CN106086759A - 一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法 - Google Patents

一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法 Download PDF

Info

Publication number
CN106086759A
CN106086759A CN201610518201.XA CN201610518201A CN106086759A CN 106086759 A CN106086759 A CN 106086759A CN 201610518201 A CN201610518201 A CN 201610518201A CN 106086759 A CN106086759 A CN 106086759A
Authority
CN
China
Prior art keywords
coating
nicrtialsi
high temperature
preparation
corrosion resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610518201.XA
Other languages
English (en)
Other versions
CN106086759B (zh
Inventor
杨波
李茂东
李仕平
陈志刚
林金梅
喻文
翟伟
辛明亮
黄国家
王志刚
伍振凌
曹丽英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Special Pressure Equipment Inspection and Research Institute
Original Assignee
Guangzhou Special Pressure Equipment Inspection and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Special Pressure Equipment Inspection and Research Institute filed Critical Guangzhou Special Pressure Equipment Inspection and Research Institute
Priority to CN201610518201.XA priority Critical patent/CN106086759B/zh
Publication of CN106086759A publication Critical patent/CN106086759A/zh
Priority to PCT/CN2016/105686 priority patent/WO2018000693A1/zh
Application granted granted Critical
Publication of CN106086759B publication Critical patent/CN106086759B/zh
Priority to US16/234,025 priority patent/US20190127835A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法,所述制备方法包括如下步骤:(1)制备复合粉末;(2)将复合粉末研磨均匀得球状复合粉末并烘干;(3)对基板表面进行清洁、粗化处理;(4)采用热喷涂技术对受热面喷涂底漆层;(5)采用热喷涂技术在底漆层上喷涂球状复合粉末;(6)冷却。通过本发明的制备方法得到的涂层,在底漆层表面喷涂复合涂层,利用稀有元素La2O3的加入在涂层中起净化涂层晶界的作用,强化了晶界并促进氧化膜的形成,改变涂层的形态,细化晶粒,提高了涂层的高温抗腐蚀性和抗氧化性。

