体,保证了注入液体的均匀,同时可防止沉淀进入岩心夹置器。

Description

一种泡沫驱油物理模拟装置及方法
技术领域
本发明属于石油工程和工艺技术领域,涉及采油技术中驱油研究的物理模拟装置及方法,具体涉及一种适用于三次采油室内物理模拟评价实验用的泡沫驱油物理模拟装置及方法。
背景技术
石油是不可再生的能源,经济有效地开发现有油田是永恒(重要)的课题。水驱可以提高采收率1/3-1/5,我国各大油田均已处于水驱后期,但有半数以上的石油地质储量仍残留在地下,需要开展有效的三次采油技术,泡沫驱具有调剖和驱油作用的主要原因在于泡沫在多孔介质内的渗流特性,即泡沫堵大不堵小及堵水不堵油的作用,导致泡沫在高、低渗透层内均匀推进。同时,泡沫还具有一定的降低界面张力的作用,因而泡沫具有提高采收率的作用。
授权公告号为CN202202851U的实用新型专利提供一种驱油物理模拟实验装置,该装置包括用于模拟油藏的模型部分、向模型部分提供多种高压驱替介质的注入部分、对模型部分的流出液进行采集并检测的流出液采集检测部分和对模型部分的温度及压力进行检测的检测部分,其中,注入部分包括用于对相应驱替介质提供输送压力的高压驱替泵、分别容纳相应的驱替介质的第一~第三中间容器、与所述高压驱替泵配合产生蒸气的蒸气生成装置、与所述高压驱替泵及相应中间容器配合产生泡沫的泡沫生成装置。该装置可以进行多种模拟实验,但其进行泡沫驱物理模拟实验存在以下不足:注入到泡沫生成装置中的高压气体没有进行注入量和注入压力的精确控制,精度较差;该装置无法实现驱替介质(发泡剂)溶液本身实时搅拌,不能保证液体的均匀性;回压控制精度较差,且自动化程度低。
发明内容
本发明的目的是为了解决上述问题,提供一种能够精确控制气体压力和注入量、实现发泡剂均匀搅拌、提高回压控制精度的泡沫驱油物理模拟装置。
本发明的上述目的是由以下技术方案来实现的:
一种泡沫驱油物理模拟装置,包括用于模拟油藏的模型部分、向模型部分注入原油或者高压驱替介质的注入部分以及对模型部分的流出液进行采集的流出液采集部分,所述注入部分包括:
用于储存气体介质的第一气体活塞容器(J1)或/和第二气体活塞容器(J2)、
用于对相应气体介质提供输送动力的第二恒压恒速泵(K2)和第三恒压恒速泵(K3)、
用于储存发泡剂溶液的液体活塞容器(H)、
用于分别储存实验用原油和实验用水的第一活塞容器(G1)和第二活塞容器(G2)、
用于对相应液体介质提供输送动力的第一恒压恒速泵(K1)以及
产生泡沫的泡沫生成装置,
其中,所述泡沫生成装置与气体活塞容器、液体活塞容器和恒压恒速泵相配合,其第一输入管道连接第一气体活塞容器(J1)或/和第二气体活塞容器(J2),第二输入管道连接液体活塞容器(H),输出管道连接所述模型部分;第一活塞容器(G1)和第二活塞容器(G2)连接所述模型部分;
所述液体活塞容器(H)的底部装有磁力搅拌装置(M1)和磁力棒(M2),底部还通过一电动阀门十八(T18)与进液口(B4)相连;液体活塞容器(H)的下部侧面设有与所述泡沫生成装置相连的出口;液体活塞容器(H)的顶部装有电机(B1),电机(B1)通过传动轴(B2)与位于液体活塞容器(H)中的活塞(B3)相连。
上述泡沫驱油物理模拟装置中,所述泡沫生成装置包括用于汇合发泡剂溶液和高压气体以生成泡沫的泡沫发生器(D),其中:
泡沫发生器(D)的第一输入管道通过第一单向阀(E1)与第一气体活塞容器(J1),和第二气体活塞容器(J2)的顶部出口相连,第一气体活塞容器(J1)的顶部出口与第一单向阀(E1)之间依次连接有第二压力传感器(F2)和电动阀门十六(T16);第二气体活塞容器(J2)的顶部出口与第一单向阀(E1)之间依次连接有第三压力传感器(F3)和电动阀门十九(T19);第一气体活塞容器(J1)的底部通过电动阀门九(T9)与第二恒压恒速泵(K2)相连,第二气体活塞容器(J2)的底部通过电动阀门十(T10)与第三恒压恒速泵(K3)相连;
泡沫发生器(D)的第二输入管道通过第二单向阀(E2)与液体活塞容器(H)的下部侧面出口相连;
泡沫发生器(D)的输出管道经电动阀门四(T4)、电动阀门三(T3)、电动阀门一(T1)连接到所述岩心夹置器(A)的进口,在两电动阀门三(T3)和电动阀门一(T1)之间连接有第一压力传感器(F1)。
上述泡沫驱油物理模拟装置中,所述模型部分包括岩心夹置器(A),岩心夹置器(A)具有与所述注入部分相连的进口和与流出液采集部分相连的出口,岩心夹置器(A)的进口和出口处分别连接有电动阀门一(T1)和电动阀门二(T2)。
上述泡沫驱油物理模拟装置中,所述流出液采集部分包括连接于岩心夹置器(A)出口的第一恒压泵(K4)、第二恒压泵(K5)和计量装置(C),第一恒压泵(K4)与计量装置(C)之间连接有电动阀门八(T8),第二恒压泵(K5)与计量装置(C)之间连接有电动阀门七(T7),电动阀门五(T5)和电动阀门(T6)分别连接在第二恒压泵(K5)、第一恒压泵(K4)与岩心夹置器(A)出口的通道上。
上述泡沫驱油物理模拟装置中,模型部分和注入部分分别置于第一恒温箱(Q)中;流出液采集部分放置于第二恒温箱(S)中。
上述泡沫驱油物理模拟装置中,还包括一计算机(P),第一恒压恒速泵(K1)、第二恒压恒速泵(K2)、第三恒压恒速泵(K3)、第一恒压泵(K4)、第二恒压泵(K5)、第一压力传感器(F1)、第二压力传感器(F2)、第三压力传感器(F3)、磁力搅拌装置(M1)、电机(B1)、计量装置(C)、第一恒温箱(Q)、第二恒温箱(S)以及各电动阀门均电连接至计算机(P)。
