CN106098802A - 一种局域表面等离子增强的PtSi红外探测器及其制备方法 - Google Patents

一种局域表面等离子增强的PtSi红外探测器及其制备方法 Download PDF

Info

Publication number
CN106098802A
CN106098802A CN201610498400.9A CN201610498400A CN106098802A CN 106098802 A CN106098802 A CN 106098802A CN 201610498400 A CN201610498400 A CN 201610498400A CN 106098802 A CN106098802 A CN 106098802A
Authority
CN
China
Prior art keywords
ptsi
metal
infrared detectors
oxide
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610498400.9A
Other languages
English (en)
Inventor
王岭雪
康冰心
蔡毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201610498400.9A priority Critical patent/CN106098802A/zh
Publication of CN106098802A publication Critical patent/CN106098802A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种局域表面等离子增强的PtSi红外探测器,自上而下分别为二氧化硅介质、PtSi金属膜、p‑Si衬底以及p‑Si衬底的底部覆盖的二氧化硅反射膜;二氧化硅介质中具有金属氧化物微纳米颗粒阵列;金属氧化物微纳米颗粒阵列为采用类金属材料铝掺杂氧化锌制成的金属球有序阵列。本发明解决了传统的探测器因吸收效率在中波红外波段(3μm‑5μm)低导致量子效率不高的问题,改善了探测器的热灵敏度。

