CN106076379B - 一种石墨烯-锰化物纳米复合材料的可控合成方法 - Google Patents

一种石墨烯-锰化物纳米复合材料的可控合成方法 Download PDF

Info

Publication number
CN106076379B
CN106076379B CN201610406759.9A CN201610406759A CN106076379B CN 106076379 B CN106076379 B CN 106076379B CN 201610406759 A CN201610406759 A CN 201610406759A CN 106076379 B CN106076379 B CN 106076379B
Authority
CN
China
Prior art keywords
mco
graphene
graphene oxide
milliliters
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610406759.9A
Other languages
English (en)
Other versions
CN106076379A (zh
Inventor
张思海
汪月华
刘会龙
江训恒
张春辉
李永红
杜红梅
邹建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201610406759.9A priority Critical patent/CN106076379B/zh
Publication of CN106076379A publication Critical patent/CN106076379A/zh
Application granted granted Critical
Publication of CN106076379B publication Critical patent/CN106076379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种新型石墨烯‑锰氧化物纳米复合材料的可控合成方法,本发明首先以改进的Hummers方法合成氧化石墨烯和回流得到Mn3O4为原料,然后通过改变氧化石墨烯的量可控合成了不同物相的石墨烯‑锰氧化物(RGO‑Mn3O4/MnCO3,简称:G‑MCO),最后将得到的柱状材料分别进行冷冻干燥和真空干燥,所得即为目标产物。本发明的优点是:1、本发明的纳米复合材料是首次通过改变氧化石墨烯的添加量可控合成了不同物相的G‑MCO光催化剂;2、本发明的G‑MCO纳米材料具有较好的光催化降解有机污染物的效果;3、本发明提供的制备方法简单易行、生产成本低廉且纯度高。