本发明还提供一种泡沫驱油物理模拟方法,该方法采用上述泡沫驱油物理模拟装置,包括以下步骤:
步骤一:第一气体活塞容器(J1)和第二气体活塞容器(J2)的上部装满实验用气体,液体活塞容器(H)底部装发泡剂溶液,第一活塞容器(G1)上部装入实验用原油,第二活塞容器(G2)上部装入实验用水;岩心夹置器(A)中放入实验需要的岩心;所有电动阀门均关闭;
步骤二:计算机(P)分别设定第一恒温箱(Q)、第二恒温箱(S)的温度、第一恒压恒速泵(K1)的流速及第二恒压泵(K5)和第一恒压泵(K4)的恒定压力,控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十四(T14)和电动阀门十五(T15)开启,控制第一恒压恒速泵(K1)对岩心夹置器(A)中的岩心注入水,制作岩心样品;计算机(P)控制第一恒压恒速泵(K1)停止运行,关闭电动阀门十四(T14)和电动阀门十五(T15)并计算饱和水体积;
步骤三:计算机(P)控制电动阀门十二(T12)和电动阀门(T13)开启,控制第一恒压恒速泵(K1)对岩心夹置器(A)中的岩心样品注入原油,制作含原油的岩心样品并计算饱和原油体积;
步骤四:当岩心样品制作完成时,计算机(P)控制第一恒压恒速泵(K1)停止运行,关闭电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十二(T12)和电动阀门十三(T13),并老化24小时以上;
步骤五:计算机(P)设置第一恒压恒速泵(K1)和第二恒压恒速泵(K2)流速、第二恒压泵(K5)和第一恒压泵(K4)的恒定压力、电机(B1)转速、计量时间、第一气体活塞容器(J1)和第二气体活塞容器(J2)的交替压力差限值,并控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门四(T4)、电动阀门五(T5)、电动阀门九(T9)、电动阀门十一(T11)、电动阀门十六(T16)和电动阀门十七(T17)开启;
步骤六:第一气体活塞容器(J1)中的气体通过电动阀门十六(T16)、第一单向阀(E1)进入泡沫发生器(D),发泡剂溶液通过电动阀门十七(T17)、第二单向阀(E2)进入泡沫发生器(D),气体和发泡剂溶液混合,形成均匀泡沫,泡沫通过电动阀门四(T4)、电动阀门三(T3)和电动阀门一(T1)进入岩心夹置器(A)中,从岩心夹置器(A)中出来的油气水混合物通过电动阀门二(T2)、电动阀门五(T5)进入第二恒压泵(K5)中;
步骤七:计算机(P)控制第一恒压泵(K4)和第二恒压泵(K5)交替工作;
步骤八:计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第二压力传感器(F2)或第三压力传感器(F3)的压力值与第一压力传感器(F1)的压力值之差大于设定的交替压力差限值时,控制第一气体活塞容器(J1)和第二气体活塞容器(J2)交替工作;
步骤九:当气体与发泡剂溶液注入量达到实验需求量时,计算机(P)控制各部件停止工作,并关闭各电动阀门,直接结束实验或控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十四(T14)和电动阀门十五(T15)开启,设置第二恒压泵(K5)为设定的恒定压力,换后续水驱,直到实验结束。
上述泡沫驱油物理模拟方法中,在所述步骤七中,计算机(P)控制第一恒压泵(K4)和第二恒压泵(K5)交替工作包括以下步骤:
(1)通过计算机(P)将第一恒压泵(K4)与第二恒压泵(K5)设定为相同的恒定压力,并设定计量时间,开启电动阀门五(T5);
(2)计量时间到,关闭电动阀门五(T5)、开启电动阀门六(T6)和电动阀门七(T7),计量时间重新开始计量,第一恒压泵(K4)保持在设定的恒定压力并接收油气水混合溶液;
(3)计算机(P)控制第二恒压泵(K5)的压力,使第二恒压泵(K5)中的所有油气水混合溶液流进计量装置(C)中,用以计量油气水产出量;
(4)计量时间到,关闭电动阀门六(T6),开启电动阀门五(T5)和电动阀门(T8),计量时间重新开始计量,计算机(P)控制第二恒压泵(K5)保持恒定压力并接收油气水混合溶液,第一恒压泵(K4)排出油气水混合溶液到计量装置(C)中;
(5)返回步骤(2),重复上述步骤,直到实验结束。
上述泡沫驱油物理模拟方法中,在所述步骤八中,计算机(P)控制第一气体活塞容器(J1)和第二气体活塞容器(J2)交替工作包括以下步骤:
1)计算机(P)设定第一气体活塞容器(J1)和第二气体活塞容器(J2)的交替压力差限值;
2)计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第三压力传感器(F3)的压力低于第一压力传感器(F1)的压力时,计算机(P)通过第三恒速恒压泵(K3)使第二气体活塞容器(J2)中的气体增压,并保持第三压力传感器(F3)的压力与第一压力传感器(F1)的压力相同;
3)当第一压力传感器(F1)与第二压力传感器(F2)的压力差值大于交替压力差限值时,交换第一气体活塞容器(J1)和第二气体活塞容器(J2),计算机(P)控制第二恒压恒速泵(K2)停止,关闭电动阀门九(T9)和电动阀门十六(T16),同时按照设定的流速开启第三恒压恒速泵(K3)和电动阀门十(T10)和电动阀门十九(T19);
4)计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第二压力传感器(F2)的压力低于第一压力传感器(F1)的压力时,计算机(P)通过第二恒速恒压泵(K2)使第一气体活塞容器(J1)中的气体增压,并保持第二压力传感器(F2)的压力与第一压力传感器(F1)的压力相同;