Description

一种局域表面等离子增强的PtSi红外探测器及其制备方法
技术领域
本发明属于红外成像领域,具体涉及一种局部表面等离子增强的PtSi红外探测器及其制备方法。
背景技术
硅化物肖特基势垒红外探测器是红外光子探测器,由罗姆空军发展中心的Shepher和Yang在1973年提出,开辟了使用硅作为基底材料制作红外探测器的一个新领域。由于硅材料电子学性能优良,以硅为基底材料的红外探测器制作时,可充分利用集成电路(IC)生产中的成熟技术、工艺和设备等,进行大批量、低成本、高产率的生产。硅化物肖特基势垒红外探测器由金属、半导体接触形成,其代表性探测器主要有铂硅(PtSi)、钯硅(Pd2Si)、铱硅(IrSi)、钴硅(Co2Si)和镍硅(NiSi)等。其中以制冷PtSi肖特基势垒红外探测器应用最为广泛,相比其它探测器具有以下优点:
(1)容易制作大面阵
目前CCD芯片的规模已达到亿像素量级,与之相比,大部分红外焦平面探测器的规模相差1个数量级以上。PtSi红外探测器与Si CCD单片集成,所以可在亿像素的CCD上发展亿像素的PtSi红外探测器。
(2)响应光谱范围宽
PtSi红外探测器响应光谱范围宽,最宽可达1μm-5μm,除了在常用的各种激光器波长(0.904μm,1.06μm,1.18μm,3.37μm)上使用外,还用于木星红外极光的探测(探测木星红外极光的四个波段:1.1μm-1.4μm;1.5μm-1.8μm;2.0μm-2.4μm;3μm-4μm)。
(3)响应均匀性好
良好的响应均匀性是低信噪比下目标探测与识别的重要前提,PtSi红外探测器非均匀性通常小于1%,这非常适合在低背景(一般指太空低温环境,温度大约为3K-4K)应用,比如空间碎片的探测。另外,在低背景下,PtSi红外探测器在不需额外制冷的情况下可将暗电流密度降到(大约为10-16A/cm2)空间探测要求的水平,在将读出噪声抑制到可忽略的情况下,可获得低温背景限性能。
(4)制造成本低
PtSi红外探测器能用标准Si工艺来实现的红外探测器,因此制造方便容易,成本低。
(5)时间稳定性高
PtSi红外探测器进行一次非均匀性校正可持续工作的时间约为10h的数量级,用作光谱仪测试数据重复性好。
上述优点使PtSi红外探测器在多光谱/宽光谱成像、激光探测、天文观测、医疗诊断等领域的潜在应用仍然吸引着人们的关注。但是,吸收效率低的不足导致量子效率较低,随着其它红外探测器技术的迅速发展,PtSi红外探测器的应用面临着严峻的挑战。
发明内容
有鉴于此,本发明提供了一种局域表面等离子增强的PtSi红外探测器及其制备方法,解决了传统的探测器因吸收效率在中波红外波段(3μm-5μm)低导致量子效率不高的问题,改善了探测器的热灵敏度。
为了达到上述目的,本发明的技术方案为:一种局域表面等离子增强的PtSi红外探测器,自上而下分别为二氧化硅介质、PtSi金属膜、p-Si衬底以及p-Si衬底的底部覆盖的二氧化硅反射膜。
二氧化硅介质中具有金属氧化物微纳米颗粒阵列。
金属氧化物微纳米颗粒阵列为采用类金属材料铝掺杂氧化锌制成的金属球有序阵列。
优选地,金属氧化物微纳米颗粒阵列中金属球的材质为由ZnO掺杂Al2O3制成的Al:ZnO金属氧化物,该Al:ZnO金属氧化物材料载流子浓度为4.2×1020cm-3;金属球的半径为0.65μm;金属球最低点与PtSi金属膜的距离为0.4μm。
优选地,二氧化硅抗反射膜的厚度在0.4μm-0.6μm之间。
进一步地,本发明提供了一种局域表面等离子增强的PtSi红外探测器的制备方法,其特征在于,包括如下步骤:
步骤一、采用PtSi红外探测器,该PtSi红外探测器包括自上而下的PtSi金属膜和p-Si衬底两层结构;
步骤二、在及p-Si衬底的底部蒸镀一层二氧化硅抗反射膜;
步骤三、在PtSi金属膜上淀积二氧化硅介质层;
步骤四、在二氧化硅介质层上淀积Al:ZnO金属氧化物,并刻蚀成球形有序阵列。
有益效果:
本发明可将探测器的外量子效率提高,制作工艺与常规PtSi红外探测器兼容。红外辐射经过p-Si衬底到达PtSi金属膜,被PtSi金属膜透射的部分红外辐射利用Al:ZnO金属氧化物微纳米颗粒表面电子振荡形成的局域表面等离子激元使其发生大角度散射,增加PtSi层吸收红外辐射的光学路径长度,导致光学吸收增加,进而增加探测器的外量子效率。
附图说明
图1为传统PtSi红外探测器结构示意图;
图2为本发明实施例金属氧化物微纳米颗粒局域表面等离子增强的PtSi红外探测器结构示意图;
图3为本发明实施例Al:ZnO金属氧化物材料的介电常数实部和虚部与波长的关系;
图4为本发明实施例Al:ZnO金属氧化物结构颗粒参数对PtSi红外探测器吸收的影响(传统结构的吸收效率也给出)。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明所提出的一种亚波长光栅抗反射结构和金属氧化物微纳米颗粒局域表面等离子增强的PtSi红外探测器,该种探测器设计的基本思想为:使用传统的PtSi红外探测器,本实施例中所针对的传统PtSi红外探测器结构如图1所示,具有铝(Al)反射镜、二氧化硅光腔介质、PtSi金属膜(3nm左右)、p-Si衬底(450μm左右)和二氧化硅抗反射膜(0.8μm左右);在该传统的PtSi红外探测器的PtSi金属膜上淀积二氧化硅介质层,在其上再淀积Al:ZnO金属氧化物材料,并刻蚀成球形有序阵列,新结构如图2所示。
实施例
根据上述基本思想,以金属氧化物微纳米颗粒局域表面等离子增强的PtSi红外探测器为例,通过对Al:ZnO金属氧化物微纳米颗粒参数的优化,尽量使PtSi层在3μm-5μm整个波段的吸收最大。通过控制Al2O3的质量百分比为0.5wt%,3wt%,2wt%,1wt%,可以得到载流子浓度分别为4.2×1020cm-3,6.2×1020cm-3,7.2×1020cm-3,1.2×1021cm-3的Al:ZnO金属氧化物。按照Drude模型,可以计算出Al:ZnO金属氧化物材料的介电常数实部εr和介电常数虚部εi与波长的关系,如图3所示。Al:ZnO金属氧化物材料的介电常数实部εr和虚部εi均小于传统金属金、银的值,介电常数实部小于传统金属意味着等离子波长可能可以延伸到可见光、近红外以外的中波红外波段,介电常数虚部小于传统金属意味着光学损失低适合实际使用。为使PtSi红外探测器在3μm-5μm探测波段范围内均有可能发生局域表面等离子激元共振效应,这样,我们选择载流子浓度4.2×1020cm-3的Al:ZnO金属氧化物,此时对应的Al2O3的质量百分比为0.5wt%。图3(b)显示在该浓度下,光学损失也较低。然后经过大量仿真得到Al:ZnO金属氧化物微纳米颗粒的半径、Al:ZnO金属氧化物微纳米颗粒与PtSi金属膜的距离的基本优化值,然后取这些优化值,再对其中每一个参数进行局部优化。最后数值仿真得出Al:ZnO金属氧化物微纳米颗粒的半径r=0.65μm,Al:ZnO金属氧化物微纳米颗粒与PtSi金属膜的距离p=0.4μm,吸收最大,得到Al:ZnO金属氧化物结构颗粒参数对PtSi红外探测器吸收的影响如图4所示。为了便于比较,也给出了传统结构的吸收效率。
综上,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种局域表面等离子增强的PtSi红外探测器,其特征在于,自上而下分别为二氧化硅介质、PtSi金属膜、p-Si衬底以及p-Si衬底的底部覆盖的二氧化硅反射膜;
所述二氧化硅介质中具有金属氧化物微纳米颗粒阵列;
所述金属氧化物微纳米颗粒阵列为采用类金属材料铝掺杂氧化锌制成的金属球有序阵列。
2.如权利要求1所述的一种局域表面等离子增强的PtSi红外探测器,其特征在于,所述金属氧化物微纳米颗粒阵列中金属球的材质为由ZnO掺杂Al2O3制成的Al:ZnO金属氧化物,该Al:ZnO金属氧化物材料载流子浓度为4.2×1020cm-3
所述金属球的半径为0.65μm;
所述金属球最低点与PtSi金属膜的距离为0.4μm。
3.如权利要求1或者2所述的一种局域表面等离子增强的PtSi红外探测器,其特征在于,所述二氧化硅抗反射膜的厚度在0.4μm-0.6μm之间。
4.一种如权利要求1所述的局域表面等离子增强的PtSi红外探测器的制备方法,其特征在于,包括如下步骤:
步骤一、采用PtSi红外探测器,该PtSi红外探测器包括自上而下的PtSi金属膜和p-Si衬底两层结构;
步骤二、在及p-Si衬底的底部蒸镀一层二氧化硅抗反射膜;
步骤三、在PtSi金属膜上淀积二氧化硅介质层;
步骤四、在二氧化硅介质层上淀积Al:ZnO金属氧化物,并刻蚀成球形有序阵列。
CN201610498400.9A 2016-06-29 2016-06-29 一种局域表面等离子增强的PtSi红外探测器及其制备方法 Pending CN106098802A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610498400.9A CN106098802A (zh) 2016-06-29 2016-06-29 一种局域表面等离子增强的PtSi红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610498400.9A CN106098802A (zh) 2016-06-29 2016-06-29 一种局域表面等离子增强的PtSi红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106098802A true CN106098802A (zh) 2016-11-09

Family

ID=57214643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610498400.9A Pending CN106098802A (zh) 2016-06-29 2016-06-29 一种局域表面等离子增强的PtSi红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106098802A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101973A (zh) * 2017-05-24 2017-08-29 广西师范大学 一种表面等离子波导的nh3浓度测量装置
CN109659387A (zh) * 2018-12-24 2019-04-19 苏州大学 基于杂化型等离子共振增强的红外探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187858A (ja) * 1988-01-21 1989-07-27 Nec Corp ショットキ障壁型赤外線イメージセンサ
CN104733554A (zh) * 2015-04-10 2015-06-24 上海电机学院 底部具有金属纳米颗粒结构的硅基薄膜太阳能电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187858A (ja) * 1988-01-21 1989-07-27 Nec Corp ショットキ障壁型赤外線イメージセンサ
CN104733554A (zh) * 2015-04-10 2015-06-24 上海电机学院 底部具有金属纳米颗粒结构的硅基薄膜太阳能电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y,YANG,ET.AL: ""Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plamons"", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
康冰心等,: ""External quantum efficiency-enhanced PtSi Schottky-barrier detector utilizing plasmonic ZnO:AI nanoparticles and subwavelength gratings"", 《CHINESE OPTICS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101973A (zh) * 2017-05-24 2017-08-29 广西师范大学 一种表面等离子波导的nh3浓度测量装置
CN109659387A (zh) * 2018-12-24 2019-04-19 苏州大学 基于杂化型等离子共振增强的红外探测器
CN109659387B (zh) * 2018-12-24 2022-04-01 苏州大学 基于杂化型等离子共振增强的红外探测器

Similar Documents

Publication Publication Date Title
US9658109B2 (en) Non-contact thermal sensor module
CN102175329A (zh) 红外探测器及其制作方法及多波段非制冷红外焦平面
US8513606B2 (en) THz wave detector
US20220146726A1 (en) Solid-state imaging device and electronic apparatus
JP2014525091A (ja) 生体撮像装置および関連方法
CN105977335A (zh) 短波光学热探测器及其焦平面阵列器件
Sun et al. Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating
WO2021017051A1 (zh) 一种图像采集芯片、物体成像识别设备及物体成像识别方法
CN105527026A (zh) 一种像素单元及其构成的红外成像探测器和制备工艺
CN109863509A (zh) 光电传感器及其制备方法
CN106098802A (zh) 一种局域表面等离子增强的PtSi红外探测器及其制备方法
WO2016019098A1 (en) Improved filter coating design for optical sensors
US10310144B2 (en) Image sensor having photodetectors with reduced reflections
US10067326B2 (en) Electromagnetic wave concentrator and absorber
Ehrlich et al. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera
US20180288342A1 (en) Per-pixel performance improvement for combined visible and infrared image sensor arrays
CN202066596U (zh) 红外探测器及多波段非制冷红外焦平面
CN106057955A (zh) 一种增强量子效率的PtSi红外探测器及其制备方法
Sood et al. Development of nanostructured antireflection coatings for EO/IR sensor and solar cell applications
US9964663B2 (en) Extended infrared imaging system
CN204128692U (zh) 一种像素单元及其构成的红外成像探测器
WO2022138064A1 (ja) 生体認証システムおよび生体認証方法
Pethuraja et al. Broadband antireflection coatings for advanced sensing and imaging applications
US9431454B1 (en) Imaging apparatus
US10254169B2 (en) Optical detector based on an antireflective structured dielectric surface and a metal absorber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109