CN106097236A - 基于非负矩阵分解的频域鲁棒图像可逆水印方法 - Google Patents

基于非负矩阵分解的频域鲁棒图像可逆水印方法 Download PDF

Info

Publication number
CN106097236A
CN106097236A CN201610284882.8A CN201610284882A CN106097236A CN 106097236 A CN106097236 A CN 106097236A CN 201610284882 A CN201610284882 A CN 201610284882A CN 106097236 A CN106097236 A CN 106097236A
Authority
CN
China
Prior art keywords
sequence
abscissa
detected
barycenter
represent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610284882.8A
Other languages
English (en)
Other versions
CN106097236B (zh
Inventor
安玲玲
林建忠
尹广学
蔡固顺
王泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute Of Computing Technology Xi'an University Of Electronic Science And Technology
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610284882.8A priority Critical patent/CN106097236B/zh
Publication of CN106097236A publication Critical patent/CN106097236A/zh
Application granted granted Critical
Publication of CN106097236B publication Critical patent/CN106097236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0052Embedding of the watermark in the frequency domain

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

一种基于非负矩阵分解的频域鲁棒图像可逆水印方法,具体步骤包括:(1)生成二值水印;(2)载体图像分块;(3)Slantlet变换;(4)非负矩阵分解;(5)计算质心横坐标;(6)生成极性横坐标序列;(7)保存秘钥;(8)待检测图像分块;(9)Slantlet变换;(10)非负矩阵分解;(11)计算质心横坐标;(12)生成待检测极性横坐标序列;(13)提取水印。本发明解决了现有的鲁棒可逆水印方法水印容量低,视觉质量不高,含水印图像鲁棒性不强的问题。本发明利用了Slantlet变换进行鲁棒可逆水印的提取与检测,不仅提高含水印图像的鲁棒性,而且提高了水印容量和视觉质量。