5)当第一压力传感器(F1)与第三压力传感器(F3)的压力差值大于交替压力差限值时,交换第一气体活塞容器(J1)和第二气体活塞容器(J2),计算机(P)控制第三恒压恒速泵(K3)停止,关闭电动阀门十(T10)和电动阀门十九(T19),同时按照设定的流速开启第二恒压恒速泵(K2)和电动阀门十九(T19)和电动阀门十六(T16);
6)返回步骤2),重复上述步骤,直到实验结束。
采用上述技术方案,本发明的技术效果是:本发明采用恒压恒速泵对高压气体进行注入量和注入压力的精确控制,精度高,装置工作平稳;在液体活塞容器下部配备磁力搅拌装置,且下部侧面流出液体,保证了注入液体的均匀,同时可防止沉淀进入岩心夹置器;采用两套恒压泵与计量装置配合交替工作,保证该装置工作的连续性和平稳性,提高了回压控制精度;本发明采用计算机控制装置中各部件的运行,控制精度和自动化程度高。
附图说明
图1是本发明的泡沫驱油物理模拟装置的实施例的结构示意图。
图中附图标记表示为:
A:岩心夹置器,B1:电机,B2:传动轴,B3:活塞,B4:进液口,C:计量装置,D:泡沫发生器,E1:第一单向阀,E2:第二单向阀,F1:第一压力传感器,F2:第二压力传感器,F3:第三压力传感器,G1:第一活塞容器,G2:第二活塞容器,H:液体活塞容器,J1:第一气体活塞容器,J2:第二气体活塞容器,K1:第一恒压恒速泵,K2:第二恒压恒速泵,K3:第三恒压恒速泵,K4:第一恒压泵,K5:第二恒压泵,M1:磁力搅拌装置,M2:磁力棒,T1、T2~T19:电动阀门一~电动阀门十九,Q:第一恒温箱,S:第二恒温箱,P:计算机。
具体实施方式
以下结合附图和具体实施例,对本发明的泡沫驱油物理模拟装置及方法进行详细说明。
如图1所示,本发明的泡沫驱油物理模拟装置的实施例是一种用于实验室环境的泡沫驱油物理模拟装置(粗线表示物理管道连接,细线表示电连接),包括用于模拟油藏的模型部分、向模型部分注入原油或者高压驱替介质(泡沫或水)的注入部分以及对模型部分的流出液进行采集的流出液采集部分。
本实施例中的模型部分为岩心夹置器A,属于现有技术,它用于制作不同含油级别的岩心样品以及作为放置样品的容器,它具有与注入部分相连的进口、与流出液采集部分相连的出口,岩心夹置器A的进口和出口处分别连接有电动阀门一T1和电动阀门二T2用以控制岩心夹置器A的工作流程。
岩心夹置器A可以为圆柱形或方形,例如,圆柱形岩心夹置器可以夹置直径2.5cm、长度为5~50cm的圆柱形岩心,用于测量流体在岩心中的流动性能以及提高采收率的效果;方形岩心夹置器可以夹置端面为4.5cm×4.5cm、长度为30~60cm的方形岩心,可用于测量流体在岩心中的流动性能以及提高采收率的效果。因此,采用本发明的装置通过选择不同类型的夹置器,可完成不同的实验目的。
本实施例中的流出液采集部分包括连接于岩心夹置器A出口的第一恒压泵K4、第二恒压泵K5和计量装置C,其中,第一恒压泵K4与计量装置C之间连接有电动阀门八T8,第二恒压泵K5与计量装置C之间连接有电动阀门七T7,电动阀门五T5和电动阀门T6分别连接在第二恒压泵K5和第一恒压泵K4与岩心夹置器A出口的通道上。通过控制电动阀门五T5~电动阀门八T8,可以使第一恒压泵K4和第二恒压泵K5的交替工作,以实现流出液采集部分连续不断的持续工作。
本实施例中的注入部分包括用于储存气体介质的第一气体活塞容器J1和第二气体活塞容器J2、用于对相应气体介质提供输送动力的第二恒压恒速泵K2和第三恒压恒速泵K3、用于储存发泡剂溶液的液体活塞容器H、用于搅拌液体活塞容器H中的液体的磁力搅拌装置M1和磁力棒M2、用于对液体活塞容器中溶液提供输送动力的电机B1、用于分别储存实验用原油和实验用水的第一活塞容器G1和第二活塞容器G2、用于对相应液体介质提供输送动力的第一恒压恒速泵K1以及与相应的气体活塞容器、液体活塞容器和恒压恒速泵相配合产生泡沫的泡沫生成装置,其中:
上述泡沫生成装置包括用于汇合发泡剂溶液和高压气体以生成泡沫的泡沫发生器D,泡沫发生器D的第一输入管道通过第一单向阀E1与第一气体活塞容器J1和第二气体活塞容器J2的顶部出口相连,第一气体活塞容器J1的顶部出口与第一单向阀E1之间依次连接有第二压力传感器F2和电动阀门十六T16,同样第二气体活塞容器J2的顶部出口与第一单向阀E1之间依次连接有第三压力传感器F3和电动阀门十九T19,第一气体活塞容器J1的底部通过电动阀门九T9与第二恒压恒速泵K2相连,第二气体活塞容器J2的底部通过电动阀门十T10与第三恒压恒速泵K3相连;泡沫发生器D的第二输入管道通过第二单向阀E2与液体活塞容器H的下部侧面出口相连,液体活塞容器H的底部装有磁力搅拌装置M1和磁力棒M2,同时底部通过电动阀门十八T18与进液口B4相连,液体活塞容器H的顶部装有用于对液体活塞容器中溶液提供输送动力的电机B1,电机B1通过传动轴B2与活塞容器中的活塞B3相连(如果不安装电机B1,通过人力作用于传动轴B2,也可以实现本发明的目的,但人工劳动量大,成本高);泡沫发生器D的输出管道经电动阀门四T4、电动阀门三T3和电动阀门一T1连接到岩心夹置器A的进口,在电动阀门三T3和电动阀门一T1之间连接有第一压力传感器F1。