Description

一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/ La2O3涂层及制备方法
技术领域
本发明涉及防腐涂层材料技术领域,尤其涉及一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法。
背景技术
垃圾焚烧发电具有减量化、无害化、资源化等优势,是公认的垃圾处理最好的方式。它与填埋处理相比,具有占地小、场地选择易、处理时间短、减量化显著、无害化较彻底、可回收垃圾焚烧余热等优点,是我国在大力推行的垃圾处理方式。
然而,固体垃圾中氯浓度通常较高(0.5%~2.0%),垃圾焚烧中会发生氯化腐蚀。氯的高活性使其在高温条件下可与几乎所有的金属发生反应,并且形成的氯化物具有低的熔点和高的蒸汽压。同时氯的出现提高了形成保护性氧化膜所需的氧分压,使得氧化膜开裂并变得疏松多孔,降低了其有效附着性和保护性,进而使焚烧炉的腐蚀往往以内氧化为先导,在合金内部沿着晶界处选择性优先腐蚀。因而,垃圾焚烧过程中严重的材料高温腐蚀问题无疑将成为限制垃圾焚烧炉有效运行的关键问题。
发明内容
本发明的目的在于克服现有技术中的缺点和不足,提供一种在焚烧炉的高氯环境下具有优异的抗腐蚀性能的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法,所述涂层抗高温冲蚀性和耐高温氯腐蚀性能优良,尤其适用于碳钢以及其他合金钢锅炉受热面。
本发明是通过以下技术方案实现的:一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,包括以下步骤:
(1)将Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按比例混合均匀制得复合粉末;
(2)将步骤(1)中制得的复合粉末研磨均匀得球状复合粉末并烘干;
(3)对垃圾焚烧炉受热面表面进行清洁、粗化处理;
(4)采用热喷涂技术对受热面表面喷涂底漆层;
(5)采用热喷涂技术在步骤(4)的底漆层上喷涂步骤(2)中制得的球状复合粉末;
(6)冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
相对于现有技术,本发明的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,在底漆层表面喷涂Inconel625-NiCrTiAlSi/La2O3复合涂层,利用稀有元素La2O3的加入在涂层中可以起净化涂层晶界的作用,强化了晶界以及促进氧化膜的形成,并改变涂层的形态,细化晶粒,提高了涂层的高温抗腐蚀性和抗氧化性。并且Inconel625合金和NiCrTiAlSi/La2O3合金组成复合涂层兼备了多种合金涂层的功能,更提高了锅炉的抗高温冲蚀能力,延长了垃圾焚烧炉的使用寿命,节省了成本。
进一步,所述NiCrTiAlSi/La2O3合金粉末按质量百分比的组成是:Ni,80-85%;Cr,5-8%;Ti,3-8%;Al,3-8%,Si,1-3%;La2O3,2-4%。
进一步,步骤(4)中,所述底漆层为NiAl合金层。
进一步,步骤(1)中所述Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按质量百分比为(85%-90%):(10%-15%)。
进一步,步骤(4)中,所述底漆层的喷涂厚度为80-100μm;步骤(5)中,所述复合粉末涂层的喷涂厚度为0.3-0.5mm。
进一步,步骤(2)中将制得的球状复合粉末的粒径为25-53μm,所述球状复合粉末是步骤(1)中的复合粉末通过球磨研磨得到的。
进一步,所述步骤(4)和(5)中的热喷涂为超音速火焰喷涂技术或超音速等离子体喷涂。
进一步,所述步骤(4)和(5)中喷涂技术的工艺参数为:燃料气体丙烷的压力为0.35-0.45MPa,助燃气体氧气的流量为1600-1800SCFH,煤油的流量为5-7GPH,载气的流量为20-25SCFH,送粉速度为50-70g/min,枪距为300-400mm,线速度为400-600mm/s。
进一步,所述步骤(4)中喷涂底漆层时喷涂次数为4次;步骤(5)中喷涂复合粉末时喷涂次数为12次。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1是本发明实施例1中的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的结构示意图。
图2是本发明实施例1中制备得到的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的SEM截面图。
图3是本发明实施例2中的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的结构示意图。
图4是本发明实施例2中制备得到的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的SEM截面图。
具体实施方式
为更进一步阐述本发明以达成预定发明目的所采取的技术手段及其技术效果,以下结合实施例和附图,对本发明提出的一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法的特征及其具体实施方式进行说明,详细说明如下。
本发明所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层包括由下至上依次堆叠的基板层、底漆层和防腐涂层。所述防腐涂层是Inconel625-NiCrTiAlSi/La2O3复合涂层,所述复合涂层由Inconel625和NiCrTiAlSi/La2O3按比例混合而成。其中,所述基板层是碳钢、合金钢中的任意一种。所述底漆层为NiAl合金层,优选厚度为80-100μm。所述防腐涂层优选厚度为0.3-0.5mm。
