CN106075601A - 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法 - Google Patents

一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法 Download PDF

Info

Publication number
CN106075601A
CN106075601A CN201610519570.0A CN201610519570A CN106075601A CN 106075601 A CN106075601 A CN 106075601A CN 201610519570 A CN201610519570 A CN 201610519570A CN 106075601 A CN106075601 A CN 106075601A
Authority
CN
China
Prior art keywords
hydroxyapatite
polylactic acid
bamboo fibre
preparation
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610519570.0A
Other languages
English (en)
Other versions
CN106075601B (zh
Inventor
蒋柳云
李业
熊成东
苏胜培
童舒婷
贾钰竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Chuangkemei Biotechnology Co ltd
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201610519570.0A priority Critical patent/CN106075601B/zh
Publication of CN106075601A publication Critical patent/CN106075601A/zh
Application granted granted Critical
Publication of CN106075601B publication Critical patent/CN106075601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

本发明公开了一种竹纤维/羟基磷灰石/聚乳酸类多孔材料及其制备方法。该竹纤维/羟基磷灰石/聚乳酸类多孔材料是指将羟基磷灰石分散液滴加到竹纤维和聚乳酸类复合的1,4二氧六环分散液中,超声搅拌后置于培养皿中,冷冻干燥得三元复合多孔材料。本发明制得的三元复合多孔材料其力学性能比羟基磷灰石/聚乳酸类二元复合多孔材料明显提高,其孔径变大,且能完全降解,制备方法简单,多孔材料结构可控,有望用做新型骨组织工程支架材料。

Description

一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料 及其制备方法
技术领域
本发明涉及一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法,属于生物医用材料领域。
背景技术
骨缺损修复问题一直是骨科医生面临的难题。随着组织工程学的迅速发展,利用组织工程学的方法修复骨缺损已成为一种全新的治疗模式。在骨组织工程的研究中,主要包含以下三个方面的关键因素:信号分子(骨生长因子、骨诱导因子)、支架材料和靶细胞。其中支架材料在骨组织工程中扮演着极为重要的角色,一方面作为信号因子的载体,将其运送到缺损位置;另一方面可提供新骨生长的框架。故研制理想的支架材料则是骨组织工程研究的关键问题。要获得理想的支架材料,若仅靠单一材料,显然很难满足以上各项性能的要求,因此人们通常模仿天然骨的成分和结构特征进行仿生制备无机/有机杂化支架。纳米羟基磷灰石/聚乳酸类支架材料综合了聚乳酸的可降解性和生物相容性,以及纳米羟基磷灰石的骨传导性及弱碱性,因而是骨组织工程支架材料研究的热点。但研究表明该纳米羟基磷灰石/聚乳酸类复合支架其力学性能及降解性仍有待提高。
纤维作为增强体在复合材料中能起到传递载荷作用,因而是增强材料的研究热点。碳纤维作为增强材料具有以下优势:强度高,吸附能力高,表面有很多亲水性基团。浙江大学沈烈等将碳纤维用浓硝酸处理后,采用溶液共混法制备了炭碳纤维/羟基磷灰石/聚乳酸复合生物材料(复合材料学报,2007,24(5):61-65)。通过模压成型获得的CF/HA/PLA 复合材料具有优异的力学性能,与HA/PLA 复合材料相比,剪切强度提高了4~5倍。但碳纤维不降解,留在体内可能成为永久的异物,显然无法满足骨组织工程支架材料的降解性要求。
天然植物纤维具有低成本、低密度、良好的比强度、易于分离以及可降解性等优点,是聚合物的绿色增强材料。竹纤维是天然植物纤维中的一种,不仅资源丰富、有优异的力学性能,还具有天然抗菌、除臭、吸湿放湿、抗紫外线等优点,被誉为增强聚合物的“天然玻璃纤维”。目前已经用于增强的聚合物,并实现商业化生产的主要有聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚羟基丁酸酯(PHB)、聚已内酰胺(PCL)等。这些塑料大多具有优良的可塑性、易加工成型等特点,主要应用于汽车部件、装饰装修、电器产品、包装、纺织业和医疗保健等领域。但用于增强羟基磷灰石/聚乳酸复合的多孔材料至今未见报道。
发明内容
针对上述情况,本发明的目的在于提供一种竹纤维/羟基磷灰石/聚乳酸类(BF/HA/PLGA) 三元复合可降解多孔材料及其制备方法。本发明制备的竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料具有较高的力学性能、降解性能及生物相容性,是一种新型可降解多孔材料,能满足骨组织工程支架材料性能的基本要求。
本发明采用以下技术方案:竹纤维是指经表面处理后的竹纤维;羟基磷灰石
是指经表面接枝少量聚乳酸后的改性羟基磷灰石;聚乳酸类高聚物L-乳酸(L-LA)与乙醇酸(GA)共聚物,摩尔比为92 : 8~98 : 2,粘均分子量在30~60万。
本发明所涉竹纤维的制备方法可以参照Li Ye等人报道的竹纤维的处理的方
法(Industrial & Engineering Chemistry Research,2015; 54: 12017−12024)。聚-L-乳酸/乙醇酸共聚物(L-PLGA)的制备方法可以参照Wang Liansong等人报道的PLGA的制备方法(Journal of polymer rerearch, 2010, 17:77–82),羟基磷灰石的制备方法可以参照Jiang Liuyun等人报道的方法(Applied Surface Science, 2012; 259:72-78)。
本发明的竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料由下述技术方案实现的,其特征在于采用如下工艺步骤:
(1)称取一定量的PLGA溶解于1,4-二氧六环,加入改性的BF搅拌至均匀分散。同时将n-HA超声分散于1,4二氧六环的分散液滴加到BF/PLGA混合溶液中,继续超声磁力搅拌后转移到表面皿中。
(2)将上述混合的复合材料放入冰箱中冷冻或液氮中冷冻,再用冷冻干燥机冷冻干燥至恒重,放入40℃真空烘箱中烘干。
本发明的优越性在于:(1)本发明所用的原材料来源广泛,尤其是竹纤维资源丰富,价格便宜。
(2)本发明制备的竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料,与羟基磷灰石/聚乳酸类二元复合多孔材料相比,可利用其中的竹纤维改善其多孔结构,并能提高其力学性能,同时可改善其降解性能,从而获得理想的骨组织工程支架材料。
(3)该新型竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料其制备方法简单易行,成本低,绿色环保,适合大规模生产,有望用于骨组织工程支架材料。
附图说明
图1为羟基磷灰石/聚乳酸类二元复合多孔材料及竹纤维/羟基磷灰石/聚乳酸类三元复合多孔材料的SEM照片。(a) 30%HA/PLGA复合材料; (b) 20%BF/30%HA/PLGA复合材料。
具体实施方式
实施例1:称取3.0 g PLGA(LA : GA摩尔比为92 : 08,分子量为40万)溶解于100ml 1,4-二氧六环,加入5.0 g长径为1 mm,直径为0.2 mm的改性竹纤维搅拌至均匀分散。同时将2.0 g 纳米羟基磷灰石超声分散于100 ml 1,4二氧六环,超声1 h后,将n-HA分散液滴加到上述BF/PLGA混合液中。继续超声磁力搅拌4 h后转移到表面皿中。放入-20 ℃的冰箱中冷冻48 h。用冷冻干燥机冷冻干燥至恒重,放入40℃真空烘箱中烘干。将其切割成10 mm×10 mm×10 mm的块状材料,测得抗压强度为2.53 MPa, 孔隙率为88 %,平均孔径为450um。
实施例2:称取4.0 g PLGA(LA : GA摩尔比为95 : 05,分子量为35万)溶解于150ml 1,4-二氧六环,加入3.0 g长径为5 mm,直径为0.1 mm的改性竹纤维搅拌至均匀分散。同时将3.0 g 纳米羟基磷灰石超声分散于50 ml 1,4二氧六环,超声1 h后,将n-HA分散液滴加到上述BF/PLGA混合液中。继续超声磁力搅拌4 h后转移到表面皿中。放入-40℃的冰箱中冷冻48 h。用冷冻干燥机冷冻干燥至恒重,放入40 ℃真空烘箱中烘干。将其切割成10 mm×10 mm×10 mm的块状材料,测得抗压强度为3.45 MPa, 孔隙率为85 %,平均孔径为250 um。
实施例3:称取2.0 g PLGA(LA : GA摩尔比为95 : 05,分子量为45万)溶解于100ml 1,4-二氧六环,加入4.0 g长径为8 mm,直径为0.2 mm的改性竹纤维搅拌至均匀分散。同时将4.0 g 纳米羟基磷灰石超声分散于100 ml 1,4二氧六环,超声2 h后,将n-HA分散液滴加到上述BF/PLGA混合液中。继续超声磁力搅拌5 h后转移到表面皿中。放入-196 ℃的冰箱中冷冻48 h。用冷冻干燥机冷冻干燥至恒重,放入40℃真空烘箱中烘干。将其切割成10 mm×10 mm×10 mm的块状材料,测得抗压强度为3.45 MPa, 孔隙率为83 %,平均孔径为200um。
对比实施例1:称取6.0 g PLGA(LA : GA摩尔比为95 : 05,分子量为45万)溶解于100 ml 1,4-二氧六环。将4.0 g 纳米羟基磷灰石超声分散于100 ml 1,4二氧六环,超声2h后,将n-HA分散液滴加到上述BF/PLGA混合液中。继续超声磁力搅拌5 h后转移到表面皿中。放入-40 ℃的冰箱中冷冻48 h。用冷冻干燥机冷冻干燥至恒重,放入40℃真空烘箱中烘干。将其切割成10 mm×10 mm×10 mm的块状材料,测得抗压强度为0.82 MPa, 孔隙率为75%,平均孔径为100 um。
抗压强度测试条件:将切好的10 mm×10 mm×10 mm块状材料用万能材料试验机(SANSCMT4503,中国深圳SANS公司)测试其压缩变形为40 %时的压缩性能。测试温度为20℃±2℃,加载速度为1 mm/min。每组测试五个平行样,结果取平均值。
孔隙率的测定:向量筒中加入适量无水乙醇,将切好的10 mm×10 mm×10 mm块状材料称干重记为m1,放入无水乙醇中,称乙醇和样品初始重量记为V1。在室温下浸泡1周后将材料取出称材料湿重为m2,剩余乙醇重量为V2。则孔隙率θ=[ (m2-m1)/ρ]/(V1-V2)。每个样品测三个平行样,取平均值。

Claims (4)

1.一种竹纤维/羟基磷灰石/聚乳酸类多孔材料,其特征为竹纤维、羟基磷灰石及聚乳酸类三元复合物在1,4二氧六环溶剂中超声搅拌后,置于培养皿中预冷后冷冻干燥 。
2.按照权利要求1所述的竹纤维,其特征是指经表面处理后的竹纤维长度3~10mm,直径0.05~0.3mm。
3.按照权利要求1所述的三元复合物其组分比例,其特征是指质量比为:竹纤维占为5%~40%,羟基磷灰石含量为10~40%,聚乳酸为20%~85%。
4.按照权利要求1所述的在1,4二氧六环溶剂中超声搅拌,其特征是指浓度为物料干重在1,4二氧六环中占2 %~8% (w/v)。
CN201610519570.0A 2016-07-05 2016-07-05 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法 Active CN106075601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610519570.0A CN106075601B (zh) 2016-07-05 2016-07-05 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610519570.0A CN106075601B (zh) 2016-07-05 2016-07-05 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106075601A true CN106075601A (zh) 2016-11-09
CN106075601B CN106075601B (zh) 2019-03-01

Family

ID=57211925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610519570.0A Active CN106075601B (zh) 2016-07-05 2016-07-05 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106075601B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519616A (zh) * 2016-11-18 2017-03-22 无锡明盛纺织机械有限公司 纤维增强的聚乳酸复合物及其制备方法
CN106519614A (zh) * 2016-11-17 2017-03-22 无锡明盛纺织机械有限公司 纤维增强的聚乳酸复合物及其制备方法
CN106751603A (zh) * 2016-11-18 2017-05-31 无锡明盛纺织机械有限公司 聚乳酸复合物及其制备方法
CN108607116A (zh) * 2018-05-21 2018-10-02 湖南师范大学 一种竹纤维/纳米磷灰石复合材料及其制备方法
CN108939934A (zh) * 2018-07-31 2018-12-07 哈工大(威海)创新创业园有限责任公司 一种生物相容磁性多孔膜材料及其制备方法
CN109420201A (zh) * 2017-09-05 2019-03-05 张家港市沐和新材料技术开发有限公司 一种纤维素-聚乳酸-羟基磷灰石复合支架的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
CN103285424A (zh) * 2013-05-27 2013-09-11 东华大学 一种三维纤维基气凝胶组织工程支架及其制备方法
CN103660478A (zh) * 2013-12-27 2014-03-26 大连瑞光非织造布集团有限公司 抗菌水刺淋膜三层复合非织造布及其制备方法
CN104140551A (zh) * 2013-05-10 2014-11-12 北京化工大学 一类骨组织工程用有机/无机复合多孔支架材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
CN104140551A (zh) * 2013-05-10 2014-11-12 北京化工大学 一类骨组织工程用有机/无机复合多孔支架材料的制备方法
CN103285424A (zh) * 2013-05-27 2013-09-11 东华大学 一种三维纤维基气凝胶组织工程支架及其制备方法
CN103660478A (zh) * 2013-12-27 2014-03-26 大连瑞光非织造布集团有限公司 抗菌水刺淋膜三层复合非织造布及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张俐娜等: "《基于生物质的环境友好材料 第1版》", 30 June 2011 *
汪学军: ""增强型聚乳酸基纳米结构复合支架的制备与性能"", 《中国博士学位论文全文数据库 医药卫生科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519614A (zh) * 2016-11-17 2017-03-22 无锡明盛纺织机械有限公司 纤维增强的聚乳酸复合物及其制备方法
CN106519616A (zh) * 2016-11-18 2017-03-22 无锡明盛纺织机械有限公司 纤维增强的聚乳酸复合物及其制备方法
CN106751603A (zh) * 2016-11-18 2017-05-31 无锡明盛纺织机械有限公司 聚乳酸复合物及其制备方法
CN109420201A (zh) * 2017-09-05 2019-03-05 张家港市沐和新材料技术开发有限公司 一种纤维素-聚乳酸-羟基磷灰石复合支架的制备方法
CN108607116A (zh) * 2018-05-21 2018-10-02 湖南师范大学 一种竹纤维/纳米磷灰石复合材料及其制备方法
CN108607116B (zh) * 2018-05-21 2020-12-22 湖南师范大学 一种竹纤维/纳米磷灰石复合材料及其制备方法
CN108939934A (zh) * 2018-07-31 2018-12-07 哈工大(威海)创新创业园有限责任公司 一种生物相容磁性多孔膜材料及其制备方法

Also Published As

Publication number Publication date
CN106075601B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN106075601A (zh) 一种竹纤维/羟基磷灰石/聚乳酸类三元复合可降解多孔材料及其制备方法
Bi et al. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair
Afshar et al. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment
Mobini et al. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering
Luo et al. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
Han et al. Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization
Kolan et al. Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering
Khan et al. Fabrication and characterization of gelatin‐based biocompatible porous composite scaffold for bone tissue engineering
Duarte et al. Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes
Chen et al. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration
Yang et al. Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications
Pan et al. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement
Zhou et al. Electrospun scaffolds of silk fibroin and poly (lactide-co-glycolide) for endothelial cell growth
Gao et al. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration
Zhang et al. Biodegradable poly (lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching
Teimouri et al. Fabrication and characterization of silk fibroin/chitosan/nano γ-alumina composite scaffolds for tissue engineering applications
Wongputtaraksa et al. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow‐derived mesenchymal stem cells
Kim et al. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes
Hu et al. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering
Tang et al. Biodegradable tissue engineering scaffolds based on nanocellulose/PLGA nanocomposite for NIH 3T3 cell cultivation
Si et al. Ultrasonication‐induced modification of hydroxyapatite nanoparticles onto a 3D porous poly (lactic acid) scaffold with improved mechanical properties and biocompatibility
Kozlowska et al. Preparation and characterization of collagen/chitosan poly (ethylene glycol)/nanohydroxyapatite composite scaffolds
Hu et al. Study on the mechanical and thermal properties of polylactic acid/hydroxyapatite@ polydopamine composite nanofibers for tissue engineering
Srivastava et al. Chitosan‐finished Antheraea mylitta silk fibroin nonwoven composite films for wound dressing
Mooyen et al. Physico‐chemical and in vitro cellular properties of different calcium phosphate‐bioactive glass composite chitosan‐collagen (CaP@ ChiCol) for bone scaffolds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240228

Address after: D5-5-1A, 5th Floor, Building 312, Cultural and Creative Park, No. 4001 Fuqiang Road, Cuiwan Community, Shatou Street, Futian District, Shenzhen City, Guangdong Province, 518048

Patentee after: Shenzhen Chuangkemei Biotechnology Co.,Ltd.

Country or region after: China

Address before: 410081 No. 36, Mount Lu, Changsha, Hunan, Yuelu District

Patentee before: HUNAN NORMAL University

Country or region before: China

TR01 Transfer of patent right