在本实施例中,液体活塞容器H底部配备的磁力搅拌装置M1和磁力棒M2用于搅拌液体活塞容器H中的液体,在实验过程中可以保证液体活塞容器H中的液体均匀不出现沉淀;液体活塞容器H的出口在下部侧面,这样不影响磁力搅拌装置M1和磁力棒M2正常工作,保证了注入液体的均匀性能,同时可以防止底部沉淀物进入岩心夹置器A中。第一单向阀E1和第二单向阀E2可以防止气体或液体回流进第一气体活塞容器J1、第二气体活塞容器J2或液体活塞容器H。
液体活塞容器H通过电机B1和传动轴B2控制活塞B3上下移动,吸入或排出发泡剂溶液。
为了保持装置的工作温度恒定,模型部分和注入部分放置于第一恒温箱Q中,其中,第一恒压恒速泵K1、第二恒压恒速泵K2、第三恒压恒速泵K3置于第一恒温箱Q外;流出液收集部分放置于第二恒温箱S中;该装置的各部件及管线耐压均大于50MPa,并且耐酸碱腐蚀;第一恒温箱Q、第二恒温箱S加热温度一般25℃~120℃,由于第一恒压恒速泵K1、第二恒压恒速泵K2、第三恒压恒速泵K3没有放置于第一恒温箱Q中,第一恒温箱Q可以设置更高的温度。
本实施例中的各电动阀门、第一恒压恒速泵K1~第三恒压恒速泵K3、第一恒压泵K4和第二恒压泵K5、第一压力传感器F1~第三压力传感器F3、磁力搅拌装置M1、电机B1、计量装置C以及第一恒温箱Q、第二恒温箱S均电连接到计算机P,由计算机P设置各部件的工作参数并控制各部件按照设定的程序进行工作。
第一恒压泵K4、第二恒压泵K5容器体积为第一恒压恒速泵K1、第二恒压恒速泵K2和第三恒压恒速泵K3的1/5~1/2,第一恒压泵K4、第二恒压泵K5容器内径为恒第一压恒速泵K1、第二恒压恒速泵K2和第三恒压恒速泵K3的1/5~1/2,用于提高回压控制精度,保证岩心夹置器A在设定的压力下稳定工作,为注入部分提供稳定的基础压力。第一恒压泵K4和第二恒压泵K5还可以用于接收油气水混合溶液,根据实验中油气水体积计量体积及计量时间间隔的需要,可以通过计算机P设定第一恒压泵K4、第二恒压泵K5按照计量时间间隔交替恒压接收油气水混合溶液和排除油气水混合溶液。
第一恒压泵K4和第二恒压泵K5可只保留一路,也能实现本发明的目的,但很难保证接收油气水混合溶液的连续性;优选地方案是如图1所示的实施例中,第一恒压泵K4和第二恒压泵K5同时存在进行交替工作,其交替工作过程如下:
(1)通过计算机P将第一恒压泵K4与第二恒压泵K5设定为相同的恒定压力,并设定计量时间,开启电动阀门五T5;
(2)计量时间到,关闭电动阀门五T5、开启电动阀门六T6、电动阀门七T7,计量时间重新开始计量,第一恒压泵K4保持在设定的恒定压力并接收油气水混合溶液;
(3)计算机P控制第二恒压泵K5的压力,使第二恒压泵K5中的所有油气水混合溶液流进计量装置C中,用以计量油气水产出量;
(4)计量时间到,关闭电动阀门六T6,开启电动阀门五T5、电动阀门八T8,计量时间重新开始计量,计算机P控制第二恒压泵K5保持恒定压力并接收油气水混合溶液,第一恒压泵K4排出油气水混合溶液到计量装置C中;
(5)返回步骤(2),重复上述步骤,直到实验结束。
实验过程中,随着岩心夹置器A入口端的压力不断增加,而气体压缩系数大,在保持恒定注入速度过程中,气体注入量折算到入口压力条件下的注入量低于实验要求的注入量。必须保证气体注入量时刻保持实验需要的注入量,通过压力跟踪和调整气体活塞容器中的压力,并按照一定条件交换第一气体活塞容器J1和第二气体活塞容器J2,保证气体持续不断的注入。
第一气体活塞容器J1和第二气体活塞容器J2可只保留一路,也能实现本发明的目的,但很难保证气体注入的连续性;优选地方案是如图1所示的实施例中,第一气体活塞容器J1和第二气体活塞容器J2同时存在进行交替工作,交替工作的过程如下:
1)计算机P设定第一气体活塞容器J1、第二气体活塞容器J2的交替压力差限值,因压力传感器的精度为0.002MPa,交替压力差限值可设定为大于0.002MPa的压力值;
2)计算机P实时对比第一压力传感器F1、第二压力传感器F2、第三压力传感器F3的压力值,当第三压力传感器F3压力低于第一压力传感器F1压力时,计算机P通过第三恒速恒压泵K3使第二气体活塞容器J2中的气体增压,并保持第三压力传感器F3压力与第一压力传感器F1相同;
3)当第一压力传感器F1与第二压力传感器F2大于交替压力差限值时,交换第一气体活塞容器J1和第二气体活塞容器J2,计算机P控制第二恒压恒速泵K2停止,关闭电动阀门九T9、电动阀门十六T16,同时按照设定的流速开启第三恒压恒速泵K3和电动阀门十T10、电动阀门十九T19;
4)计算机P实时对比第一压力传感器F1、第二压力传感器F2、第三压力传感器F3的压力值,当第二压力传感器F2压力低于第一压力传感器F1压力时,计算机P通过第二恒速恒压泵K2使第一气体活塞容器J1中的气体增压,并保持第二压力传感器F2压力与第一压力传感器F1相同;
5)当第一压力传感器F1与第三压力传感器F3大于交替压力差限值时,交换第一气体活塞容器J1和第二气体活塞容器J2,计算机P控制第三恒压恒速泵K3停止,关闭电动阀门十T10、电动阀门十九T19,同时按照设定的流速开启第二恒压恒速泵K2和电动阀门十九T19、电动阀门十六T16;
6)返回步骤2),重复上述步骤,直到实验结束。
本发明的泡沫驱油物理模拟方法采用上述装置进行,包括以下步骤:
步骤一:第一气体活塞容器J1、第二气体活塞容器J2的上部装满实验用气体,液体活塞容器H底部装发泡剂溶液,第一活塞容器G1上部装入实验用原油,第二活塞容器G2上部装入实验用水;岩心夹置器A中放入实验需要的岩心;所有电动阀门均关闭;