Description

一种石墨烯-锰化物纳米复合材料的可控合成方法
技术领域
本发明涉及一种新型石墨烯-锰氧化物(RGO-Mn3O4/MnCO3)纳米复合材料的可控合成方法及其在光催化降解污染物方面的应用。
背景技术
难降解有机物是指那些很难彻底被分解,微生物代谢过程缓慢(同时包括其代谢的中间产物)的有机物,在普通的好氧生化处理系统中,在一般条件,不能或难以通过微生物的生物降解作用而有效去除的有机物。氯酚类就是一类存在比较普遍的难降解有机污染物,它广泛存在于炼油、塑料、橡胶、医药、钢铁等工业废水中,其中2,4-二氯苯酚(2,4-DCP)还广泛的应用于杀虫剂和除草剂的制造中。此类物质由于具有脂溶性特征易于在生物体内富集,潜在的危害着环境。其中一部分属于联合国公约中确定的有长期残留性、生物累积性、半挥发性和高毒性,并通过各种环境介质(大气、水、生物等)能够长距离迁移对人类健康和环境具有严重危害的天然的或人工合成的有机污染物,即持久性污染物。含有苯环结构的卤代或酚类有机物、有机农药和燃料等物质都属于此类污染物。在我国这些污染物主要出自于印染、造纸,化工合成、制药,以及炼焦废水等这些污染巨大、污染物种类复杂且排放量大的行业性废水。
对环境有潜在毒性、成份复杂多样、且难被微生物代谢降解或降解效果难以达到要求是难降解有机物的特征,而且其中大部分污染物对微生物有一定的毒性作用和抑制作用。同时大部分难降解的有机污染物中都含有一定量的卤素,卤素是一种非常活泼的元素,是组成近4万人造化学物质的基本元素。但是,其一旦同其他原子结合成分子,就能增强该分子的稳定性和持久性,并使这些分子更容易在食物链中传播并积累,是一类最危险的化学物质,具有致癌、致畸和致突变的毒性作用。因为化学性质稳定,难以在自然环境条件下利用微生物技术进行分解和生物降解,所以可以在环境中长期存在,并能通过环境介质进行迁移,造成更大面积的污染,对全球范围内的人群健康和生态系统的正常运行造成严重的威胁。
锰氧化物是一种在常温下以非常稳定的黑色或棕色粉末状固体状态存在的两性过渡金属氧化物,存在5种主晶和30余种次晶。锰氧化物独特的晶体结构以及多变的组成形式,使其在电化学电容器领域、工业生产催化领域、环境污染治理领域都有广泛的应用。Mn3O4可作为涂料或油漆的色料,提高油漆或涂料抗腐蚀性能,作为吸附剂,处理重金属废水,净化水资源。MnCO3是制造电信器材软磁铁氧体,合成二氧化锰和制造其他锰盐的原料。用作脱硫的催化剂,瓷釉、涂料和清漆的颜料。目前未见关于将这两种具有优异性能的锰氧化物进行结合而形成复合材料的合成方法的报道,因此探究两相锰氧化物的可控合成方法是非常有意义的。
发明内容
本发明所要解决的技术问题是提供一种新型石墨烯-锰氧化物RGO-Mn3O4/MnCO3,简称为G-MCO)纳米复合材料的可控合成的方法,为光催化降解有机污染物提供了一种更高效的材料,本发明的纳米复合材料操作简单、生产成本低廉、产品纯度高且易回收重复使用,是一种工艺环保制备催化材料的有效方法。
本发明是这样来实现的,一种新型石墨烯-锰氧化物纳米复合材料的可控合成方法,其特征步骤如下:
第一步,前驱体的制备:
(1)称取1~3克醋酸锰于25毫升烧杯中,加入5~10毫升去离子水中并置于超声波清洗器中超声溶解至澄清,转移至250毫升三颈烧瓶中并回流搅拌;
(2)然后在45℃下,滴加6~130毫升乙醇,约15分钟后逐滴添加5~10毫升氨水,滴加完毕升温至80℃反应3小时,离心,洗涤,真空烘干;
第二步,G-MCO的制备:
(1)、分别添加10~20毫升的水于6个25毫升烧杯中;然后分别取2~25毫升浓度为4.6毫克/升的氧化石墨烯,水浴超声30分钟;
(2)称取步骤一中所制备的前驱体0.2克,添加至上述已超声的氧化石墨烯溶液中,搅拌15分钟至混合均匀;移至25毫升的含聚四氟乙烯的水热罐中,水热处理150~200℃,12小时;
(3)冷却至室温,打开并去除上清液,将所得到的柱状材料分别进行冷冻干燥和真空干燥,所得材料即为不同石墨烯含量的G-MCO纳米复合材料。
本发明所述的氧化石墨烯,其作用是作为复合材料的组分和物相的调控剂。
本发明的优点是:1、本发明的纳米材料是首次通过改变氧化石墨烯的添加量可控合成了含有不同物相和组成的G-MCO复合光催化剂;2、本发明的G-MCO纳米材料具有较好的光催化降解有机污染物的效果;3、本发明提供的制备方法简单易行、生产成本低廉且纯度高。
附图说明
图1为本发明的前驱体Mn3O4、5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和50%G-MCO纳米材料的X射线粉末衍射对比图。此处的含量比为氧化石墨烯与前驱体Mn3O4的质量比。
图2为本发明的前驱体Mn3O4、5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和50%G-MCO纳米材料对2,4-DCP的光催化降解以及2,4-DCP自降解对比图。此处的含量比为氧化石墨烯与前驱体Mn3O4的质量比。
图3为本发明的5%G-MCO纳米材料的全波段扫描图。
图4为本发明的G-MCO纳米材料的能带结构图。
具体实施方式
以下结合附图说明对本发明的实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。
本发明的纳米材料的合成:一种新型石墨烯-锰氧化物(RGO-Mn3O4/MnCO3)纳米材料的可控合成的方法,其特征步骤如下:
1、前驱体的制备:
(1)称取1~3克醋酸锰于25毫升烧杯中,加入5~10毫升去离子水中并置于超声波清洗器中超声溶解至澄清,转移至250毫升三颈烧瓶中并回流搅拌;
(2)然后在45℃下,滴加6~130毫升乙醇,约15分钟后逐滴添加5~10毫升氨水,滴加完毕升温至80℃反应3小时,离心,洗涤,真空烘干。
2、G-MCO的制备:
(1)分别添加14毫升的水于6个25毫升烧杯中;然后分别取2.5、5、11、15、19和22毫升浓度为4.6毫克每升的氧化石墨烯,水浴超声30分钟。
(2)称取步骤一中所制备的前驱体0.2克,添加至上述已超声的氧化石墨烯溶液中,搅拌15分钟至混合均匀,移至25毫升的含聚四氟乙烯的水热罐中,水热处理180℃,12小时。
(3)冷却至室温,打开并去除上清液,将所得到的柱状材料分别进行冷冻干燥和真空干燥,所得材料分别对应于5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和50%G-MCO。此处的含量比为氧化石墨烯与前驱体Mn3O4的质量比。
3、如步骤2中所述的氧化石墨烯,其作用是作为复合材料的组分和物相的调控剂。
如图1所示,为本发明的前驱体Mn3O4、5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和 50%G-MCO纳米材料的X射线粉末衍射对比图。从图中可以看出,在未添加氧化石墨烯的实验条件下,所得到的 Mn3O4和由正方晶系组成黑锰矿Mn3O4的标准卡片(JCPDS fileNo. 01-089-4837)完全一致。而且在实验条件相同的情况下,随着氧化石墨烯添加量的依次递增,碳酸锰的(012)和(104)特征晶面在5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和 50%G-MCO的复合材料中逐渐增强,与此同时,黑锰矿Mn3O4 的(103)和(211)特征晶面随着氧化石墨烯添加量的依次递增却又依次递减。这种此消彼长的趋势直到当氧化石墨烯的添加量达到50%时(氧化石墨烯与前驱体Mn3O4的质量比),得到了均一物相的MnCO3,且它与菱锰矿MnCO3的标准卡片(JCPDS file No.00-044-1472)完全对应。这说明了GO添加量的改变对锰氧化物的物相组成起到一定的调控作用。
如图2所示,为本发明的前驱体Mn3O4、5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和50%G-MCO纳米材料对2,4-DCP的光催化降解以及2,4-DCP自降解对比图。由图可知,2,4-DCP有一定的自降解,但并不影响材料光催化的性能探究。而且氧化石墨烯的依次加入明显提高了光催化降解2,4-DCP的效率。而当氧化石墨烯添加量大于40%时,在前30分钟降解效果特别明显,而后又趋于平缓,这主要是由于过多的石墨烯对2,4-DCP有一定的吸附作用和对材料的包裹效位,进而影响了材料的光吸收效率和材料的活性位点。所以综合来看,当氧化石墨烯添加量为5%时,G-MCO纳米材料对 2,4-DCP的光催化降解效果最好。
如图3所示,为本发明的5%G-MCO纳米材料对2,4-DCP光催化降解全波段扫描图。在0~-40分钟内为暗处里吸附过程,在30~180分钟内为光催化降解过程,在最大吸收波长约为286纳米处可以明显看到暗处里吸附-脱附的平衡和光催化降解2,4-DCP的浓度趋势。而且图中没有看到峰的明显偏移或转化,说明在催化的过程中,2,4-DCP已被完全矿化为二氧化碳和水。
如图4所示,为本发明的G-MCO纳米材料能带结构图。可以看出Mn3O4和MnCO3的导带底和价带顶的位置,两种物质有良好的带隙匹配,从而有效的阻碍了光生电子和空穴的复合,延长了光生载流子的寿命。而石墨烯相当大的比表面积和独特的电子传输特性,不但可以吸附有机染料分子致使催化过程中的有效的快速接触而发生氧化还原反应,而且也可以提高光生载流子的传速速率,从而更加有利于光生电子与空穴的分离。因此,通过氧化石墨烯含量的改变可以很好地调控锰氧化物的物相组成,最终达到光催化高效降解2,4-DCP有机污染物的目的。

Claims (1)

1.一种氧化石墨烯作为可控合成石墨烯-锰化物纳米复合材料的组分和物相调控剂的应用,其特征在于,步骤如下:
第一步,前驱体的制备:
(1)称取1~3克醋酸锰于25毫升烧杯中,加入5~10毫升去离子水中并置于超声波清洗器中超声溶解至澄清,转移至250毫升三颈烧瓶中并回流搅拌;
(2)然后在45℃下,滴加6~130毫升乙醇,15分钟后逐滴添加5-10毫升氨水,滴加完毕升温至80℃反应3小时,离心,洗涤,真空烘干;
第二步,石墨烯-锰化物的制备:
(1)分别添加10~20毫升的水于6个25毫升烧杯中;然后分别取2.5、5、11、15、19、22毫升浓度为4.6毫克/升的氧化石墨烯,水浴超声30分钟;
(2)称取步骤一中所制备的前驱体0.2克,添加至上述已超声的氧化石墨烯溶液中,搅拌15分钟至混合均匀;移至25毫升的含聚四氟乙烯的水热罐中,水热处理150~200℃,12小时;
(3)冷却至室温,打开并去除上清液,将所得到的柱状材料分别进行冷冻干燥和真空干燥,所得材料即为不同石墨烯含量的石墨烯-锰化物G-MCO纳米复合材料;
其中随着氧化石墨烯添加量的依次递增,碳酸锰的(012)和(104)特征晶面在5%G-MCO、10%G-MCO、20%G-MCO、30%G-MCO、40%G-MCO和50%G-MCO的复合材料中逐渐增强,与此同时,黑锰矿Mn3O4的(103)和(211)特征晶面随着氧化石墨烯添加量的依次递增却又依次递减,直到当氧化石墨烯的添加量达50%时,得到了均一物相的MnCO3,且它与菱锰矿MnCO3的标准卡片JCPDS file No.00-044-1472完全对应。
CN201610406759.9A 2016-06-12 2016-06-12 一种石墨烯-锰化物纳米复合材料的可控合成方法 Active CN106076379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610406759.9A CN106076379B (zh) 2016-06-12 2016-06-12 一种石墨烯-锰化物纳米复合材料的可控合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610406759.9A CN106076379B (zh) 2016-06-12 2016-06-12 一种石墨烯-锰化物纳米复合材料的可控合成方法

Publications (2)

Publication Number Publication Date
CN106076379A CN106076379A (zh) 2016-11-09
CN106076379B true CN106076379B (zh) 2018-06-19

Family

ID=57228834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610406759.9A Active CN106076379B (zh) 2016-06-12 2016-06-12 一种石墨烯-锰化物纳米复合材料的可控合成方法

Country Status (1)

Country Link
CN (1) CN106076379B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582762B (zh) * 2016-12-13 2019-04-12 中国科学院宁波材料技术与工程研究所 一种氮掺杂石墨烯/MnO2复合材料及其制备方法
CN107017400B (zh) * 2017-06-02 2019-08-23 哈尔滨工业大学 碳酸锰/四氧化三锰/石墨烯三元复合材料的制备方法及其应用
CN110911653B (zh) * 2018-09-18 2021-10-15 天津理工大学 四氧化三锰/碳纳米管复合材料及其制备方法和应用
CN110975863A (zh) * 2019-12-13 2020-04-10 中国科学院合肥物质科学研究院 刺状纳米二氧化锰/石墨烯复合材料、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757096A (zh) * 2012-07-09 2012-10-31 南京理工大学 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法
CN103972518A (zh) * 2013-02-05 2014-08-06 中国科学院大连化学物理研究所 一种二氧化锰/碳纳米复合材料及其制备方法和应用
CN105148964A (zh) * 2015-08-06 2015-12-16 南昌航空大学 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151392A (ja) * 2012-01-25 2013-08-08 Tokyo Institute Of Technology 複合炭素材料及びその製造方法、並びに電極触媒及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757096A (zh) * 2012-07-09 2012-10-31 南京理工大学 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法
CN103972518A (zh) * 2013-02-05 2014-08-06 中国科学院大连化学物理研究所 一种二氧化锰/碳纳米复合材料及其制备方法和应用
CN105148964A (zh) * 2015-08-06 2015-12-16 南昌航空大学 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法

Also Published As

Publication number Publication date
CN106076379A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
Maksoud et al. Insight on water remediation application using magnetic nanomaterials and biosorbents
Raeisi-Kheirabadi et al. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: its photocatalytic activity and capability for water splitting
CN106076379B (zh) 一种石墨烯-锰化物纳米复合材料的可控合成方法
Zhu et al. Research progress on removal of phthalates pollutants from environment
Tian et al. Improved catalytic performance of ZnO via coupling with CoFe2O4 and carbon nanotubes: A new, photocatalysis-mediated peroxymonosulfate activation system, applied towards Cefixime degradation
Ajibade et al. Synthesis and structural studies of manganese ferrite and zinc ferrite nanocomposites and their use as photoadsorbents for indigo carmine and methylene blue dyes
CN110918126A (zh) 一种花状二硫化钼结合UiO-66光催化剂的制备方法
Hu et al. Recyclable carbon nanofibers@ hierarchical I-doped Bi2O2CO3–MoS2 membranes for highly efficient water remediation under visible-light irradiation
Wang et al. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: Performance and mechanism
Manikandan et al. Visible-light-active CuO x-loaded Mo-BiVO4 photocatalyst for inactivation of harmful bacteria (Escherichia coli and Staphylococcus aureus) and degradation of orange II Dye
Xu et al. Graphite carbon nitride coupled with high-dispersed iron (II) phthalocyanine for efficient oxytetracycline degradation under photo-Fenton process: Performance and mechanism
Al Kausor et al. Polyaniline (PANI) grafted hierarchical heterostructure nanocomposites for photocatalytic degradation of organic pollutants in waste water: a review
Chen et al. In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency
CN110124671A (zh) 一种Cu1-XCoXFe2O4类芬顿催化剂及其制备方法和应用
Ahmad et al. Photocatalytic degradation of deltamethrin by using Cu/TiO2/bentonite composite
Li et al. Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
Huang et al. Z-scheme ZnM-LDHs/g-C3N4 (M= Al, Cr) photocatalysts: their desulfurization performance and mechanism for model oil with air
Jiang et al. Highly dispersed Fe7S8 anchored on sp2/sp3 hybridized carbon boosting peroxymonosulfate activation for enhanced EOCs elimination though singlet oxygen-dominated nonradical pathway
Gul et al. Photodegradation of orange II dye using pn junction NiO/TiO2 composite, and assessment of its biological activities
Sharma et al. Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin
Falah et al. Photocatalytic degradation of anionic and cationic dyes over PPy/CuFe2O4 nanocomposite under visible-light and bactericidal action
CN113332990B (zh) 一种钙钛矿催化材料及其绿色合成方法与应用
Oluwole et al. Synthesis and characterization of binary bismuth tungstate-graphitic carbon nitride (BWO/g-C3N4) heterojunction nanocomposites for efficient photodegradation of ibuprofen in aqueous media
Zhu et al. Hydrothermal preparation of NiO/La–NaTaO3 composite photocatalyst for degradation of ammonium dibutyl dithiophosphate wastewater
Ahmad et al. Enhancing the performance of modified ZnAl LDH as hybrid catalyst-adsorbent on tetracycline removal under solar light irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant