CN106076336A - 一种磁性氧化铁纳米片的制备方法 - Google Patents

一种磁性氧化铁纳米片的制备方法 Download PDF

Info

Publication number
CN106076336A
CN106076336A CN201610409620.XA CN201610409620A CN106076336A CN 106076336 A CN106076336 A CN 106076336A CN 201610409620 A CN201610409620 A CN 201610409620A CN 106076336 A CN106076336 A CN 106076336A
Authority
CN
China
Prior art keywords
solution
ferric oxide
solid
oxide nano
nano piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610409620.XA
Other languages
English (en)
Inventor
黄文艳
赵文昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610409620.XA priority Critical patent/CN106076336A/zh
Publication of CN106076336A publication Critical patent/CN106076336A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开一种磁性氧化铁纳米片的制备方法。依次包括如下步骤:取500mL FeCl2溶液,置于恒温70~80℃水浴中,向溶液中同时滴加30%(质量分数)双氧水2~4mL和一定量的NaOH稀溶液,保持pH值为12~13,反应2~3h,转入高压釜中,在1h内升温到150~180℃,继续反应4~8h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2~3遍;将沉淀得到的固体加入到浓度为2~4mol/L的乳酸钠溶液中,固液比为1:10~1:50,搅拌4~5h,沉淀分离,获得的固体在用去离子水洗涤2~3遍之后,在400~450℃的温度下煅烧,去除其中的乳酸根,即可得到一种氧化铁纳米片。该结构有利于吸附和催化污染物,同时有利于分离。