Description

基于非负矩阵分解的频域鲁棒图像可逆水印方法
技术领域
本发明属于数字信息安全技术领域,更进一步涉及数字图像水印嵌入与提取技术领域中的一种基于非负矩阵分解的频域鲁棒无损信息隐藏方法。本发明可用于数字图像在网络环境中抵抗各种攻击的能力,实现数字图像的内容认证,为版权保护、侵权追溯提供重要的依据。
背景技术
在科学技术快速发展的今天,计算机、手机终端等电子设备以及互联网等网络通信已经得到普遍的应用。数字图像的大数据时代已经来临,数字图像已经走进人们的日常生活中,但是数字技术在给我们带来便利的时候,也存在着许多的安全隐患,一些不法分子开始通过各种渠道对数字信息进行盗用和修改,使得一些权益信息不能得到很好的保障,许多信息接收者不能够准确的获取传播者所要表达的信息。
针对上面的问题,人们根据数字技术的特征提出了数字水印技术,数字水印是将具有标识的信息通过特定的算法嵌入到图像、声音或者视频等数字信息载体中,而不影响原本数字信息载体的表达和使用。这些标识信息可以是数字、版权、序列号或者图像等。嵌入的水印一般不容易被发现,只有通过特定的算法才能进行检测和分析。但是,在平常情况下,水印在嵌入的过程中会对原始信息载体造成破坏,而这些破坏一般都是不可逆的,另外,含有水印的信息载体在传输的过程中也会受到信道噪声的干扰以及一些物理性的攻击。虽然上述的这些损害和攻击对原始信息载体造成的损害微乎其微,但是在面对一些像法庭证据照片、医学影像以及交易票据等敏感性数据时,是不允许这些信息载体存在任何失真的,必须保持原本信息载体的完整性。所以我们必须要得到一种既能保持原本信息载体完整性,又能抵抗外界各种攻击的鲁棒性水印,我们将这种水印方案称为鲁棒可逆水印。由于其保持信息载体的完整性和鲁棒性,目前正引起学术领域的广泛研究和关注。目前,关于可逆水印的研究已经有了一定的突破和进展,但是其抵抗攻击的鲁棒性仍局限在有损压缩与高斯噪声等方面,抵抗复杂攻击的能力较弱,并且许多关于可逆水印的发明研究也已经申请了专利。
西安电子科技大学申请的专利“基于小波域增强型图像掩膜的水印嵌入方法及装置”(申请号:201110088398.5,申请公开号:CN 102142130 A)论文中公开了一种基于小波域增强型图像掩膜的水印嵌入方法。该方法首先将输入图像进行小波分解;然后通过低频子带的背景亮度和亮度变化的最大加权平均计算小波系数的亮度掩膜,通过压缩的输入图像局部标准差和高频子带的边缘掩膜来计算小波系数的纹理掩膜,并根据子带方向确定小波系数的方向掩膜;最后将亮度掩膜、纹理掩膜和方向掩膜进行加权综合,得到小波系数的恰可失真门限。该方法存在的不足之处是:由于该方法只是在小波的低通子带进行水印嵌入,使得水印的容量有限;由于该方法对原始图像进行水印嵌入,使得含有水印的图像视觉质量不高;通过该方法不能够抵挡几何变换等复杂攻击,最终得到的水印图像比较脆弱。
刘竞杰、陶亮在其发表的论文“一种基于非负矩阵分解的鲁棒零水印算法”(《计算机工程与应用》2012,106:90-93)中提出一种基于非负矩阵分解和离散小波变换的图像零水印算法。该方法对原始图像进行不重叠分块,分别对每子块图像进行3级小波分解得到低频近似分量;对细节分量作非负矩阵分解得到可近似表示子块图像的基矩阵和系数矩阵;将系数矩阵量化得到特征向量,通过特征向量和水印的运算得到原始图像的版权信息。该方法存在的不足之处是:由于该方法采用的水印算法抵抗攻击的能力较弱,不具有较强的鲁棒性。
发明内容
本发明的目的是提供一种基于非负矩阵分解的频域鲁棒图像可逆水印方法,主要在数字图像中嵌入和提取水印,为版权保护提供依据。本发明要解决的主要问题是现有的鲁棒可逆水印方法水印容量低,视觉质量不高,尤其是含水印图像在抵抗外界攻击鲁棒性的问题。
实现本发明目的的具体思路是,在水印的嵌入过程中:首先生成二值水印和对载体图像进行分块,然后对载体图像的每个分块进行Slantlet变换、非负矩阵分解、计算质心横坐标,接着生成极性横坐标序列,最后将极性横坐标序列与二值水印进行异或运算,得到水印检测密钥;在水印的提取过程中:首先对待检测图像进行分块,然后对待检测图像的每个分块进行Slantlet变换、非负矩阵分解、计算质心横坐标,接着生成待检测极性横坐标序列,最后将待检测极性横坐标序列与水印检测密钥做异或运算,得到待检测水印信息。
本发明包括水印嵌入和水印提取两个过程;
本发明水印嵌入过程的具体步骤为:
(1)二值水印生成:
(1a)将灰度图像进行二值化处理,得到二值图像;
(1b)将二值图像从左上方提取r×r像素的一块正方形基块,将此正方形基块作为二值水印,其中,r≤min(m,n),min(m,n)表示取灰度图像中行数m与列数n的最小值;
(2)载体图像分块:
(2a)将载体图像分成大小相同且互不重叠的子块,得到一组载体图像块序列;
(2b)丢弃分块后不能被划分的剩余部分;
(3)Slantlet变换:
依次选取载体图像块序列中各个子块,按照下式,对所选取的载体图像块序列中的子块进行Slantlet变换,得到低频子带序列:
Si=Slantlet(Bi)
其中,Si表示经过Slantlet变换之后的第i个低频子带,Slantlet表示Slantlet变换操作,Bi表示载体图像块序列中第i个子块,1≤i≤m,m表示载体图像块序列的所有块数;
(4)非负矩阵分解:
对低频子带序列中的各低频子带进行非负矩阵分解,得到系数矩阵序列;
(5)计算质心横坐标:
依次选取系数矩阵序列中各个子块,按照下式,对所选取的系数矩阵序列中的子块进行质心横坐标计算,得到质心横坐标序列:
Xk=getAbsci(Hk)
其中,Xk表示经过质心横坐标计算之后得到的质心横坐标序列中的第k个值,getAbsci表示质心横坐标计算操作,Hk表示系数矩阵序列中第k个子块,1≤k≤m,m表示载体图像块序列的所有块数;