步骤二:计算机P分别设定第一恒温箱Q、第二恒温箱S的温度、第一恒压恒速泵K1的流速及第二恒压泵K5、第一恒压泵K4的恒定压力,控制电动阀门一T1、电动阀门二T2、电动阀门三T3、电动阀门五T5、电动阀门十一T11、电动阀门十四T14、电动阀门十五T15开启,控制第一恒压恒速泵K1对岩心夹置器A中的岩心注入水,制作岩心样品;计算机P控制第一恒压恒速泵K1停止运行,关闭电动阀门十四T14、电动阀门十五T15并计算饱和水体积;
步骤三:计算机P控制电动阀门十二T12、电动阀门十三T13开启,控制第一恒压恒速泵K1对岩心夹置器A中的岩心样品注入原油,制作含原油的岩心样品并计算饱和原油体积;
步骤四:当岩心饱和原油制作完成时,计算机P控制第一恒压恒速泵K1停止运行,关闭电动阀门一T1、电动阀门二T2、电动阀门三T3、电动阀门五T5、电动阀门十一T11、电动阀门十二T12、电动阀门十三T13,并老化24小时以上;
步骤五:计算机P设置第一恒压恒速泵K1、第二恒压恒速泵K2流速、第二恒压泵K5、第一恒压泵K4的恒定压力、电机B1转速、计量时间、第一气体活塞容器J1、第二气体活塞容器J2的交替压力差限值,并控制电动阀门一T1、电动阀门二T2、电动阀门三T3、电动阀门四T4、电动阀门五T5、电动阀门九T9、电动阀门十一T11、电动阀门十六T16、电动阀门十七T17开启;
步骤六:第一气体活塞容器J1中的气体通过电动阀门十六T16、第一单向阀E1进入泡沫发生器D,发泡剂溶液通过电动阀门十七T17、第二单向阀E2进入泡沫发生器D,气体和发泡剂溶液混合,形成均匀泡沫,泡沫通过电动阀门四T4、电动阀门三T3、电动阀门一T1进入岩心夹置器A中,从岩心夹置器A中出来的油气水混合物通过电动阀门二T2、电动阀门五T5进入第二恒压泵K5中;
步骤七:计算机P控制第一恒压泵K4、第二恒压泵K5交替工作,具体的工作过程参考上文;
步骤八:计算机P实时对比第一压力传感器F1、第二压力传感器F2、第三压力传感器F3的压力值,当第二压力传感器F2或第三压力传感器F3的压力值与第一压力传感器F1的压力值之差大于设定的交替压力差限值时,控制第一气体活塞容器J1、第二气体活塞容器J2交替工作,具体的工作过程参考上文;
步骤九:当气体与发泡剂溶液注入量达到实验需求量时,计算机P控制各部件停止工作,并关闭各阀门,直接结束实验或控制电动阀门一T1、电动阀门二T2、电动阀门三T3、电动阀门五T5、电动阀门十一T11、电动阀门十四T14、电动阀门十五T15开启,设置第二恒压泵K5为设定的恒定压力,换后续水驱,直到实验结束。
本领域技术人员应当理解,这些实施例或实施方式仅用于说明本发明而不限制本发明的范围,对本发明所做的各种等价变型和修改均属于本发明公开内容。

Claims (9)

1.一种泡沫驱油物理模拟装置,包括用于模拟油藏的模型部分、向模型部分注入原油或者高压驱替介质的注入部分以及对模型部分的流出液进行采集的流出液采集部分,其特征在于,所述注入部分包括:
用于储存气体介质的第一气体活塞容器(J1)或/和第二气体活塞容器(J2)、
用于对相应气体介质提供输送动力的第二恒压恒速泵(K2)和第三恒压恒速泵(K3)、用于储存发泡剂溶液的液体活塞容器(H)、
用于分别储存实验用原油和实验用水的第一活塞容器(G1)和第二活塞容器(G2)、用于对相应液体介质提供输送动力的第一恒压恒速泵(K1)以及
产生泡沫的泡沫生成装置,
其中,所述泡沫生成装置与气体活塞容器、液体活塞容器和恒压恒速泵相配合,其第一输入管道连接第一气体活塞容器(J1)或/和第二气体活塞容器(J2),第二输入管道连接液体活塞容器(H),输出管道连接所述模型部分;第一活塞容器(G1)和第二活塞容器(G2)连接所述模型部分;
所述液体活塞容器(H)的底部装有磁力搅拌装置(M1)和磁力棒(M2),底部还通过一电动阀门十八(T18)与进液口(B4)相连;液体活塞容器(H)的下部侧面设有与所述泡沫生成装置相连的出口;液体活塞容器(H)的顶部装有电机(B1),电机(B1)通过传动轴(B2)与位于液体活塞容器(H)中的活塞(B3)相连。
2.根据权利要求1所述的泡沫驱油物理模拟装置,其特征在于,所述泡沫生成装置包括用于汇合发泡剂溶液和高压气体以生成泡沫的泡沫发生器(D),其中:
泡沫发生器(D)的第一输入管道通过第一单向阀(E1)与第一气体活塞容器(J1)和第二气体活塞容器(J2)的顶部出口相连,第一气体活塞容器(J1)的顶部出口与第一单向阀(E1)之间依次连接有第二压力传感器(F2)和电动阀门十六(T16);第二气体活塞容器(J2)的顶部出口与第一单向阀(E1)之间依次连接有第三压力传感器(F3)和电动阀门十九(T19);第一气体活塞容器(J1)的底部通过电动阀门九(T9)与第二恒压恒速泵(K2)相连,第二气体活塞容器(J2)的底部通过电动阀门十(T10)与第三恒压恒速泵(K3)相连;
泡沫发生器(D)的第二输入管道通过第二单向阀(E2)与液体活塞容器(H)的下部侧面出口相连;
泡沫发生器(D)的输出管道经电动阀门四(T4)、电动阀门三(T3)、电动阀门一(T1)连接到一岩心夹置器(A)的进口,在电动阀门三(T3)和电动阀门一(T1)之间连接有第一压力传感器(F1)。
3.根据权利要求2所述的泡沫驱油物理模拟装置,其特征在于,所述模型部分包括岩心夹置器(A),岩心夹置器(A)具有与所述注入部分相连的进口和与流出液采集部分相连的出口,岩心夹置器(A)的进口和出口处分别连接有电动阀门一(T1)和电动阀门二(T2)。
4.根据权利要求1至3任一项所述的泡沫驱油物理模拟装置,其特征在于,所述流出液采集部分包括连接于岩心夹置器(A)出口的第一恒压泵(K4)、第二恒压泵(K5)和计量装置(C),第一恒压泵(K4)与计量装置(C)之间连接有电动阀门八(T8),第二恒压泵(K5)与计量装置(C)之间连接有电动阀门七(T7),电动阀门五(T5)和电动阀门六(T6)分别连接在第二恒压泵(K5)、第一恒压泵(K4)与岩心夹置器(A)出口的通道上。