Description

一种磁性氧化铁纳米片的制备方法
技术领域
本发明涉及环境污染控制新材料的开发,尤其涉及一种氧化铁纳米片的制备方法。
背景技术
有机废气处理是指在工业生产过程中产生的有机废气进行吸附、过滤、净化的处理工作。通常有机废气处理有甲醛有机废气处理、苯甲苯二甲苯等苯系物有机废气处理等等。有机废气一般都存在易燃易爆、有毒有害、不溶于水、溶于有机溶剂、处理难度大的特点。在有机废气处理时普遍采用的是有机废气活性炭吸附处理法、催化燃烧法、催化氧化法、酸碱中和法、等离子法等多种原理。催化氧化是一种比较经济有效的方法。但需要有经济适合普遍适用的催化剂。
纳米氧化铁具有良好的耐候性、耐光性、磁性和对紫外线具有良好的吸收和屏蔽效应,是一种重要的无机材料。在催化、功能陶瓷、磁性材料和透明颜料等领域具有重要的应用。纳米氧化铁具有巨大的比表面积,表面效应显著,也是一种很好的催化剂。用纳米粒子制成的催化剂的活性、选择性都高于普通催化剂,并且寿命长易操作。将用纳米氧化铁做成的空心小球,浮在含有机物的废水表面上。利用太阳光进行有机物的降解可加速废水处理过程。纳米氧化铁已直接用作高分子聚合物氧化、还原及合成的催化剂,纳米氧化铁催化剂可使石油的裂解速度提高1~5倍,以其作为燃烧催化剂制成的固体推进剂的燃烧速度较普通推进剂可提高1~10倍,这对制造高性能火箭及导弹十分有利。纳米氧化铁还可以催化分解水,制成清洁能源。
通过将磁性纳米颗粒分散在某种基体中制成磁性纳米复合材料可有效防止纳米颗粒间的相互团聚,有效地控制其颗粒尺寸。此外,磁性颗粒镶嵌在不能混合的介质中将导致一些奇异的物理和化学特征。
水滑石类化合物(LDHs)是由层间阴离子及带正电荷层板堆积而成的化合物。水滑石化学结构通式为:[M2+ 1-xM3+x(OH)2]x+[(An-)x/n·mH2O],其中M2+和M3+分别为位于主体层板上的二价和三价金属阳离子,如Mg2+、Ni2+、Zn2+、Mn2+、Cu2+、Co2+、Pd2+、Fe2+等二价阳离子和Al3 +、Cr3+、Co3+、Fe3+等三价阳离子均可以形成水滑石;An–为层间阴离子,可以包括无机阴离子,有机阴离子,配合物阴离子、同多和杂多阴离子;x为M3+/(M2++M3+)的摩尔比值,大约是4:1到2:1;m为层间水分子的个数。其结构类似于水镁石Mg(OH)2,由八面体共用棱边而形成主体层板。位于层板上的二价金属阳离子M2+可以在一定的比例范围内被离子半价相近的三价金属阳离子M3+同晶取代,使得层板带正电荷,层间存在可以交换的的阴离子与层板上的正电荷平衡,使得LDHs的整体结构呈电中性。层间的阴离子可被交换,经过一系列改性,水滑石材料可以得到许多种性能各异的物质。
发明内容
本发明的目的是为克服现有技术中氧化铁结构单一的不足,提供一种氧化铁纳米片的制备方法。
本发明采用的技术方案是依次包括如下步骤:
1)将FeCl2溶解到水中,配置为浓度为2~3mol/L的溶液,取将500mL该溶液,向其中置于恒温70~80℃水浴中,同时滴加30%(质量分数)双氧水2~4mL和一定量的NaOH稀溶液,保持pH值为12~13,反应2~3h,转入高压釜中,在1h内升温到150~180℃,继续反应4~8h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2~3遍;
2)将沉淀得到的固体加入到浓度为2~4mol/L的乳酸钠溶液中,固液比为1:10~1:50,搅拌4~5h,沉淀分离,获得的固体在用去离子水洗涤2~3遍之后,在400~450℃的温度下煅烧,去除其中的乳酸根,即可得到一种磁性氧化铁纳米片。
本发明的优点是:部分二价铁离子被双氧水氧化生成的三价铁,二价离子和生成的三价离子在70~80℃水浴中碱的作用下,产生磁性共沉淀,形成片层水滑石结构,再在片层间交换入乳酸根,最后通过高温煅烧将乳酸根去除,形成相对散开的片层结构。该结构有利于吸附和催化污染物。
具体实施方式
以下进一步提供本发明的3个实施例:
实施例1
将FeCl2溶解到水中,配置为浓度为3mol/L的溶液,取将500mL该溶液,向其中置于恒温80℃水浴中,同时滴加30%(质量分数)双氧水4mL和一定量的NaOH稀溶液,保持pH值为13,反应3h,转入高压釜中,在1h内升温到180℃,继续反应8h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗3遍;将沉淀得到的固体加入到浓度为4mol/L的乳酸钠溶液中,固液比为1:50,搅拌5h,沉淀分离,获得的固体在用去离子水洗涤3遍之后,在450℃的温度下煅烧,去除其中的乳酸根,即可得到一种磁性氧化铁纳米片。
取1g氧化铁纳米片,加入到1.0L待处理的亚甲基蓝废水中,再加入0.01毫升质量分数为30%的双氧水,搅拌20min,有机物被分解,磁场分离,去除率97.2%,上清液可以排放。
实施例2
将FeCl2溶解到水中,配置为浓度为2mol/L的溶液,取将500mL该溶液,向其中置于恒温70℃水浴中,同时滴加30%(质量分数)双氧水2mL和一定量的NaOH稀溶液,保持pH值为12,反应2h,转入高压釜中,在1h内升温到150℃,继续反应4h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2遍;将沉淀得到的固体加入到浓度为2mol/L的乳酸钠溶液中,固液比为1:10,搅拌4h,沉淀分离,获得的固体在用去离子水洗涤2遍之后,在400℃的温度下煅烧,去除其中的乳酸根,即可得到一种磁性氧化铁纳米片。
取1g氧化铁纳米片,加入到1.0L待处理的亚甲基蓝废水中,再加入0.01毫升质量分数为30%的双氧水,搅拌20min,有机物被分解,磁场分离,去除率97.5%,上清液可以排放。
实施例3
将FeCl2溶解到水中,配置为浓度为3mol/L的溶液,取将500mL该溶液,向其中置于恒温80℃水浴中,同时滴加30%(质量分数)双氧水3mL和一定量的NaOH稀溶液,保持pH值为13,反应3h,转入高压釜中,在1h内升温到180℃,继续反应6h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗3遍;将沉淀得到的固体加入到浓度为4mol/L的乳酸钠溶液中,固液比为1:50,搅拌5h,沉淀分离,获得的固体在用去离子水洗涤3遍之后,在450℃的温度下煅烧,去除其中的乳酸根,即可得到一种磁性氧化铁纳米片。
取1g氧化铁纳米片,加入到1.0L待处理的亚甲基蓝废水中,再加入0.01毫升质量分数为30%的双氧水,搅拌20min,有机物被分解,磁场分离,去除率94.3%,上清液可以排放。

Claims (1)

1.一种磁性氧化铁纳米片的制备方法,其特征是依次包括如下步骤:
1)将FeCl2溶解到水中,配置为浓度为2~3mol/L的溶液,取将500mL该溶液,向其中置于恒温70~80℃水浴中,同时滴加30%(质量分数)双氧水2~4mL和一定量的NaOH稀溶液,保持pH值为12~13,反应2~3h,转入高压釜中,在1h内升温到150~180℃,继续反应4~8h,自然冷却到室温,在该过程中形成具有层状结构的沉淀,沉淀分离,去离子水洗2~3遍;
2)将沉淀得到的固体加入到浓度为2~4mol/L的乳酸钠溶液中,固液比为1:10~1:50,搅拌4~5h,沉淀分离,获得的固体在用去离子水洗涤2~3遍之后,在400~450℃的温度下煅烧,去除其中的乳酸根,即可得到一种磁性氧化铁纳米片。
CN201610409620.XA 2016-06-12 2016-06-12 一种磁性氧化铁纳米片的制备方法 Pending CN106076336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610409620.XA CN106076336A (zh) 2016-06-12 2016-06-12 一种磁性氧化铁纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610409620.XA CN106076336A (zh) 2016-06-12 2016-06-12 一种磁性氧化铁纳米片的制备方法

Publications (1)

Publication Number Publication Date
CN106076336A true CN106076336A (zh) 2016-11-09

Family

ID=57227931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610409620.XA Pending CN106076336A (zh) 2016-06-12 2016-06-12 一种磁性氧化铁纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN106076336A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899578A (zh) * 2017-10-25 2018-04-13 浙江科技学院 一种粽状微米级氧化铁非均相类光芬顿催化剂及其制备方法
CN108186677A (zh) * 2018-01-05 2018-06-22 中国科学院上海硅酸盐研究所 新型自由基高效产生的可降解纳米材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899578A (zh) * 2017-10-25 2018-04-13 浙江科技学院 一种粽状微米级氧化铁非均相类光芬顿催化剂及其制备方法
CN107899578B (zh) * 2017-10-25 2020-05-26 浙江科技学院 一种粽状微米级氧化铁非均相类光芬顿催化剂及其制备方法
CN108186677A (zh) * 2018-01-05 2018-06-22 中国科学院上海硅酸盐研究所 新型自由基高效产生的可降解纳米材料及其制备方法和应用
CN108186677B (zh) * 2018-01-05 2020-05-19 中国科学院上海硅酸盐研究所 自由基高效产生的可降解纳米材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine
Xu et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles
Guan et al. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate
Gong et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B
Zhao et al. Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate
Wang et al. Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light
Salari Kinetics and mechanism of enhanced photocatalytic activity under visible light irradiation using Cr2O3/Fe2O3 nanostructure derived from bimetallic metal organic framework
Li et al. Green synthesis of red mud based ZnOFe2O3 composite used for photo-Fenton reaction under visible light
Ren et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst
Chen et al. The effects of interaction between vermiculite and manganese dioxide on the environmental geochemical process of thallium
CN104624193B (zh) 一种二氧化硅负载磁性钴氧化物催化剂的制备方法
Zhang et al. Visible light photodegradation of organic dyes, reduction of CrVI and catalytic oxidative desulfurization by a class of polyoxometalate-based inorganic-organic hybrid compounds
Han et al. Enhanced heterogeneous Fenton-like degradation of refractory organic contaminants over Cu doped (Mg, Ni)(Fe, Al) 2O4 synthesized from laterite nickel ore
Zhu et al. Flower-like bentonite-based Co3O4 with oxygen vacancies-rich as highly efficient peroxymonosulfate activator for lomefloxacin hydrochloride degradation
Balgude et al. Succinate assisted synthesis of magnetically separable Fe2O3/g-C3N4 nano-heterostructure: A stable catalyst for environmental remediation
CN106082353B (zh) 一种氧化铁纳米片的制备方法
Wang et al. A novel Fe-rectorite composite catalyst synergetic photoinduced peroxymonosulfate activation for efficient degradation of antibiotics
Meng et al. Synergistic enhancement of redox pairs and functional groups for the removal of phenolic organic pollutants by activated PMS using silica-composited biochar: Mechanism and environmental toxicity assessment
Liu et al. Constructing functional thermal-insulation-layer on Co3O4 nanosphere for reinforced local-microenvironment photothermal PMS activation in pollutant degradation
Zhang et al. Novel sulfur vacancies featured MIL-88A (Fe)@ CuS rods activated peroxymonosulfate for coumarin degradation: Different reactive oxygen species generation routes under acidic and alkaline pH
CN105964262B (zh) 一种磁性复合氧化镍催化剂的制备方法
Dong et al. Non-radical activation of CaO2 nanoparticles by MgNCN/MgO composites for efficient remediation of organic and heavy metal-contaminated wastewater
CN106076336A (zh) 一种磁性氧化铁纳米片的制备方法
Yang et al. Facile fabrication of AgFe1− xCuxO2 composite with abundant oxygen vacancies for boosted photocatalytic Cr (VI) reduction and organic pollutants degradation under visible light
Dhinagaran et al. Tailor made ZnAl2O4–CeO2 hetero structure as an efficient photo catalyst for environmental remediation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109