(6)生成极性横坐标序列:
(6a)按照下式,计算质心横坐标序列的平均值:
X ‾ = 1 m Σ j = 1 m X j
其中,表示质心横坐标序列的平均值,m表示载体图像块序列的所有块数,∑表示求和操作,Xj表示质心横坐标序列中的第j个值,1≤j≤m;
(6b)依次选取质心横坐标序列中各个值,按照下式,对所选取的质心横坐标序列中的值计算极性横坐标,得到极性横坐标序列:
其中,Vl表示经过极性横坐标计算之后得到的极性横坐标序列中的第l个值,Xl表示质心横坐标序列中的第l个值,表示质心横坐标序列的平均值,1≤l≤m,m表示载体图像块序列的所有块数;
(7)保存秘钥:
将极性横坐标序列与二值水印进行异或运算,得到水印检测密钥;
本发明水印提取过程的具体步骤为:
(8)待检测图像分块:
(8a)将待检测图像分成大小相同且互不重叠的子块,得到一组待检测图像块序列;
(8b)丢弃分块后不能被划分的剩余部分;
(9)Slantlet变换:
依次选取待检测图像块序列中各个子块,按照下式,对所选取的待检测图像块序列中的子块进行Slantlet变换,得到待检测低频子带序列:
S′p=Slantlet(B′p)
其中,S′p表示经过Slantlet变换之后的第p个低频子带,Slantlet表示Slantlet变换操作,B′p表示待检测图像块序列中第p个子块,1≤p≤n,n表示水印检测密钥的大小;
(10)非负矩阵分解:
对待检测低频子带序列中的各个低频子带进行非负矩阵分解,得到待检测系数矩阵序列;
(11)计算质心横坐标:
依次选取待检测系数矩阵序列中各个子块,按照下式,对所选取的待检测系数矩阵序列中的子块进行质心横坐标计算,得到待检测质心横坐标序列:
Xq′=getAbsci(Hq′)
其中,Xq′表示经过质心横坐标计算之后得到的待检测质心横坐标序列中的第q个值,getAbsci表示质心横坐标计算操作,Hq′表示待检测系数矩阵序列中第q个子块,1≤q≤n,n表示水印检测密钥的大小;
(12)生成待检测极性横坐标序列:
(12a)按照下式,计算待检测质心横坐标序列的平均值:
X ′ ‾ = 1 n Σ t = 1 n X t ′
其中,表示待检测质心横坐标序列的平均值,n表示水印检测密钥的大小,∑表示求和操作,Xt′表示待检测质心横坐标序列中的第t个值,1≤t≤n;
(12b)依次选取待检测质心横坐标序列中各个值,按照下式,对所选取的待检测质心横坐标序列中的值计算极性横坐标,得到待检测极性横坐标序列:
其中,Vy′表示经过极性横坐标计算之后得到的待检测极性横坐标序列中的第y个值,Xy′表示待检测质心横坐标序列中的第y个值,表示待检测质心横坐标序列的平均值,1≤y≤n,n表示水印检测密钥的大小;
(13)提取水印:
将待检测极性横坐标序列与水印检测密钥做异或运算,得到待检测水印信息。
与现有技术相比,本发明具有以下优点:
第一,本发明在水印嵌入和提取的过程中,采用Slantlet变换进行鲁棒可逆水印的提取与检测,克服了现有技术中水印不能够抵挡几何变换等复杂攻击的问题,使得本发明具有能够抵抗各种几何变换等复杂攻击的鲁棒性优点。
第二,本发明在水印嵌入的过程中,将载体图像分成大小相同且互不重叠的子块,并实现在每个子块中都嵌入水印,克服了现有技术中水印容量有限的问题,使得本发明具有水印容量大、且易于控制的优点。
第三,本发明在水印嵌入的过程中,通过保存水印嵌入过程中得到的水印检测密钥,就可实现在载体图像中嵌入水印,保证含水印图像的零篡改,克服了现有技术中含水印图像视觉质量不高的问题,使得本发明具有能够改善水印图像视觉质量的优点。
附图说明
图1是本发明的水印嵌入流程框图;
图2是本发明的水印提取流程框图;
图3是本发明的仿真实验图。
具体实施方式
下面结合附图对本发明做详细的描述。
参照附图1,本发明的水印嵌入步骤如下。
步骤1,二值水印生成。
给定一幅大小为m×n像素的灰度图像P和阈值T,0≤T≤255,比较灰度图像P中各个像素值与阈值T的大小确定二值图像V的取值,比较规则如下:
其中,V(u,v)表示二值图像V中第u行、第v列的取值,P(u,v)表示灰度图像P中第u行、第v列的像素值,1≤u≤m,1≤v≤n。
将二值图像V从左上方开始提取大小为r×r像素的正方形基块E,并将此正方形基块E作为二值水印W,其中,r=2t,t为正整数且r≤min(m,n),min(m,n)表示取灰度图像P中行数m与列数n的最小值。
步骤2,载体图像分块。
将大小为M×N像素的载体图像I,根据步骤1可以求得二值水印W的大小为r×r像素,选取载体图像I左上方大小为(r×c)×(r×c)像素的待划分的正方形基块Q。如果(r×c)<M或者(r×c)<N,则丢弃正方形基块Q之外的部分,其中c=2s,s为满足条件下的最大正整数,min(M,N)表示取载体图像I中行数M与列数N的最小值,表示取不大于min(M,N)/r的最大整数,s的取值范围为[2,4]。
将正方形基块Q分成大小为c×c像素、个数为r×r且互不重叠的子块,按行排序得到载体图像块序列其中Bg表示载体图像块序列B中第g个子块,1≤g≤r2,r2表示载体图像块序列的所有块数。
步骤3,Slantlet变换。
依次选取载体图像块序列B中各个子块,利用文献“I.Selesnick.The SlantletTransform.IEEE Trans.Signal Processing,vol.47,pp.1304-1313,May 1999”中提出的Slantlet变换,按照下式,对所选取的载体图像块序列中的子块,进行Slantlet变换,得到低频子带序列
Si=Slantlet(Bi)