5.根据权利要求4所述的泡沫驱油物理模拟装置,其特征在于,模型部分和注入部分分别置于第一恒温箱(Q)中;流出液采集部分放置于第二恒温箱(S)中。
6.根据权利要求5所述的泡沫驱油物理模拟装置,其特征在于,还包括一计算机(P),第一恒压恒速泵(K1)、第二恒压恒速泵(K2)、第三恒压恒速泵(K3)、第一恒压泵(K4)、第二恒压泵(K5)、第一压力传感器(F1)、第二压力传感器(F2)、第三压力传感器(F3)、磁力搅拌装置(M1)、电机(B1)、计量装置(C)、第一恒温箱(Q)、第二恒温箱(S)以及各电动阀门均电连接至计算机(P)。
7.一种泡沫驱油物理模拟方法,应用权利要求1至6任一项所述的泡沫驱油物理模拟装置进行操作,包括以下步骤:
步骤一:第一气体活塞容器(J1)和第二气体活塞容器(J2)的上部装满实验用气体,液体活塞容器(H)底部装发泡剂溶液,第一活塞容器(G1)上部装入实验用原油,第二活塞容器(G2)上部装入实验用水;岩心夹置器(A)中放入实验需要的岩心;所有电动阀门均关闭;
步骤二:计算机(P)分别设定第一恒温箱(Q)和第二恒温箱(S)的温度、第一恒压恒速泵(K1)的流速及第二恒压泵(K5)和第一恒压泵(K4)的恒定压力,控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十四(T14)和电动阀门十五(T15)开启,控制第一恒压恒速泵(K1)对岩心夹置器(A)中的岩心注入水,制作岩心样品;计算机(P)控制第一恒压恒速泵(K1)停止运行,关闭电动阀门十四(T14)和电动阀门十五(T15)并计算饱和水体积;
步骤三:计算机(P)控制电动阀门十二(T12)和电动阀门十三(T13)开启,控制第一恒压恒速泵(K1)对岩心夹置器(A)中的岩心样品注入原油,制作含原油的岩心样品并计算饱和原油体积;
步骤四:当岩心样品制作完成时,计算机(P)控制第一恒压恒速泵(K1)停止运行,关闭电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十二(T12)和电动阀门十三(T13),并老化24小时以上;
步骤五:计算机(P)设置第一恒压恒速泵(K1)和第二恒压恒速泵(K2)流速、第二恒压泵(K5)和第一恒压泵(K4)的恒定压力、电机(B1)转速、计量时间、第一气体活塞容器(J1)和第二气体活塞容器(J2)的交替压力差限值,并控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门四(T4)、电动阀门五(T5)、电动阀门九(T9)、电动阀门十一(T11)、电动阀门十六(T16)和电动阀门十七(T17)开启;
步骤六:第一气体活塞容器(J1)中的气体通过电动阀门十六(T16)、第一单向阀(E1)进入泡沫发生器(D),发泡剂溶液通过电动阀门十七(T17)、第二单向阀(E2)进入泡沫发生器(D),气体和发泡剂溶液混合,形成均匀泡沫,泡沫通过电动阀门四(T4)、电动阀门三(T3)和电动阀门一(T1)进入岩心夹置器(A)中,从岩心夹置器(A)中出来的油气水混合物通过电动阀门二(T2)、电动阀门五(T5)进入第二恒压泵(K5)中;
步骤七:计算机(P)控制第一恒压泵(K4)和第二恒压泵(K5)交替工作;
步骤八:计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第二压力传感器(F2)或第三压力传感器(F3)的压力值与第一压力传感器(F1)的压力值之差大于设定的交替压力差限值时,控制第一气体活塞容器(J1)和第二气体活塞容器(J2)交替工作;
步骤九:当气体与发泡剂溶液注入量达到实验需求量时,计算机(P)控制各部件停止工作,并关闭各电动阀门,直接结束实验或控制电动阀门一(T1)、电动阀门二(T2)、电动阀门三(T3)、电动阀门五(T5)、电动阀门十一(T11)、电动阀门十四(T14)和电动阀门十五(T15)开启,设置第二恒压泵(K5)为设定的恒定压力,换后续水驱,直到实验结束。
8.根据权利要求7所述的泡沫驱油物理模拟方法,其特征在于,在所述步骤七中,计算机(P)控制第一恒压泵(K4)和第二恒压泵(K5)交替工作包括以下步骤:
(1)通过计算机(P)将第一恒压泵(K4)与第二恒压泵(K5)设定为相同的恒定压力,并设定计量时间,开启电动阀门五(T5);
(2)计量时间到,关闭电动阀门五(T5)、开启电动阀门六(T6)和电动阀门七(T7),计量时间重新开始计量,第一恒压泵(K4)保持在设定的恒定压力并接收油气水混合溶液;
(3)计算机(P)控制第二恒压泵(K5)的压力,使第二恒压泵(K5)中的所有油气水混合溶液流进计量装置(C)中,用以计量油气水产出量;
(4)计量时间到,关闭电动阀门六(T6),开启电动阀门五(T5)和电动阀门八(T8),计量时间重新开始计量,计算机(P)控制第二恒压泵(K5)保持恒定压力并接收油气水混合溶液,第一恒压泵(K4)排出油气水混合溶液到计量装置(C)中;
(5)返回步骤(2),重复上述步骤,直到实验结束。
9.根据权利要求7所述的泡沫驱油物理模拟方法,其特征在于,在所述步骤八中,计算机(P)控制第一气体活塞容器(J1)和第二气体活塞容器(J2)交替工作包括以下步骤:
1)计算机(P)设定第一气体活塞容器(J1)和第二气体活塞容器(J2)的交替压力差限值;
2)计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第三压力传感器(F3)的压力低于第一压力传感器(F1)的压力时,计算机(P)通过第三恒压恒速泵(K3)使第二气体活塞容器(J2)中的气体增压,并保持第三压力传感器(F3)的压力与第一压力传感器(F1)的压力相同;
3)当第一压力传感器(F1)与第二压力传感器(F2)的压力差值大于交替压力差限值时,交换第一气体活塞容器(J1)和第二气体活塞容器(J2),计算机(P)控制第二恒压恒速泵(K2)停止,关闭电动阀门九(T9)和电动阀门十六(T16),同时按照设定的流速开启第三恒压恒速泵(K3)和电动阀门十(T10)和电动阀门十九(T19);
4)计算机(P)实时对比第一压力传感器(F1)、第二压力传感器(F2)和第三压力传感器(F3)的压力值,当第二压力传感器(F2)的压力低于第一压力传感器(F1)的压力时,计算机(P)通过第二恒压恒速泵(K2)使第一气体活塞容器(J1)中的气体增压,并保持第二压力传感器(F2)的压力与第一压力传感器(F1)的压力相同;
5)当第一压力传感器(F1)与第三压力传感器(F3)的压力差值大于交替压力差限值时,交换第一气体活塞容器(J1)和第二气体活塞容器(J2),计算机(P)控制第三恒压恒速泵(K3)停止,关闭电动阀门十(T10)和电动阀门十九(T19),同时按照设定的流速开启第二恒压恒速泵(K2)和电动阀门十九(T19)和电动阀门十六(T16);
6)返回步骤2),重复上述步骤,直到实验结束。
CN201610481727.5A 2016-06-27 2016-06-27 一种泡沫驱油物理模拟装置及方法 Active CN106121601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610481727.5A CN106121601B (zh) 2016-06-27 2016-06-27 一种泡沫驱油物理模拟装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610481727.5A CN106121601B (zh) 2016-06-27 2016-06-27 一种泡沫驱油物理模拟装置及方法

Publications (2)

Publication Number Publication Date
CN106121601A CN106121601A (zh) 2016-11-16
CN106121601B true CN106121601B (zh) 2019-03-01

Family

ID=57266370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610481727.5A Active CN106121601B (zh) 2016-06-27 2016-06-27 一种泡沫驱油物理模拟装置及方法

Country Status (1)

Country Link
CN (1) CN106121601B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727554B (zh) * 2017-10-31 2020-10-23 中国石油大学(北京) 高温高压条件下强化碳化水的渗吸系统
CN107916915B (zh) * 2017-10-31 2020-02-18 中国石油大学(北京) 高温高压条件下碳化水的驱替系统及其方法
CN108194067A (zh) * 2017-12-30 2018-06-22 东北石油大学 对比聚驱后二元复合驱驱替效果的方法与装置
CN108194068A (zh) * 2017-12-30 2018-06-22 东北石油大学 对比聚合物驱阶段驱替效果的方法与驱替装置
CN108179999A (zh) * 2017-12-30 2018-06-19 东北石油大学 对比二氧化碳-泡沫驱驱替阶段的方法与装置
CN108222899A (zh) * 2017-12-30 2018-06-29 东北石油大学 对比二氧化碳非混相驱阶段的方法与装置
CN108222907A (zh) * 2017-12-30 2018-06-29 东北石油大学 优选三元复合驱驱替方案的方法与装置
CN108194066A (zh) * 2017-12-30 2018-06-22 东北石油大学 对比水驱后化学驱效果的装置
CN108222906A (zh) * 2017-12-30 2018-06-29 东北石油大学 对比聚驱后功能性聚合物驱效果的装置与方法
CN108222900A (zh) * 2017-12-30 2018-06-29 东北石油大学 对比二氧化碳混相驱驱替阶段效果的方法与装置
CN108590607A (zh) * 2017-12-30 2018-09-28 东北石油大学 对比聚驱后化学驱效果的方法与装置
CN110658107B (zh) * 2019-10-31 2023-04-07 中国石油天然气股份有限公司 一种泡沫粘度测量装置及方法
CN110672468B (zh) * 2019-10-31 2023-04-07 中国石油天然气股份有限公司 一种流体粘度测量装置及方法
CN111579144B (zh) * 2020-04-08 2021-10-29 中国海洋大学 乳状液中双弥散界面压力同步测量装置及方法和应用
CN112675755B (zh) * 2020-12-21 2022-11-04 大庆油田有限责任公司 一种模拟油配制装置、方法及应用
CN112378832B (zh) * 2021-01-15 2021-03-30 成都理工大学 一种基于玻璃岩心的钻井液动态损害评价仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299321C2 (ru) * 2005-01-26 2007-05-20 Леонид Степанович Милютин Способ измерения дебита продукции нефтяных скважин в системах герметизированного сбора и устройство для его осуществления "мера-охн"
CN102980828A (zh) * 2012-08-27 2013-03-20 中国石油大学(华东) 一种测量单管岩心泡沫驱气相饱和度的装置及方法
CN204945112U (zh) * 2015-07-30 2016-01-06 中国石油天然气股份有限公司 泡沫剂性能评价试验系统
CN105317413A (zh) * 2015-11-04 2016-02-10 中国石油大学(华东) 一种二元复合驱后三相泡沫驱油的实验方法
CN105424896A (zh) * 2016-01-01 2016-03-23 东北石油大学 模拟实际矿场二氧化碳长距离泡沫驱的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299321C2 (ru) * 2005-01-26 2007-05-20 Леонид Степанович Милютин Способ измерения дебита продукции нефтяных скважин в системах герметизированного сбора и устройство для его осуществления "мера-охн"
CN102980828A (zh) * 2012-08-27 2013-03-20 中国石油大学(华东) 一种测量单管岩心泡沫驱气相饱和度的装置及方法
CN204945112U (zh) * 2015-07-30 2016-01-06 中国石油天然气股份有限公司 泡沫剂性能评价试验系统
CN105317413A (zh) * 2015-11-04 2016-02-10 中国石油大学(华东) 一种二元复合驱后三相泡沫驱油的实验方法
CN105424896A (zh) * 2016-01-01 2016-03-23 东北石油大学 模拟实际矿场二氧化碳长距离泡沫驱的装置

Also Published As

Publication number Publication date
CN106121601A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106121601B (zh) 一种泡沫驱油物理模拟装置及方法
CN106525655B (zh) 一种气液注入模拟驱油和流体性能测定装置及方法
CN103556993B (zh) 低渗透油田平面五点法井网二氧化碳驱仿真实验模拟方法
CN109113692B (zh) 基质-裂缝双重介质吞吐物理模拟装置及评价吞吐过程采收率的方法
CN103645302B (zh) 实现co2驱油动态监测及反演动态模拟实验装置及方法
CN207908312U (zh) 一种凝析气藏循环注气反凝析油饱和度实验装置
CN105114062A (zh) 一种模拟低渗水平井渗流规律的实验装置及实验方法
CN103674593B (zh) 一种用于模拟低渗储层压裂直井水驱油实验的装置及方法
CN105388254B (zh) 高温高压泡沫压裂液滤失伤害实验系统
CN106593384B (zh) 具有螺旋射孔水平井的水力压裂物理模拟方法
CN107916915A (zh) 高温高压条件下碳化水的驱替系统及其方法
CN103344539A (zh) 渗透压力和相分比例可控的岩石长期多场耦合实验装置与测试方法
CN203742571U (zh) 用于在不同压力条件下制备驱油用泡沫的实验装置
CN104535724B (zh) 测量超临界二氧化碳压裂液滤失系数的装置及方法
CN106501127B (zh) 调剖用凝胶动态性能评价方法及装置
CN207393192U (zh) 一种评价二氧化碳注入温度对驱油效果影响的实验装置
CN107271328A (zh) 一种聚合物溶液抗剪切性能评价装置及方法
CN104568699A (zh) 测量超临界二氧化碳压裂液滤失系数的方法
CN104632153A (zh) 水驱油气藏型储气库水体往复运移规律的实验系统
CN108661626A (zh) 一种高温高压下井壁水侵模拟实验装置
CN208885268U (zh) 一种高温高压下井壁水侵模拟实验装置
CN108663289A (zh) 一种高压条件下利用毛细管测量液态co2/n2两相体系粘度的装置及其测量方法
CN206192824U (zh) 一种石油钻井液粘度自动测定装置
CN203685150U (zh) 一种用于微生物驱油的注剂及空气现场注入装置
CN105044293B (zh) 聚合物变粘注入装置及使用该装置进行变粘实验的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant