CN106077641A - 一种陶瓷颗粒增强金属零件的制备方法 - Google Patents

一种陶瓷颗粒增强金属零件的制备方法 Download PDF

Info

Publication number
CN106077641A
CN106077641A CN201610531890.8A CN201610531890A CN106077641A CN 106077641 A CN106077641 A CN 106077641A CN 201610531890 A CN201610531890 A CN 201610531890A CN 106077641 A CN106077641 A CN 106077641A
Authority
CN
China
Prior art keywords
laser
powder
metal
drip molding
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610531890.8A
Other languages
English (en)
Inventor
顾德阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Yongnian Sanyang Additive Manufacturing Technology Co Ltd
Original Assignee
Sichuan Yongnian Sanyang Additive Manufacturing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Yongnian Sanyang Additive Manufacturing Technology Co Ltd filed Critical Sichuan Yongnian Sanyang Additive Manufacturing Technology Co Ltd
Priority to CN201610531890.8A priority Critical patent/CN106077641A/zh
Publication of CN106077641A publication Critical patent/CN106077641A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及一种陶瓷颗粒增强金属零件的制备方法,包括如下步骤:金属氧化物生成热力学与动力学条件的分析、成形件数模切片分层处理、金属粉末送粉比的精确控制及导入、惰性气体和氧气的混合及导入、成形件的激光增材制造、成形件的后处理以及最终成形件的无损检测。与其它技术相比,采用本发明的制备方法具有操作方便、性能可靠,综合成本低、成形件重量轻,表面光滑,能够满足使用要求、提高其使用寿命等优点。

Description

一种陶瓷颗粒增强金属零件的制备方法
技术领域
本发明涉及金属增材制造成形技术领域,尤其涉及一种陶瓷颗粒增强金属零件的制备方法。
背景技术
目前,对于陶瓷颗粒增强金属基复合材料零件的增材制造,通常认为应当采用金属颗粒和陶瓷颗粒混合的材料来进行。因此,在激光选区烧结(SLS)和激光选区熔化(SLM)中,如果使用较低的温度,可以使得金属粉末熔化或者烧结,但是对于陶瓷颗粒,就很难达到其熔化温度或者烧结温度,结果是不能够获得成形件。如果采用达到陶瓷的熔化温度或者烧结温度,则金属粉末可能发生气化,成形体内非常可能留下许多孔洞,亦很难得到致密的陶瓷颗粒增强金属基成形件。因而,提出一种能够解决上述致密陶瓷颗粒增强金属基成形件的制备方法具有重要的研究意义。
发明内容
针对现有技术中陶瓷颗粒金属基成形件的制备工艺相比,本发明的目的在于:提供一种陶瓷颗粒增强金属零件制备方法,该方法具有:操作方便、性能可靠,综合成本低、成形件重量轻,表面光滑,能够满足使用要求、提高其使用寿命等优点。
为了达到上述目的,本发明采用如下技术方案实现:
一种陶瓷颗粒增强金属零件制备方法,该制备方法包括如下步骤:
1)金属氧化物生成热力学与动力学条件的分析:在采用激光增材制造直接制备金属零件时,在有氧环境的情况下,金属粉末表面会形成与基体结合较差的氧化膜,在随后的逐层制造时,这些氧化膜会脱落、缩聚,形成陶瓷微颗粒,分析金属氧化物生成热力学与动力学的条件可得其生成的数量及尺寸范围;
2)成形件数模切片分层处理:在增材制造机床的工作台上,工控机内置有CAD三维建模软件并建立三维模型图,对所建立的三维模型进行分层切片处理得到每层切片材料组分信息和切片周围轮廓轨迹,其中每层分层切片的厚度为8-50μm;根据每层分层切片的组分信息和切片的周围轮廓轨迹信息,生成激光打印系统和送粉器的扫描路径;
3)金属粉末送粉比的精确控制及导入:工控机根据每层分层切片工艺参数的设计要求,确定陶瓷的氧化物类型,金属粉末与陶瓷微颗粒的重量份数百分比为95:5,工控机精确控制用于成形的金属粉末及将氧化形成陶瓷微颗粒的送粉比;其中,对于激光熔覆,通过送粉器进行送粉,对于激光选区熔化和激光选区烧结,通过粉末床进行铺粉;
4)惰性气体和氧气的混合及导入:为了保证陶瓷微颗粒形成的条件,采用惰性气体和氧气的混合气体,由于在氧气与金属粉末发生反应时生成金属氧化物属于放热反应,它所产生的热量能够用于使得较不活泼的金属粉末发生熔化或者达到其烧结温度;将增材制造成形设备抽真空,使得成形设备内的压力达到0.1-0.5MPa后,导入惰性气体和氧气的混合气体,其体积比为3:1-5:1,导入混合气体是采用不易氧化材料制成的通气阀;
5)成形件的激光增材制造:将至少两种不同金属粉末按配比要求使用混粉机进行充分均匀混合,并将混合后的粉末放置在100-200℃的烘干箱中进行烘干1-1.5小时处理;将烘干处理后的混合粉末放置在3D打印机送粉器的粉筒中留作备用;计算机控制系统控制3D打印机送粉器喷头和激光器组件的送粉速率和送粉量、启动激光器供气装置;其中激光器组件包括用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器;其中,用于激光熔覆的激光器进行激光熔覆时,具体参数为:功率P=1000-5000W,光斑直径D=2-8mm,扫描速度V=2-3m/min,搭接率为30-40%;用于激光选区熔化和烧结的激光器工作时,具体参数为:功率P=200-500W,光斑直径D=2-4mm,扫描速度V=0.5-1m/min,搭接率为30-40%;在逐层加工时,金属混合粉末一部分在激光熔覆时发生熔化,另一部分与氧气发生反应形成陶瓷微颗粒并且在金属粉末基体中均匀分布,每层完成后,在混合气体条件下,停留时间为5-10min;
6)成形件的后处理:对经过上述步骤5)制得的成形件进行热处理、抛光或者机加处理后处理;
7)最终成形件的无损检测:对上述步骤6)中经过后处理得到的陶瓷颗粒增强金属成形件的设定区域进行硬度、耐磨强度和耐蚀性检测。
作为上述技术方案的进一步优化,在上述步骤5)中,所述金属粉末的送分方式采用同轴正向送粉方式或者采用非同轴侧向送粉方式进行送粉。
作为上述技术方案的进一步优化,用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器的发生器类型均为二氧化碳激光器或者光纤激光器。
作为上述技术方案的进一步优化,所述的金属粉末包括铁、铜、镍、钴、钛、铝、锰中任意组合;所述惰性保护气体为氮气、氩气或者氦气。