本发明所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,包括以下步骤:
(1)将Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按比例混合均匀制得复合粉末;
(2)将步骤(1)中制得的复合粉末研磨均匀得球状复合粉末并烘干;
(3)对垃圾焚烧炉受热面表面进行清洁、粗化处理;
(4)采用热喷涂技术对受热面表面喷涂底漆层;
(5)采用热喷涂技术在步骤(4)的底漆层上喷涂步骤(2)中制得的球状复合粉末;
(6)冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
其中,所述步骤(1)中Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末的质量百分比分别优选85%-90%和10%-15%。
所述步骤(2)中将制得的球状复合粉末的粒径为25-53μm,所述球状复合粉末是步骤(1)中的复合粉末通过球磨研磨得到的。所述步骤(2)中的球状复合粉末优选在100-150℃下烘干,去除水分。
所述步骤(3)中,包括对垃圾焚烧炉受热面的除锈、除油、喷砂,清楚表面异物并粗化表面。
所述步骤(4)中,所述底漆层为NiAl合金层,所述NiAl合金层平均喷涂厚度为80-100μm。所述步骤(5)中,所述复合粉末涂层平均喷涂厚度0.3-0.5mm。
所述步骤(4)和(5)中的热喷涂为超音速火焰喷涂或超音速等离子喷涂。
所述超音速火焰喷涂技术的工艺参数优选为:燃料气体丙烷的压力为0.35-0.45MPa,助燃气体氧气的流量为1600-1800SCFH,煤油的流量为5-7GPH,载气的流量为20-25SCFH,送粉速度为50-70g/min,枪距为300-400mm,线速度为400-600mm/s。
实施例1
请参阅图1,其是本实施例的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的结构示意图。所述涂层包括由下至上依次堆叠的基板层11、底漆层12和防腐涂层13。所述防腐涂层13是Inconel625-NiCrTiAlSi/La2O3复合涂层,所述复合涂层由Inconel625和NiCrTiAlSi/La2O3按质量百分比分别为90%和10%混合而成。其中,所述基板层11是碳钢、合金钢中的任意一种。所述底漆层12为NiAl合金层,其厚度为80-100μm。所述防腐涂层13厚度为0.3-0.5mm。
本发明所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法包括以下步骤:
(1)将Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按比例混合均匀制得复合粉末。
具体的,按质量百分比为90%和10%分别称取Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末,混合均匀后,采用水雾化或气雾化技术制成Inconel625-NiCrTiAlSi/La2O3复合粉末。其中,所述NiCrTiAlSi/La2O3合金粉末按质量百分比的组成是:Ni,80-85%;Cr,5-8%;Ti,3-8%;Al,3-8%,Si,1-3%;La2O3,2-4%。
(2)将步骤(1)中制得的复合粉末研磨均匀得球状复合粉末并烘干。
将步骤(1)中得到的复合粉末通过球磨研磨均匀,制成平均粒径为25-53μm的球状复合粉末。用烘箱在100-150℃烘干球状复合粉末,除去水分。
(3)对垃圾焚烧炉受热面表面进行清洁、粗化处理。
在本实施例中,所述垃圾焚烧炉受热面采用20号碳钢作为基材,对其表面进行除锈、除油、喷砂处理,并粗化基材的表面。
(4)采用热喷涂技术对受热面表面喷涂底漆层。
在本实施例中,所述底漆层采用NiAl合金粉末,所述热喷涂技术的参数为:燃料气体丙烷的压力为0.40MPa,助燃气体氧气的流量为1700SCFH,煤油的流量为5GPH,载气的流量为22SCFH,送粉速度为60g/min,枪距为350mm,线速度为500mm/s,喷涂次数4次。
(5)采用热喷涂技术在步骤(4)的底漆层上喷涂步骤(2)中制得的球状复合粉末。
在本实施例中,所述热喷涂技术的参数为:燃料气体丙烷的压力为0.45MPa,助燃气体氧气的流量为1700SCFH,煤油的流量为6GPH,载气的流量为23SCFH,送粉速度为60g/min,枪距为350mm,线速度为500mm/s,喷涂次数12次。
(6)冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
对喷涂后的带涂层的垃圾焚烧炉受热面采用空冷自然冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
请参阅图2,其是通过所述垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法制备得到的涂层SEM截面图。复合涂层严密的覆盖于底漆层之上,说明复合涂层与底漆层之间具有优异的结合力,可防止氯腐蚀基体材料。
将通过本发明所述制备方法制备得到的耐高温氯腐蚀涂层在900℃向下在质量分数分别为10%、10%、80%的KCl、K2SO4、Na2SO4的混合熔融盐中腐蚀100小时,腐蚀层厚度约2.6μm,并且在涂层表面未观察到腐蚀产物的脱落。在现有技术中,采用超音速喷涂的45CT涂层在同样腐蚀条件下,腐蚀层的厚度达到10.4μm,且观察到局部腐蚀产物的脱落。说明了本发明所述的涂层比现有技术中的涂层在高氯环境下具有更优异的耐蚀性能,能够满足现有垃圾焚烧炉受热面对涂层材料的腐蚀性能的要求。
相对于现有技术,本发明的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,NiAl底漆层上的Inconel625-NiCrTiAlSi/La2O3复合涂层可显著提高涂层与基板层的结合力;稀有元素La2O3的加入在涂层中可以起净化涂层晶界的作用,强化了晶界以及促进氧化膜的形成,并改变涂层的形态,细化晶粒,提高高温抗腐蚀性和抗氧化性等。Inconel625合金和NiCrTiAlSi/La2O3合金组成复合涂层兼备了多种合金涂层的功能,更提高了锅炉的抗高温冲蚀能力,这三方面的有益效果对垃圾焚烧锅炉在恶劣工况条件下的防护具有积极作用,延长了锅炉的使用寿命,节省了成本。
实施例2
请参阅图3,其是本实施例的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的结构示意图。所述涂层包括由下至上依次堆叠的基板层21、底漆层22和防腐涂层23。所述防腐涂层23是Inconel625-NiCrTiAlSi/La2O3复合涂层,所述复合涂层由Inconel625和NiCrTiAlSi/La2O3按质量百分比分别为85%和15%混合而成。其中,所述基板层21是碳钢、合金钢中的任意一种。所述底漆层22为NiAl合金层,其厚度为80-100μm。所述防腐涂层23厚度为0.3-0.5mm。
本发明所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法包括以下步骤:
(1)将Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按比例混合均匀制得复合粉末。
具体的,按质量百分比为85%和15%分别称取Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末,混合均匀后,采用水雾化或气雾化技术制成Inconel625-NiCrTiAlSi/La2O3复合粉末。其中,所述NiCrTiAlSi/La2O3合金粉末按质量百分比的组成是:Ni,80-85%;Cr,5-8%;Ti,3-8%;Al,3-8%,Si,1-3%;La2O3,2-4%。
(2)将步骤(1)中制得的复合粉末研磨均匀得球状复合粉末并烘干。
将步骤(1)中得到的复合粉末通过球磨研磨均匀,制成平均粒径为25-53μm的球状复合粉末。用烘箱在120℃烘干球状复合粉末,除去水分。
(3)对垃圾焚烧炉受热面表面进行清洁、粗化处理。
在本实施例中,所述垃圾焚烧炉受热面采用20号碳钢作为基材,对其表面进行除锈、除油、喷砂处理,并粗化基材的表面。所述基材不局限于此,碳钢和合金钢均可。
(4)采用热喷涂技术对受热面表面喷涂底漆层。
在本实施例中,所述底漆层采用NiAl合金粉末,所述热喷涂技术的参数为:燃料气体丙烷的压力为0.40MPa,助燃气体氧气的流量为1700SCFH,煤油的流量为5GPH,载气的流量为22SCFH,送粉速度为60g/min,枪距为350mm,线速度为500mm/s,喷涂次数4次。
(5)采用热喷涂技术在步骤(4)的底漆层上喷涂步骤(2)中制得的球状复合粉末。
在本实施例中,所述热喷涂技术的参数为:燃料气体丙烷的压力为0.45MPa,助燃气体氧气的流量为1800SCFH,煤油的流量为6.5GPH,载气的流量为23SCFH,送粉速度为60g/min,枪距为350mm,线速度为500mm/s,喷涂次数12次。
(6)冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
对喷涂后的带涂层的垃圾焚烧炉受热面采用空冷自然冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
请参阅图4,其是通过垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法制备得到的涂层SEM截面图。复合涂层严密的覆盖于底漆层之上,说明复合涂层与底漆层之间具有优异的结合力,可防止氯腐蚀基体材料。
将通过本发明所述制备方法制备得到的耐高温氯腐蚀涂层在900℃向下在质量分数分别为10%、10%、80%的KCl、K2SO4、Na2SO4的混合熔融盐中腐蚀100小时,腐蚀层厚度约2.8μm,并且在涂层表面未观察到腐蚀产物的脱落。在现有技术中,采用超音速喷涂的45CT涂层在同样腐蚀条件下,腐蚀层的厚度达到10.4μm,且观察到局部腐蚀产物的脱落。说明了本发明所述的涂层比现有技术中的涂层在高氯环境下具有更优异的耐蚀性能,能够满足现有垃圾焚烧炉受热面对涂层材料的腐蚀性能的要求。
相对于现有技术,本发明的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,NiAl底漆层上的Inconel625-NiCrTiAlSi/La2O3复合涂层可显著提高涂层与基板层的结合力;稀有元素La2O3的加入在涂层中可以起净化涂层晶界的作用,强化了晶界以及促进氧化膜的形成,并改变涂层的形态,细化晶粒,提高高温抗腐蚀性和抗氧化性等。Inconel625合金和NiCrTiAlSi/La2O3合金组成复合涂层兼备了多种合金涂层的功能,更提高了锅炉的抗高温冲蚀能力,这三方面的有益效果对垃圾焚烧锅炉在恶劣工况条件下的防护具有积极作用,延长了锅炉的使用寿命,节省了成本。
本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (9)