其中,Si表示经过Slantlet变换之后的第i个低频子带,其大小为大小为(c/2)×(c/2)像素,Slantlet表示Slantlet变换操作,Bi表示载体图像块序列中第i个子块,1≤i≤r2,r2表示载体图像块序列的所有块数。
步骤4,非负矩阵分解。
选取低频子带序列S的第α个低频子带Sα,利用文献“D.Donoho,V.Stodden.Whendoes non-negative matrix factorization give a correct decomposition intoparts?Proceedings of the 2003conference on Advances in neural informationprocessing systems 16,pp.1141-1148,2004”中提出的非负矩阵分解法,对低频子带Sα进行非负矩阵分解,得到第α个分解基矩阵Uα和系数矩阵Hα,其中设定分解基矩阵Uα的大小为(c/2)×1,系数矩阵Hα的大小为1×(c/2);随后依次对各个低频子带进行非负矩阵分解得到系数矩阵序列其中,1≤α≤r2,r2表示载体图像块序列的所有块数。
步骤5,计算质心横坐标。
依次选取系数矩阵序列H中各个子块,按照下式,对所选取的系数矩阵序列中的子块进行质心横坐标计算,得到质心横坐标序列X:
Xk=getAbsci(Hk)
其中,Xk表示经过质心横坐标计算之后得到的质心横坐标序列中的第k个值,getAbsci表示文献“L.An,X.Gao,Y.Yuan,D.Tao,C.Deng,F.Ji.Content-adaptivereliable robust lossless data embedding.Neurcomputing,vol.79,pp.1-11,2012”中提出的质心坐标计算操作,Hk表示系数矩阵序列中第k个子块,1≤k≤m,m表示载体图像块序列的所有块数;
步骤6,生成极性横坐标序列。
按照下式,计算质心横坐标序列X的平均值
X &OverBar; = 1 r 2 &Sigma; j = 1 r 2 X j
其中,表示质心横坐标序列X的平均值,r2表示载体图像块序列的所有块数,∑表示求和操作,Xj表示质心横坐标序列X中的第j个值,1≤j≤r2
依次选取质心横坐标序列X中各个值,按照下式,对所选取的质心横坐标序列中的值计算极性横坐标,得到极性横坐标序列V=(Vl,...,Vl,...,Vl):
其中,Vl表示经过极性横坐标计算之后得到的极性横坐标序列X中的第l个值,Xl表示质心横坐标序列X中的第l个值,表示质心横坐标序列X的平均值,1≤l≤r2,r2表示载体图像块序列的所有块数;
步骤7,保存秘钥。
将步骤1中得到的二值水印W进行一维化处理,得到一维化后的二值水印横坐标序列W′。按照下式,确定一维二值水印横坐标序列
Wx×r+y-r=W(x,y)
式中,W(x,y)表示二值水印W中第x行,第y列的取值,Wx×r+y-r表示一维二值水印横坐标序列W′在第x×r+y-r位置处的取值,1≤x≤r,1≤y≤r,r表示载体图像块序列的所有块数的正数平方根。
将一维二值水印横坐标序列W′与极性横坐标序列V做异或运算,利用如下公式得到水印检测密钥
其中,Kε表示水印检测密钥K中第ε个元素值,Wε′表示一维二值水印横坐标序列W′第ε个元素的取值,Vε表示极性横坐标序列V第ε个元素的取值,1≤ε≤r2,r2表示二值水印W的大小。
通过上述步骤1到步骤7可以实现水印嵌入,得到原始图像对应的水印检测密钥K。
参照附图2,本发明的水印提取步骤如下。
步骤8,载体图像分块。
将大小为M×N像素的待检测图像I′,根据水印嵌入过程中得到的秘钥K,获取秘钥K的大小为r2,选取待检测图像I′左上方大小为(r×d)×(r×d)像素的待划分的正方形基块Q′。如果(r×d)<M或者(r×d)<N,则丢弃正方形基块Q′之外的部分,其中 表示开根号操作,r2表示水印检测密钥的大小。
将正方形基块Q′分成大小为d×d像素、个数为r×r且互不重叠的子块,按行排序得到待检测图像块序列其中B′k表示待检测图像块序列B′中第k个子块,1≤k≤r2,r2表示秘钥K的大小。
步骤9,Slantlet变换。
依次选取待检测图像块序列B′中各个子块,利用文献“I.Selesnick.TheSlantlet Transform.IEEE Trans.Signal Processing,vol.47,pp.1304-1313,May 1999”中提出的Slantlet变换,按照下式,对所选取的待检测图像块序列中的子块,进行Slantlet变换,得到待检测低频子带序列
S′ρ=Slantlet(B′ρ)
其中,S′ρ表示经过Slantlet变换之后的第ρ个低频子带,其大小为大小为(d/2)×(d/2)像素,Slantlet表示Slantlet变换操作,B′ρ表示待检测图像块序列中第ρ个子块,1≤ρ≤r2,r2表示秘钥K的大小。
步骤10,非负矩阵分解。
选取待检测低频子带序列S′的第θ个低频子带Sθ′,利用文献“D.Donoho,V.Stodden.When does non-negative matrix factorization give a correctdecomposition into parts?Proceedings of the 2003conference on Advances inneural information processing systems 16,pp.1141-1148,2004”中提出的非负矩阵分解法,对低频子带Sθ′进行非负矩阵分解,得到第θ个待检测分解基矩阵Uθ′和待检测系数矩阵Hθ′,其中设定待检测分解基矩阵Uθ′的大小为(d/2)×1,待检测系数矩阵Hθ′的大小为1×(d/2);随后依次对各个低频子带进行非负矩阵分解得到待检测系数矩阵序列其中,1≤θ≤r2,r2表示表示秘钥K的大小。
步骤11,计算质心横坐标。
依次选取待检测系数矩阵序列H′中各个子块,按照下式,对所选取的待检测系数矩阵序列中的子块进行质心横坐标计算,得到待检测质心横坐标序列X′:
Xq′=getAbsci(Hq′)
其中,Xq′表示经过质心横坐标计算之后得到的待检测质心横坐标序列中的第q个值,getAbsci表示文献“L.An,X.Gao,Y.Yuan,D.Tao,C.Deng,F.Ji.Content-adaptivereliable robust lossless data embedding.Neurcomputing,vol.79,pp.1-11,2012”中提出的环形直方图质心坐标的计算操作,Hq′表示待检测系数矩阵序列中第q个子块,1≤q≤n,n表示水印检测密钥的大小;
步骤12,生成待检测极性横坐标序列。
按照下式,计算待检测质心横坐标序列X′的平均值
X &prime; &OverBar; = 1 r 2 &Sigma; &delta; = 1 r 2 X &delta; &prime;
其中,表示待检测质心横坐标序列X′的平均值,r2表示秘钥K的大小,∑表示求和操作,δ表示待检测质心横坐标序列X′的下标索引,X′δ表示待检测质心横坐标序列X′中的第δ个值,1≤δ≤r2
依次选取待检测质心横坐标序列X′中各个值,按照下式,对所选取的质心横坐标序列中的值计算极性横坐标,得到待检测极性横坐标序列
其中,表示经过极性横坐标计算之后得到的待检测极性横坐标序列X′中的第个值,表示待检测质心横坐标序列X′中的第个值,表示待检测质心横坐标序列的平均值,r2表示秘钥K的大小。
步骤13,提取水印。
将待检测极性横坐标序列V′与嵌入过程中得到的水印检测密钥K按位做异或运算,按如下规则得到待检测一维二值水印横坐标序列
其中,表示待检测一维二值水印横坐标序列第λ个元素的取值,Kλ表示嵌入过程中得到的水印检测密钥K中第λ个元素值,Vλ′表示待检测的极性横坐标序列V′第λ个元素的取值,1≤λ≤r2,r2表示秘钥K的大小。
将待检测一维二值水印横坐标序列各个取值,按如下规则确定待检测二维二值水印
W ^ ( p , q ) = W ^ p &times; r + q - r
其中,表示待检测二值水印中第p行,第q列的取值,表示待检测一维二值水印横坐标序列第p×r+q-r位置处的取值,1≤p≤r,1≤q≤r,r表示秘钥K大小的正平方根。
通过上述步骤8到步骤13可以实现水印提取,得到从待检测图像Iα中提取的水印
下面结合仿真图对本发明效果做进一步的描述。
1.仿真实验条件:
实现本发明仿真实验的软件环境为美国Mathworks公司开发的MATLAB 2015a。本发明仿真实验的一些记号为:将现有技术基于三级小波分解的方法记为WD,本发明方法记为SN。本发明的仿真实验中将原始图像和攻击后的图像分成大小为32×32的子块,二值水印大小为16×16。
参照附图3,将本发明方法与现有技术的基于三级小波分解方法进行仿真实验得到的结果,图3(a)、图3(b)、图3(c)、图3(d)为进行仿真实验的四张大小为512×512×8的载体图像,仿真实验中首先将这两种方法分别应用到这四张载体图像中,得到水印检测密钥,然后对原始灰度图像进行JPEG和JPEG2000的有损压缩,添加高斯噪声和椒盐噪声,进行中值滤波、高斯低通滤波,以及旋转和剪切攻击,得到各自相应的攻击后的图像,最后再运用这些方法从攻击后的图像中获得水印检测密钥,进行鲁棒性的仿真实验。
2.仿真实验内容:
实验1:鲁棒性仿真实验。
本发明进行鲁棒性仿真实验的具体过程是:将初始给定的二值水印W一维化,得到对应一维水印横坐标序列W′。原始图像I经过攻击得到攻击后的图像Iα,
使用本发明得到原始图像对应的水印检测密钥K和攻击后的图像Iα对应的极性横坐标序列Vα,然后把原始图像对应的水印检测密钥K和极性横坐标序列Vα做异或运算,得到攻击后的一维二值水印横坐标序列
本发明以错误率ER作为评判依据,测试两种方法的鲁棒性,其中ER表示为
E R = s u m ( W &prime; &CircleTimes; W ^ ) / | K |
表示将原始的一维二值水印横坐标序列W′和攻击后提取的一维二值水印横坐标序列做异或运算,sum表示对异或运算得到的一维横坐标序列进行求和运算,将sum求得的和除以水印检测密钥K的位数|K|,得到错误率ER。显然,错误率越低表明鲁棒性越好;反之错误率越高表明鲁棒性越差。
下面在JPEG攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表1所示:本发明仿真实验中JPEG压缩的质量因子取10个值:10,20,30,40,50,60,70,80,90,100,分别在每个压缩因子下测试两种方法的鲁棒性,其中JPEG压缩的质量因子越小,压缩强度越大。
表1.在JPEG攻击下的错误率比较
由表1可见,本发明SN的错误率在不同的JPEG压缩质量因子下均小于现有技术基于三级小波分解方法,说明本发明在JPEG攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在JPEG2000攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表2所示:本发明仿真实验中JPEG2000压缩的压缩率取10个值:0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,分别在每个压缩率下测试两种方法的鲁棒性,其中JPEG2000压缩的压缩率越小,压缩强度越大。
表2.在JPEG2000下不同压缩率下的错误率
由表2可见,本发明SN的错误率在不同的JPEG2000压缩率下均小于现有技术基于三级小波分解方法,说明本发明在JPEG2000攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在旋转攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表3所示:本发明仿真实验中添加旋转度数分别为1°,2°,3°,5°,8°,15°,30°,45°,60°,90°的旋转攻击,分别在每个旋转度数下测试两种方法的鲁棒性,其中旋转度数越大,旋转攻击强度越大。
表3.在旋转攻击不同旋转度数下的错误率
由表3可见,本发明SN的错误率在不同的旋转攻击下均小于现有技术基于三级小波分解方法,说明本发明在旋转攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在剪切攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表4所示:本发明仿真实验中添加剪切因子分别为1/16和1/8剪切攻击,分别在每个剪切因子下测试两种方法的鲁棒性,其中剪切攻击将待剪切区域的像素的灰度值全部置为0,剪切因子越大,剪切攻击强度越大。
表4.在剪切攻击下的错误率
由表4可见,本发明SN的错误率在不同的剪切攻击下均小于现有技术基于三级小波分解方法,说明本发明在剪切攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在高斯噪声攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表5所示。
表5.在高斯噪声方法下的错误率
本发明仿真实验中添加均值为0、方差分别为0.005和0.01高斯噪声,分别在每个方差下测试两种方法的鲁棒性,其中在均值一定的情况下,方差越大,噪声攻击强度越大。
由表5可见,本发明SN的错误率在不同的高斯噪声攻击下均小于现有技术基于三级小波分解方法,说明本发明在高斯噪声攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在椒盐噪声攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表6所示:本发明仿真实验中添加噪声密度分别为0.02和0.03椒盐噪声,分别在每个噪声密度下测试两种方法的鲁棒性,其中椒盐噪声密度越大,噪声攻击强度越大。
表6.在添加椒盐噪声方法下的错误率
由表6可见,本发明SN的错误率在不同的椒盐噪声攻击下均小于现有技术基于三级小波分解方法,说明本发明在椒盐噪声攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在中值滤波攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表7所示:本发明仿真实验中使用窗口尺寸大小分别为3×3和5×5进行中值滤波,分别在每个窗口尺寸下测试两种方法的鲁棒性,其中窗口尺寸越大,中值滤波攻击强度越大。
表7.在中值滤波下的错误率
由表7可见,本发明SN的错误率在不同的中值滤波攻击下均小于现有技术基于三级小波分解方法,说明本发明在中值滤波攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
下面在高斯低通滤波攻击下对本发明和现有技术基于三级小波分解方法的错误率进行比较,得到的结果如表8所示:本发明仿真实验中使用模板尺寸分别为2×2和3×3进行高斯低通滤波,分别在每个模板尺寸下测试两种方法的鲁棒性,其中模板尺寸越大,高斯低通滤波攻击强度越大。
表8.在中值滤波下的错误率
由表8可见,本发明SN的错误率在不同的高斯低通滤波攻击下均小于现有技术基于三级小波分解方法,说明本发明在高斯低通滤波攻击下比现有技术基于三级小波分解方法具有较好的鲁棒性。
从上述仿真实验结果来看,在各种攻击下,本发明错误率都低于现有技术基于三级小波分解方法,说明本发明比现有技术基于三级小波分解方法具有较好的鲁棒性。
实验2:仿真实验容量:
本发明仿真实验中以客观指标位/像素bpp作为评判依据,测试现有技术WD和本发明SN三种方法的容量,得到的结果如表9所示,其中,bpp=Q/PX,Q是指在原始图像中最多能嵌入的水印位数,PX是指在原始图像中像素的个数,在本仿真实验中PX=512×512=262144。在原始图像大小确定的情况下,bpp越大,表示嵌入水印的位数越多,即容量越大。
表9.不同方法的容量值
由表9结果可见,本发明方法SN的容量与WD的容量值一样,表明二者的容量值不存在差异。
实验3:视觉质量仿真实验:
本发明仿真实验中以客观指标峰值信噪比PSNR作为评判依据,测试两种方法在原始图像以最大容量嵌入情况下含水印图像的视觉质量,其中PSNR表示为
P S N R = 10 l o g ( M &times; N &times; 255 2 &Sigma; i = 1 M &Sigma; j = 1 N ( I ( i , j ) - I W ( i , j ) ) 2 ) ,
式中,M×N是原始图像大小,I(i,j)是原始图像在第i行第j列的像素值,
IW(i,j)是含水印图像在第i行第j列的像素值。本仿真实验在自然图像和医学图像数据库上进行测试,仿真实验结果如表10所示,
表10.不同方法的PSNR(dB)值
从表10的仿真实验结果可以看出,本发明SN和WD的PSNR值均为+∞,不存在任何失真,这主要是由于这两种方法都是采用可逆水印技术,无需在原始图像中嵌入水印,而只需要保存水印嵌入过程中的秘钥,对原始图像不会造成伤害,所以这两种方法的PSNR值为+∞。
综上所述,与基于三级小波分解方法相比,本发明获得了更好的鲁棒性。

Claims (3)

1.一种基于非负矩阵分解的频域鲁棒图像可逆水印方法,包括水印嵌入和水印提取两个过程;
所述水印嵌入过程的具体步骤为:
(1)生成二值水印:
(1a)将灰度图像进行二值化处理,得到二值图像;
(1b)将二值图像从左上方提取r×r像素的一块正方形基块,将此正方形基块作为二值水印,其中,r≤min(m,n),min(m,n)表示取灰度图像中行数m与列数n的最小值;
(2)载体图像分块:
(2a)将载体图像分成大小相同且互不重叠的子块,得到一组载体图像块序列;
(2b)丢弃分块后不能被划分的剩余部分;
(3)Slantlet变换:
依次选取载体图像块序列中各个子块,按照下式,对所选取的载体图像块序列中的子块进行Slantlet变换,得到低频子带序列:
Si=Slantlet(Bi)
其中,Si表示经过Slantlet变换之后的第i个低频子带,Slantlet表示Slantlet变换操作,Bi表示载体图像块序列中第i个子块,1≤i≤m,m表示载体图像块序列的所有块数;
(4)非负矩阵分解:
对低频子带序列中的各低频子带进行非负矩阵分解,得到系数矩阵序列;
(5)计算质心横坐标:
依次选取系数矩阵序列中各个子块,按照下式,对所选取的系数矩阵序列中的子块进行质心横坐标计算,得到质心横坐标序列:
Xk=getAbsci(Hk)
其中,Xk表示经过质心横坐标计算之后得到的质心横坐标序列中的第k个值,getAbsci表示质心横坐标计算操作,Hk表示系数矩阵序列中第k个子块,1≤k≤m,m表示载体图像块序列的所有块数;
(6)生成极性横坐标序列:
(6a)按照下式,计算质心横坐标序列的平均值:
X &OverBar; = 1 m &Sigma; j = 1 m X j
其中,表示质心横坐标序列的平均值,m表示载体图像块序列的所有块数,∑表示求和操作,Xj表示质心横坐标序列中的第j个值,1≤j≤m;
(6b)依次选取质心横坐标序列中各个值,按照下式,对所选取的质心横坐标序列中的值计算极性横坐标,得到极性横坐标序列:
其中,Vl表示经过极性横坐标计算之后得到的极性横坐标序列中的第l个值,Xl表示质心横坐标序列中的第l个值,表示质心横坐标序列的平均值,1≤l≤m,m表示载体图像块序列的所有块数;
(7)保存秘钥:
将极性横坐标序列与二值水印进行异或运算,得到水印检测密钥;
所述水印提取过程的具体步骤如下:
(8)待检测图像分块:
(8a)将待检测图像分成大小相同且互不重叠的子块,得到一组待检测图像块序列;
(8b)丢弃分块后不能被划分的剩余部分;
(9)Slantlet变换:
依次选取待检测图像块序列中各个子块,按照下式,对所选取的待检测图像块序列中的子块进行Slantlet变换,得到待检测低频子带序列:
S′p=Slantlet(B′p)
其中,S′p表示经过Slantlet变换之后的第p个低频子带,Slantlet表示Slantlet变换操作,B′p表示待检测图像块序列中第p个子块,1≤p≤n,n表示水印检测密钥的大小;
(10)非负矩阵分解:
对待检测低频子带序列中的各个低频子带进行非负矩阵分解,得到待检测系数矩阵序列;
(11)计算质心横坐标:
依次选取待检测系数矩阵序列中各个子块,按照下式,对所选取的待检测系数矩阵序列中的子块进行质心横坐标计算,得到待检测质心横坐标序列:
X′q=getAbsci(H′q)
其中,X′q表示经过质心横坐标计算之后得到的待检测质心横坐标序列中的第q个值,getAbsci表示质心横坐标计算操作,H′q表示待检测系数矩阵序列中第q个子块,1≤q≤n,n表示水印检测密钥的大小;
(12)生成待检测极性横坐标序列:
(12a)按照下式,计算待检测质心横坐标序列的平均值:
X &prime; &OverBar; = 1 n &Sigma; t = 1 n X t &prime;
其中,表示待检测质心横坐标序列的平均值,n表示水印检测密钥的大小,∑表示求和操作,Xt′表示待检测质心横坐标序列中的第t个值,1≤t≤n;
(12b)依次选取待检测质心横坐标序列中各个值,按照下式,对所选取的待检测质心横坐标序列中的值计算极性横坐标,得到待检测极性横坐标序列:
其中,V′y表示经过极性横坐标计算之后得到的待检测极性横坐标序列中的第y个值,X′y表示待检测质心横坐标序列中的第y个值,表示待检测质心横坐标序列的平均值,1≤y≤n,n表示水印检测密钥的大小;
(13)提取水印:
将待检测极性横坐标序列与水印检测密钥做异或运算,得到还原后的水印。
2.根据权利要求1所述的基于非负矩阵分解的频域鲁棒图像可逆水印方法,其特征在于:步骤(2a)中所述分块的大小为c×c像素的正方形,其中,c=2s,s的取值范围为[2,4]。
3.根据权利要求1所述的基于非负矩阵分解的频域鲁棒图像可逆水印方法,其特征在于:步骤(8a)中所述分块的大小为d×d像素的正方形,其中, 表示开根号操作,u表示水印检测密钥的大小。
CN201610284882.8A 2016-04-29 2016-04-29 基于非负矩阵分解的频域鲁棒图像可逆水印方法 Active CN106097236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610284882.8A CN106097236B (zh) 2016-04-29 2016-04-29 基于非负矩阵分解的频域鲁棒图像可逆水印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610284882.8A CN106097236B (zh) 2016-04-29 2016-04-29 基于非负矩阵分解的频域鲁棒图像可逆水印方法

Publications (2)

Publication Number Publication Date
CN106097236A true CN106097236A (zh) 2016-11-09
CN106097236B CN106097236B (zh) 2018-12-21

Family

ID=57229201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610284882.8A Active CN106097236B (zh) 2016-04-29 2016-04-29 基于非负矩阵分解的频域鲁棒图像可逆水印方法

Country Status (1)

Country Link
CN (1) CN106097236B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805788A (zh) * 2018-05-22 2018-11-13 南开大学 基于图像拓扑结构的可逆水印方法
CN109598668A (zh) * 2018-12-05 2019-04-09 吉林大学 一种基于静电力的触觉形式数字水印嵌入及检测方法
CN113556553A (zh) * 2021-06-30 2021-10-26 西安电子科技大学 快速视频水印嵌入和提取方法、系统、设备、介质、终端
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493928A (zh) * 2009-02-10 2009-07-29 国网信息通信有限公司 数字水印嵌入、提取和量化步长协调因子优化方法及装置
CN101540898A (zh) * 2009-04-24 2009-09-23 西安电子科技大学 基于非负矩阵分解的avs视频数字水印方法
US20100177977A1 (en) * 2009-01-15 2010-07-15 Google Inc. Image Watermarking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177977A1 (en) * 2009-01-15 2010-07-15 Google Inc. Image Watermarking
CN101493928A (zh) * 2009-02-10 2009-07-29 国网信息通信有限公司 数字水印嵌入、提取和量化步长协调因子优化方法及装置
CN101540898A (zh) * 2009-04-24 2009-09-23 西安电子科技大学 基于非负矩阵分解的avs视频数字水印方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘竞杰: "一种基于非负矩阵分解的鲁棒零水印算法", 《计算机工程与应用》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805788A (zh) * 2018-05-22 2018-11-13 南开大学 基于图像拓扑结构的可逆水印方法
CN108805788B (zh) * 2018-05-22 2022-04-26 南开大学 基于图像拓扑结构的可逆水印方法
CN109598668A (zh) * 2018-12-05 2019-04-09 吉林大学 一种基于静电力的触觉形式数字水印嵌入及检测方法
CN109598668B (zh) * 2018-12-05 2023-03-14 吉林大学 一种基于静电力的触觉形式数字水印嵌入及检测方法
CN113556553A (zh) * 2021-06-30 2021-10-26 西安电子科技大学 快速视频水印嵌入和提取方法、系统、设备、介质、终端
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质
CN116883226B (zh) * 2023-07-21 2024-01-02 中国国土勘测规划院 Dem零水印嵌入与提取方法、装置及介质

Also Published As

Publication number Publication date
CN106097236B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
Mahmood et al. A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform
Bayar et al. On the robustness of constrained convolutional neural networks to jpeg post-compression for image resampling detection
CN106023056B (zh) 基于dwt和主成分分析压缩的零水印嵌入、提取方法及装置
Mellimi et al. A fast and efficient image watermarking scheme based on deep neural network
Sari et al. Robust and imperceptible image watermarking by DC coefficients using singular value decomposition
CN106097236B (zh) 基于非负矩阵分解的频域鲁棒图像可逆水印方法
CN101246588B (zh) 彩色图像超复数空间的自适应水印算法
CN107240061A (zh) 一种基于动态bp神经网络的水印嵌入、提取方法与装置
Bolourian Haghighi et al. An effective semi-fragile watermarking method for image authentication based on lifting wavelet transform and feed-forward neural network
Amirgholipour et al. A pre-filtering method to improve watermark detection rate in DCT based watermarking
Zhong et al. A high-capacity reversible watermarking scheme based on shape decomposition for medical images
Zhang Blind watermark algorithm based on HVS and RBF neural network in DWT domain
Xu et al. Exploring robust and blind watermarking approach of colour images in DWT-DCT-SVD domain for copyright protection
CN115809953A (zh) 一种基于注意力机制的多尺寸图像鲁棒水印方法及系统
Rani et al. A robust watermarking scheme exploiting balanced neural tree for rightful ownership protection
Zhu et al. Destroying robust steganography in online social networks
Singh et al. Efficient watermarking method based on maximum entropy blocks selection in frequency domain for color images
Sari et al. The effect of error level analysis on the image forgery detection using deep learning
El Hossaini et al. A New Robust Blind Watermarking Scheme Based on Steerable pyramid and DCT using Pearson product moment correlation.
Ahmaderaghi et al. Perceptual watermarking for Discrete Shearlet transform
CN116311439A (zh) 一种人脸验证隐私保护方法和装置
Huynh-The et al. Robust image watermarking framework powered by convolutional encoder-decoder network
Zhuo Novel image watermarking method based on FRWT and SVD
Prasanth Vaidya A blind color image watermarking using brisk features and contourlet transform
CN114549271A (zh) 一种基于DCFERNet的零水印生成以及提取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201214

Address after: 266000 buildings 28 and 29, Tian'an Digital City, 88 Chunyang Road, Chengyang District, Qingdao City, Shandong Province

Patentee after: Qingdao Institute of computing technology Xi'an University of Electronic Science and technology

Address before: 710071 No. 2 Taibai South Road, Shaanxi, Xi'an

Patentee before: XIDIAN University

TR01 Transfer of patent right