作为上述技术方案的进一步优化,在上述步骤1)中,陶瓷微颗粒重量占金属粉末重量的1-5%。
与现有技术中的陶瓷颗粒增强金属成形制造技术相比,采用本发明的制备方法具有如下有益效果:
(1)在增材制造过程中,在特定的含氧气氛中,严格控制工艺参数,在逐层制造过程中,可使大得部分金属或合金颗粒熔化而同时又有一少部分材料发生氧化,形成陶瓷颗粒,并且保证其很好的弥散程度。
(2)在本发明的制备条件下,氧化物陶瓷微颗粒与金属之间的界面不容易产生微裂纹,这样制造出来的金属零件在使用时,不至于由于裂纹扩展而过早失效。
(3)如果每层的工艺参数有预设的逐渐改变,则陶瓷颗粒的含量及分布可以有相应的逐渐变化,则可以生产出性能可控变化的金属零件。
附图说明
附图1为一种陶瓷颗粒增强金属零件制备方法的流程示意图。
具体实施方式
下面结合附图1对本发明一种陶瓷颗粒增强金属零件制备方法作具体说明。
一种陶瓷颗粒增强金属零件制备方法,其特征在于,该制备方法包括如下步骤:
1)金属氧化物生成热力学与动力学条件的分析:在采用激光增材制造直接制备金属零件时,在有氧环境的情况下,金属粉末表面会形成与基体结合较差的氧化膜,在随后的逐层制造时,这些氧化膜会脱落、缩聚,形成陶瓷微颗粒,分析金属氧化物生成热力学与动力学的条件可得其生成的数量及尺寸范围;
2)成形件数模切片分层处理:在增材制造机床的工作台上,工控机内置有CAD三维建模软件并建立三维模型图,对所建立的三维模型进行分层切片处理得到每层切片材料组分信息和切片周围轮廓轨迹,其中每层分层切片的厚度为8-50μm;根据每层分层切片的组分信息和切片的周围轮廓轨迹信息,生成激光打印系统和送粉器的扫描路径;
3)金属粉末送粉比的精确控制及导入:工控机根据每层分层切片工艺参数的设计要求,确定陶瓷的氧化物类型,金属粉末与陶瓷微颗粒的重量份数百分比为95:5,工控机精确控制用于成形的金属粉末及将氧化形成陶瓷微颗粒的送粉比;其中,对于激光熔覆,通过送粉器进行送粉,对于激光选区熔化和激光选区烧结,通过粉末床进行铺粉;
4)惰性气体和氧气的混合及导入:为了保证陶瓷微颗粒形成的条件,采用惰性气体和氧气的混合气体,由于在氧气与金属粉末发生反应时生成金属氧化物属于放热反应,它所产生的热量能够用于使得较不活泼的金属粉末发生熔化或者达到其烧结温度;将增材制造成形设备抽真空,使得成形设备内的压力达到0.1-0.5MPa后,导入惰性气体和氧气的混合气体,其体积比为3:1-5:1,导入混合气体是采用不易氧化材料制成的通气阀;
5)成形件的激光增材制造:将至少两种不同金属粉末按配比要求使用混粉机进行充分均匀混合,并将混合后的粉末放置在100-200℃的烘干箱中进行烘干1-1.5小时处理;将烘干处理后的混合粉末放置在3D打印机送粉器的粉筒中留作备用;计算机控制系统控制3D打印机送粉器喷头和激光器组件的送粉速率和送粉量、启动激光器供气装置;其中激光器组件包括用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器;其中,用于激光熔覆的激光器进行激光熔覆时,具体参数为:功率P=1000-5000W,光斑直径D=2-8mm,扫描速度V=2-3m/min,搭接率为30-40%;用于激光选区熔化和烧结的激光器工作时,具体参数为:功率P=200-500W,光斑直径D=2-4mm,扫描速度V=0.5-1m/min,搭接率为30-40%;在逐层加工时,金属混合粉末一部分在激光熔覆时发生熔化,另一部分与氧气发生反应形成陶瓷微颗粒并且在金属粉末基体中均匀分布,每层完成后,在混合气体条件下,停留时间为5-10min;
6)成形件的后处理:对经过上述步骤5)制得的成形件进行热处理、抛光或者机加处理后处理;
7)最终成形件的无损检测:对上述步骤6)中经过后处理得到的陶瓷颗粒增强金属成形件的设定区域进行硬度、耐磨强度和耐蚀性检测。
在上述步骤5)中,所述金属粉末的送分方式采用同轴正向送粉方式或者采用非同轴侧向送粉方式进行送粉。用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器的发生器类型均为二氧化碳激光器或者光纤激光器。所述的金属粉末包括铁、铜、镍、钴、钛、铝、锰中任意组合;所述惰性保护气体为氮气、氩气或者氦气。在上述步骤1)中,陶瓷微颗粒重量占金属粉末重量的1-5%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (5)

1.一种陶瓷颗粒增强金属零件制备方法,其特征在于,该制备方法包括如下步骤:
1)金属氧化物生成热力学与动力学条件的分析:在采用激光增材制造直接制备金属零件时,在有氧环境的情况下,金属粉末表面会形成与基体结合较差的氧化膜,在随后的逐层制造时,这些氧化膜会脱落、缩聚,形成陶瓷微颗粒,分析金属氧化物生成热力学与动力学的条件可得其生成的数量及尺寸范围;
2)成形件数模切片分层处理:在增材制造机床的工作台上,工控机内置有CAD三维建模软件并建立三维模型图,对所建立的三维模型进行分层切片处理得到每层切片材料组分信息和切片周围轮廓轨迹,其中每层分层切片的厚度为8-50μm;根据每层分层切片的组分信息和切片的周围轮廓轨迹信息,生成激光打印系统和送粉器的扫描路径;
3)金属粉末送粉比的精确控制及导入:工控机根据每层分层切片工艺参数的设计要求,确定陶瓷的氧化物类型,金属粉末与陶瓷微颗粒的重量份数百分比为95:5,工控机精确控制用于成形的金属粉末及将氧化形成陶瓷微颗粒的送粉比;其中,对于激光熔覆,通过送粉器进行送粉,对于激光选区熔化和激光选区烧结,通过粉末床进行铺粉;
4)惰性气体和氧气的混合及导入:为了保证陶瓷微颗粒形成的条件,采用惰性气体和氧气的混合气体,由于在氧气与金属粉末发生反应时生成金属氧化物属于放热反应,它所产生的热量能够用于使得较不活泼的金属粉末发生熔化或者达到其烧结温度;将增材制造成形设备抽真空,使得成形设备内的压力达到0.1-0.5MPa后,导入惰性气体和氧气的混合气体,其体积比为3:1-5:1,导入混合气体是采用不易氧化材料制成的通气阀;
5)成形件的激光增材制造:将至少两种不同金属粉末按配比要求使用混粉机进行充分均匀混合,并将混合后的粉末放置在100-200℃的烘干箱中进行烘干1-1.5小时处理;将烘干处理后的混合粉末放置在3D打印机送粉器的粉筒中留作备用;计算机控制系统控制3D打印机送粉器喷头和激光器组件的送粉速率和送粉量、启动激光器供气装置;其中激光器组件包括用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器;其中,用于激光熔覆的激光器进行激光熔覆时,具体参数为:功率P=1000-5000W,光斑直径D=2-8mm,扫描速度V=2-3m/min,搭接率为30-40%;用于激光选区熔化和烧结的激光器工作时,具体参数为:功率P=200-500W,光斑直径D=2-4mm,扫描速度V=0.5-1m/min,搭接率为30-40%;在逐层加工时,金属混合粉末一部分在激光熔覆时发生熔化,另一部分与氧气发生反应形成陶瓷微颗粒并且在金属粉末基体中均匀分布,每层完成后,在混合气体条件下,停留时间为5-10min;
6)成形件的后处理:对经过上述步骤5)制得的成形件进行热处理、抛光或者机加处理后处理;
7)最终成形件的无损检测:对上述步骤6)中经过后处理得到的陶瓷颗粒增强金属成形件的设定区域进行硬度、耐磨强度和耐蚀性检测。
2.根据权利要求1所述的一种陶瓷颗粒增强金属零件的制备方法,其特征在于:在上述步骤5)中,所述金属粉末的送分方式采用同轴正向送粉方式或者采用非同轴侧向送粉方式进行送粉。
3.根据权利要求1所述的一种陶瓷颗粒增强金属零件的制备方法,其特征在于:用于激光熔覆的激光器和用于激光选区熔化和烧结的激光器的发生器类型均为二氧化碳激光器或者光纤激光器。
4.根据权利要求1所述的一种陶瓷颗粒增强金属零件的制备方法,其特征在于:所述的金属粉末包括铁、铜、镍、钴、钛、铝、锰中任意组合;所述惰性保护气体为氮气、氩气或者氦气。
5.根据权利要求1所述的一种陶瓷颗粒增强金属零件的制备方法,其特征在于:在上述步骤1)中,陶瓷微颗粒重量占金属粉末重量的1-5%。
CN201610531890.8A 2016-07-07 2016-07-07 一种陶瓷颗粒增强金属零件的制备方法 Pending CN106077641A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610531890.8A CN106077641A (zh) 2016-07-07 2016-07-07 一种陶瓷颗粒增强金属零件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610531890.8A CN106077641A (zh) 2016-07-07 2016-07-07 一种陶瓷颗粒增强金属零件的制备方法

Publications (1)

Publication Number Publication Date
CN106077641A true CN106077641A (zh) 2016-11-09

Family

ID=57213493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610531890.8A Pending CN106077641A (zh) 2016-07-07 2016-07-07 一种陶瓷颗粒增强金属零件的制备方法

Country Status (1)

Country Link
CN (1) CN106077641A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425022A (zh) * 2016-11-18 2017-02-22 南京理工大学 一种cmt增材制造复合材料构件的方法
CN106583727A (zh) * 2016-12-14 2017-04-26 中国科学院力学研究所 一种金属基颗粒增强构件的增材制造方法
CN106696051A (zh) * 2017-01-24 2017-05-24 上海普睿玛智能科技有限公司 一种大型二氧化碳激光3d打印设备及其打印方法
CN106735223A (zh) * 2016-12-14 2017-05-31 中国科学院力学研究所 一种金属基原位自生颗粒增强构件的增材制造方法
CN108388739A (zh) * 2018-03-01 2018-08-10 吉林大学 一种非匀质仿生结构増材制造方法
CN109047756A (zh) * 2018-08-03 2018-12-21 西安空天能源动力智能制造研究院有限公司 一种金属增材制造产品的可追溯方法
CN109175362A (zh) * 2018-07-24 2019-01-11 华中科技大学 一种激光增材制造方法
CN109332702A (zh) * 2018-10-30 2019-02-15 西安理工大学 一种有序孔结构钨骨架的制备方法
CN109397684A (zh) * 2018-10-12 2019-03-01 宁波慈北医疗器械有限公司 3d打印及其制备方法
WO2019052128A1 (en) * 2017-09-12 2019-03-21 Nanjing University Of Science And Technology (Njust) 4D PRINTING AND PRINTING OF CERAMICS FROM METALS, WITH SELECTIVE OXIDATION
CN109648081A (zh) * 2019-01-15 2019-04-19 华中科技大学 一种原位增强五模材料机械性能的激光增材制造成形方法
CN112077311A (zh) * 2020-09-22 2020-12-15 飞而康快速制造科技有限责任公司 一种铝合金的复合增材制备方法
CN112166003A (zh) * 2018-04-10 2021-01-01 通用电气公司 热处理增材制造的铁磁部件的方法
CN114799211A (zh) * 2022-05-27 2022-07-29 华中科技大学 一种基于粉末床熔融的原位金属陶瓷多材料制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106425022A (zh) * 2016-11-18 2017-02-22 南京理工大学 一种cmt增材制造复合材料构件的方法
CN106583727A (zh) * 2016-12-14 2017-04-26 中国科学院力学研究所 一种金属基颗粒增强构件的增材制造方法
CN106735223A (zh) * 2016-12-14 2017-05-31 中国科学院力学研究所 一种金属基原位自生颗粒增强构件的增材制造方法
CN106735223B (zh) * 2016-12-14 2018-11-02 中国科学院力学研究所 一种金属基原位自生颗粒增强构件的增材制造方法
CN106696051A (zh) * 2017-01-24 2017-05-24 上海普睿玛智能科技有限公司 一种大型二氧化碳激光3d打印设备及其打印方法
CN106696051B (zh) * 2017-01-24 2018-09-21 上海普睿玛智能科技有限公司 一种大型二氧化碳激光3d打印设备及其打印方法
WO2019052128A1 (en) * 2017-09-12 2019-03-21 Nanjing University Of Science And Technology (Njust) 4D PRINTING AND PRINTING OF CERAMICS FROM METALS, WITH SELECTIVE OXIDATION
CN108388739A (zh) * 2018-03-01 2018-08-10 吉林大学 一种非匀质仿生结构増材制造方法
CN112166003A (zh) * 2018-04-10 2021-01-01 通用电气公司 热处理增材制造的铁磁部件的方法
CN109175362A (zh) * 2018-07-24 2019-01-11 华中科技大学 一种激光增材制造方法
CN109047756A (zh) * 2018-08-03 2018-12-21 西安空天能源动力智能制造研究院有限公司 一种金属增材制造产品的可追溯方法
CN109047756B (zh) * 2018-08-03 2021-01-08 西安空天能源动力智能制造研究院有限公司 一种金属增材制造产品的可追溯方法
CN109397684A (zh) * 2018-10-12 2019-03-01 宁波慈北医疗器械有限公司 3d打印及其制备方法
CN109332702A (zh) * 2018-10-30 2019-02-15 西安理工大学 一种有序孔结构钨骨架的制备方法
CN109648081A (zh) * 2019-01-15 2019-04-19 华中科技大学 一种原位增强五模材料机械性能的激光增材制造成形方法
CN112077311A (zh) * 2020-09-22 2020-12-15 飞而康快速制造科技有限责任公司 一种铝合金的复合增材制备方法
CN114799211A (zh) * 2022-05-27 2022-07-29 华中科技大学 一种基于粉末床熔融的原位金属陶瓷多材料制备方法

Similar Documents

Publication Publication Date Title
CN106077641A (zh) 一种陶瓷颗粒增强金属零件的制备方法
TWI677582B (zh) 利用積層製造製備金屬部件及其所用之含鎢重金屬合金粉末
CN106001571A (zh) 一种金属零件激光选区合金化增材制造方法
CN106001568B (zh) 一种梯度材料金属模具3d打印一体化制备方法
US7141207B2 (en) Aluminum/magnesium 3D-Printing rapid prototyping
CN103407296A (zh) 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法
WO2018128656A1 (en) Core-shell alloy powder for additive manufacturing, an additive manufacturing method and an additively manufactured precipitation dispersion strengthened alloy component
US20190308243A1 (en) Direct metal laser sintering machine
CN104890240B (zh) 纳米粉末激光选择性熔化增材制造系统与方法
US20210205886A1 (en) Devices and methods for three-dimensional printing
CN109692967A (zh) 一种3d打印用团状粉料及其制备方法和打印方法
CN110449581A (zh) 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN108526488B (zh) 一种增减材制备钛合金零件的方法
JPWO2016185966A1 (ja) 粉末材料、立体造形物の製造方法および立体造形装置
CN112091217B (zh) 一种采用球形钨粉激光3d打印制造铜钨材料的方法
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN108290216B (zh) 3d打印用粉末及3d打印方法
CN105328185A (zh) 一种气相扩散/反应的激光金属3d打印系统及方法
CN105711104A (zh) 激光3d打印系统及其打印方法
CN104310948A (zh) 一种三d打印快速成型无机粉末材料的制备方法
CN104999180A (zh) 基于纳秒-皮秒-飞秒激光复合的陶瓷微结构3d打印方法
CN104084583A (zh) 一种金属基碳纳米复合材料的激光制备装置及方法
CN105772727B (zh) 一种金属材料梯度零件的3d打印成型方法
CN106216672B (zh) 一种金属增韧陶瓷基复合材料零件增材制备方法
EP3774130B1 (en) Gas flow control device for an additive manufacturing system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 621000 Sichuan city of Mianyang province high tech Zone Puming South East No. 133

Applicant after: Sichuan Sanyang laser material manufacturing technology Co., Ltd.

Address before: 621000 Sichuan city of Mianyang province high tech Zone Puming South East No. 133

Applicant before: Sichuan Yongnian Sanyang additive manufacturing technology Co. Ltd.

CB02 Change of applicant information
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109

WD01 Invention patent application deemed withdrawn after publication