1.一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:包括以下步骤:
(1)将Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按比例混合均匀制得复合粉末;
(2)将步骤(1)中制得的复合粉末研磨均匀得球状复合粉末并烘干;
(3)对垃圾焚烧炉受热面表面进行清洁、粗化处理;
(4)采用热喷涂技术对受热面表面喷涂底漆层;
(5)采用热喷涂技术在步骤(4)的底漆层上喷涂步骤(2)中制得的球状复合粉末;
(6)冷却,得到垃圾焚烧炉受热面的耐高温氯腐蚀涂层。
2.根据权利要求1所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:所述NiCrTiAlSi/La2O3合金粉末按质量百分比的组成是:Ni,80-85%;Cr,5-8%;Ti,3-8%;Al,3-8%,Si,1-3%;La2O3,2-4%。
3.根据权利要求1所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:步骤(4)中,所述底漆层为NiAl合金层。
4.根据权利要求1-3中任一权利要求所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:步骤(1)中所述Inconel625合金粉末与NiCrTiAlSi/La2O3合金粉末按质量百分比为(85%-90%):(10%-15%)。
5.根据权利要求4所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:步骤(4)中,所述底漆层的喷涂厚度为80-100μm;步骤(5)中,所述复合粉末涂层的喷涂厚度为0.3-0.5mm。
6.根据权利要求1所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:步骤(2)中将制得的球状复合粉末的粒径为25-53μm,所述球状复合粉末是步骤(1)中的复合粉末通过球磨研磨得到的。
7.根据权利要求1所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:所述步骤(4)和(5)中的热喷涂为超音速火焰喷涂技术或超音速等离子体喷涂。
8.根据权利要求7所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:所述步骤(4)和(5)中喷涂技术的工艺参数为:燃料气体丙烷的压力为0.35-0.45MPa,助燃气体氧气的流量为1600-1800SCFH,煤油的流量为5-7GPH,载气的流量为20-25SCFH,送粉速度为50-70g/min,枪距为300-400mm,线速度为400-600mm/s。
9.根据权利要求8所述的垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层的制备方法,其特征在于:所述步骤(4)中喷涂底漆层时喷涂次数为4次;步骤(5)中喷涂复合粉末时喷涂次数为12次。
CN201610518201.XA 2016-07-01 2016-07-01 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法 Active CN106086759B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610518201.XA CN106086759B (zh) 2016-07-01 2016-07-01 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法
PCT/CN2016/105686 WO2018000693A1 (zh) 2016-07-01 2016-11-14 一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法
US16/234,025 US20190127835A1 (en) 2016-07-01 2018-12-27 High Temperature Chloride Corrosion Resistant NiCrTiAlSi/La2O3 Coating at Flue Gas Side of Waste Incineration Power Generating Boiler and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610518201.XA CN106086759B (zh) 2016-07-01 2016-07-01 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法

Publications (2)

Publication Number Publication Date
CN106086759A true CN106086759A (zh) 2016-11-09
CN106086759B CN106086759B (zh) 2018-09-07

Family

ID=57212828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610518201.XA Active CN106086759B (zh) 2016-07-01 2016-07-01 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法

Country Status (3)

Country Link
US (1) US20190127835A1 (zh)
CN (1) CN106086759B (zh)
WO (1) WO2018000693A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000693A1 (zh) * 2016-07-01 2018-01-04 广州特种承压设备检测研究院 一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法
CN108220857A (zh) * 2018-01-04 2018-06-29 西安热工研究院有限公司 垃圾焚烧炉受热面防氯腐蚀双层结构合金涂层及制备方法
CN108796334A (zh) * 2018-05-25 2018-11-13 常熟浦发第二热电能源有限公司 一种用于电厂锅炉管道的耐高温腐蚀的合金涂层
CN109680313A (zh) * 2019-02-18 2019-04-26 中国恩菲工程技术有限公司 烟气管道、其制备方法及垃圾焚烧烟气回收装置
CN109722617A (zh) * 2018-12-24 2019-05-07 万华化学集团股份有限公司 一种用于高温高氯高冲刷环境中的复合涂层制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US10639712B2 (en) 2018-06-19 2020-05-05 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
WO2020223374A1 (en) 2019-04-30 2020-11-05 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
EP4061787B1 (en) 2019-11-18 2024-05-01 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN112643024B (zh) * 2020-12-15 2021-12-10 上海海事大学 用于保护极地破冰船上破冰带的钴基合金粉末的制备方法
CN113774313B (zh) * 2021-08-20 2022-09-27 华北电力大学 受热面具有铝增强型熔覆复合涂层的水冷壁及其制备方法
CN114774833B (zh) * 2022-03-28 2023-09-01 中电华创电力技术研究有限公司 一种用于焚烧炉的以凹凸棒粘土为基料的耐高温氯腐蚀涂层的制备方法
CN115354261B (zh) * 2022-09-01 2024-01-23 天津华能杨柳青热电有限责任公司 一种防结焦耐磨损耐腐蚀梯度复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586714A (zh) * 2012-03-22 2012-07-18 江西恒大高新技术股份有限公司 垃圾焚烧炉受热面防氯腐蚀合金涂层电弧喷涂工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403165B1 (en) * 2000-02-09 2002-06-11 General Electric Company Method for modifying stoichiometric NiAl coatings applied to turbine airfoils by thermal processes
US7622195B2 (en) * 2006-01-10 2009-11-24 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
CN101191225B (zh) * 2006-11-22 2011-05-11 宝山钢铁股份有限公司 一种防腐耐磨涂层及其涂覆方法
CN103160827B (zh) * 2013-04-11 2016-09-21 中国船舶重工集团公司第七�三研究所 一种余热锅炉受热面高温复合耐磨涂层及其制作方法
CN104498860B (zh) * 2014-12-12 2017-06-06 广州特种承压设备检测研究院 一种垃圾焚烧锅炉受热面抗腐蚀和冲蚀的涂层
CN104831123B (zh) * 2015-05-26 2017-09-01 广东电网有限责任公司电力科学研究院 防腐涂层及其粉末原料与制备方法和应用
CN106086759B (zh) * 2016-07-01 2018-09-07 广州特种承压设备检测研究院 一种垃圾焚烧发电锅炉烟气侧的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586714A (zh) * 2012-03-22 2012-07-18 江西恒大高新技术股份有限公司 垃圾焚烧炉受热面防氯腐蚀合金涂层电弧喷涂工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENYU ZHANG ET AL.: ""Interface Microstructure and Tribological Properties of Flame Spraying NiCr/ La2O3 Coatings"", 《JOURNAL OF THERMAL SPRAY TECHNOLOGY》 *
顾钰熹: "《特种工程材料焊接》", 31 January 1998 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000693A1 (zh) * 2016-07-01 2018-01-04 广州特种承压设备检测研究院 一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法
CN108220857A (zh) * 2018-01-04 2018-06-29 西安热工研究院有限公司 垃圾焚烧炉受热面防氯腐蚀双层结构合金涂层及制备方法
CN108796334A (zh) * 2018-05-25 2018-11-13 常熟浦发第二热电能源有限公司 一种用于电厂锅炉管道的耐高温腐蚀的合金涂层
CN109722617A (zh) * 2018-12-24 2019-05-07 万华化学集团股份有限公司 一种用于高温高氯高冲刷环境中的复合涂层制备方法
CN109680313A (zh) * 2019-02-18 2019-04-26 中国恩菲工程技术有限公司 烟气管道、其制备方法及垃圾焚烧烟气回收装置

Also Published As

Publication number Publication date
WO2018000693A1 (zh) 2018-01-04
US20190127835A1 (en) 2019-05-02
CN106086759B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN106086759A (zh) 一种垃圾焚烧发电锅炉烟气测的耐高温氯腐蚀NiCrTiAlSi/La2O3涂层及制备方法
Fauchais et al. Thermal sprayed coatings used against corrosion and corrosive wear
Kumar et al. A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications
CN107034427B (zh) 锅炉受热面耐高温腐蚀的合金涂层及其制备方法
JP2009161859A (ja) 耐エロージョン性及び耐腐食性皮膜系及び方法
CA2433613A1 (en) Spray method for mcralx coating
CN106756712B (zh) 一种金属耐磨防腐涂层及其电弧喷涂工艺
US20180112303A1 (en) Method for coating article and feedstock for thermal spray process
CN202029462U (zh) 钢构件防腐构造
CN110819929A (zh) 一种垃圾焚烧炉锅炉管受热面喷涂材料及其施工工艺
CN106078525A (zh) 大型热浸锌工件表面涂装前处理工艺
CN106893961A (zh) 一种强化水轮机叶片表面的超音速火焰喷涂方法
Sharma et al. Effect of chromium content on microstructure, mechanical and erosion properties of Fe-Cr-Ti-Mo-C-Si coating
CN102086499A (zh) 喷涂材料、热喷涂层和具有热喷涂层的汽缸
Sathish et al. Duplex and composite coatings: a thematic review on thermal spray techniques and applications
Prashar et al. Application of thermal spraying techniques used for the surface protection of boiler tubes in power plants: Thermal spraying to combat hot corrosion
CN105525251A (zh) 烧结主轴风机叶片超音速喷涂工艺
CN102935742A (zh) 一种耐高温铝液腐蚀的超声变幅杆及其制备方法
CN100516277C (zh) 烟道受热面合金喷涂方法
Kahar et al. Thermal sprayed coating using zinc: A review
CN109722617B (zh) 一种用于高温高氯高冲刷环境中的复合涂层制备方法
Verma et al. Cyclic oxidation behaviour and characterization of HVOF deposited inconel 718 coatings at 700° C
CN207296025U (zh) 防腐蚀钢构
CN108517482A (zh) 一种用于锅炉管壁的耐磨耐腐蚀涂层及其制备方法
Kayalı et al. Electrochemical corrosion behavior of high velocity oxy-fuel (HVOF) superalloy coatings on ductile irons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant