CN106064944A - 锆酸铅钡薄膜的制备方法 - Google Patents

锆酸铅钡薄膜的制备方法 Download PDF

Info

Publication number
CN106064944A
CN106064944A CN201610368299.5A CN201610368299A CN106064944A CN 106064944 A CN106064944 A CN 106064944A CN 201610368299 A CN201610368299 A CN 201610368299A CN 106064944 A CN106064944 A CN 106064944A
Authority
CN
China
Prior art keywords
lead
thin film
barium
lead zirconates
titanate thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610368299.5A
Other languages
English (en)
Inventor
樊慧庆
赵扬
董广志
彭彪林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610368299.5A priority Critical patent/CN106064944A/zh
Publication of CN106064944A publication Critical patent/CN106064944A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Abstract

本发明公开了一种锆酸铅钡薄膜的制备方法,用于解决现有制备的电卡制冷材料获得最大电卡制冷温度变化值时的温度过高的技术问题。技术方案是根据钙钛矿结构的性质,制定合理的原料配比,在钙钛矿结构的锆酸铅中掺杂了合适的元素钡。采用溶胶凝胶法,以醋酸铅、醋酸钡和四正丙氧基锆为原料分别制成铅钡溶液与锆溶液,将之混合制成锆酸铅钡溶胶,涂抹在Pt(111)/TiOx/SiO2/Si(100)基片上最终制得锆酸铅钡薄膜材料。该方法制得的锆酸铅钡薄膜纳米级铁电与反铁电相共存的弛豫特性,在室温附近获得了良好的电卡制冷性能,最大电卡效应的温度为290K,相对于背景技术中的温度413K,更加接近室温,实用性强。

Description

锆酸铅钡薄膜的制备方法
技术领域
本发明属于电卡制冷技术领域,特别是涉及一种锆酸铅钡薄膜的制备方法。
背景技术
电卡制冷效应是指在绝热条件下施加或者去掉电场的过程中可极化电介质材料中所产生的温度或熵的变化现象。利用这一效应,理论上可以设计出与气态压缩机制冷相似的固态电卡材料制冷机。2006年,Mischenko等在反铁电材料PbZr0.95Ti0.05O3中靠近其反铁电相-顺电相转变点500K,处首次观察到大的电卡效应。在绝热条件下施加或者去掉电场的过程中,该材料中所产生的温度变化ΔT为12K,熵的变化ΔS为8J/(K·kg)),在材料与物理界掀起了新一轮的电卡制冷研究热潮。
文献“Electrocaloric effect of PMN-PT thin film near morphotropicphase boundary.Bull.Mater.Sci.2009,32(3):259-262”公开了一种掺钛铌镁酸铅薄膜的制备方法。采用激光脉冲沉积法,在700℃及2ⅹ10-6mbar气压下,通过脉冲激光烧蚀掺钛铌镁酸铅靶材,烧蚀剥落物在氧气环境下沉积在La0.5Sr0.5CoO3临时层上,得到焦绿石型钙钛矿结构掺钛铌镁酸铅薄膜。该材料在温度413K时得到ΔT为31K。但该温度远高于室温,难以满足实践应用的需求。
发明内容
为了克服现有方法制备的电卡制冷材料获得最大电卡制冷温度变化值时的温度过高的不足,本发明提供一种锆酸铅钡薄膜的制备方法。该方法根据钙钛矿结构的性质,制定合理的原料配比,在钙钛矿结构的锆酸铅中掺杂了合适的元素钡。采用溶胶凝胶法,以醋酸铅、醋酸钡和四正丙氧基锆为原料分别制成铅钡溶液与锆溶液,将之混合制成锆酸铅钡溶胶,涂抹在Pt(111)/TiOx/SiO2/Si(100)基片上最终制得锆酸铅钡薄膜材料。该方法制得的锆酸铅钡薄膜纳米级铁电与反铁电相共存的弛豫特性,可在室温附近获得良好的电卡制冷性能,相对于背景技术中的温度413K,更加利于大规模工业生产。
本发明解决其技术问题所采用的技术方案是:一种锆酸铅钡薄膜的制备方法,其特点是包括以下步骤:
(a)将醋酸铅与醋酸钡一起溶解在冰醋酸与去离子水中。为了补偿晶化过程中铅元素的挥发造成的损失,原料中加入15%~20%过量的醋酸铅;
(b)将乙酰丙酮加入至四正丙氧基锆与2-甲氧基乙醇混合溶液中,并在室温下搅拌30~35分钟;
(c)将步骤(a)制得的铅/钡溶液与步骤(b)制得的锆溶液混合并于室温下搅拌2~2.5小时,获得锆酸铅钡溶胶;
(d)时效24小时后,用直径0.2微米的过滤器将锆酸铅钡溶胶进行过滤,然后将其均匀地滴在事先用丙酮和1-丙醇洗涤干净的Pt(111)/TiOx/SiO2/Si(100)基片上;
(e)自旋涂膜转速为4000/rpm,单层涂膜时间为25~35秒,每涂完一层,先将其置于300~350℃热板上热解3~4分钟,以充分去除有机物。然后再将其置于500~550℃热板上预晶化5~7分钟;
(f)待沉积完8层厚后,将锆酸铅钡薄膜置于管式炉中进行最终晶化退火处理,退火温度为700~800℃,时间为30~40分钟,气氛为空气。
所述锆酸铅钡薄薄膜的厚度约300~350纳米。
所述锆酸铅钡溶胶的浓度为0.25~0.35摩尔。
本发明的有益效果是:该方法根据钙钛矿结构的性质,制定合理的原料配比,在钙钛矿结构的锆酸铅中掺杂了合适的元素钡。采用溶胶凝胶法,以醋酸铅、醋酸钡和四正丙氧基锆为原料分别制成铅钡溶液与锆溶液,将之混合制成锆酸铅钡溶胶,涂抹在Pt(111)/TiOx/SiO2/Si(100)基片上最终制得锆酸铅钡薄膜材料。该方法制得的锆酸铅钡薄膜纳米级铁电与反铁电相共存的弛豫特性,在室温附近获得了良好的电卡制冷性能,最大电卡效应的温度为290K,相对于背景技术中的温度413K,更加接近室温,有利于大规模工业生产,实用性强。
下面结合具体实施方式对本发明作详细说明。
具体实施方式
本发明锆酸铅钡薄膜的制备方法具体步骤如下:
先将醋酸铅与醋酸钡一起溶解在冰醋酸与去离子水中。为了补偿晶化过程中铅元素的挥发造成的损失,原料中加入15%~20%过量的醋酸铅。与此同时,将乙酰丙酮加入至四正丙氧基锆与2-甲氧基乙醇混合溶液中,并在室温下搅拌30~35分钟。然后将上述过程中获得的铅钡溶液与锆溶液混合并于室温下搅拌2~2.5小时。最终获得的锆酸铅钡溶胶的浓度为0.25~0.35摩尔。时效24小时后,用直径0.2微米的过滤器将锆酸铅钡溶胶进行过滤,然后将其均匀地滴在事先用丙酮和1-丙醇洗涤干净的Pt(111)/TiOx/SiO2/Si(100)基片上。自旋涂膜转速为4000/rpm,单层涂膜时间为25~35秒,每涂完一层,先将其置于300~350℃热板上热解3~4分钟,以充分去除有机物。然后再将其置于500~550℃热板上预晶化5~7分钟。待沉积完8层厚后,将锆酸铅钡薄膜置于管式炉中进行最终晶化退火处理,退火温度为700~800℃,时间为30~40分钟,气氛为空气,制得锆酸铅钡薄膜。
使用德国西门子公司的全自动X射线衍射仪,型号为Bruker-AXS D5005,对晶体结构进行测试,薄膜的表面形貌观察采用荷兰飞利浦公司的扫描电子显微镜FEIXL30SFEG,薄膜的微观结构分析采用荷兰飞利浦公司的透射电子显微镜CM20。经750度30分钟退火后,锆酸铅钡薄膜为完全晶化的、纯的钙钛矿相结构。通过扫面电镜图片可观察与验证锆酸铅钡薄膜中的铁电与反铁电两相共存结构。
采用光刻法制作PBZ薄膜Au/Cr顶电极,顶电极直径为150微米。采用精密阻抗分析仪Wayne-Kerr Electronics,UK测试其介电响应性能,激励电压为100mV。电滞回线(P-E)与漏电流((I(t)))测试采用铁电分析仪RT66A,温度控制采用Peltier系统,控制精度为0.1度。从283K至418K,每隔5K,系统地采集100Hz下的电滞回线P-E。薄膜的介电常数1200远远低于其块体材料中的介电常数12000,居里温度点408K也明显低于其块体材料中的居里温度点425K。漏电流测试中,在1000ms的测试周期内以及598kV/cm的高场下,经超过100次的重复试验,样品中无击穿现象发生,相比之下,当测试周期高于200ms,锆酸铅钡薄膜将发生电击穿现象。
除ΔS外,锆酸铅钡薄膜的ΔT,ΔT/ΔE和ΔT·ΔS值都很优异,室温下290K的电卡制冷效果ΔT为45.3K,最为重要的是,其ΔT·ΔS(2125J/kg)达到了固态电卡制冷系统所要求的制冷容量值。

Claims (3)

1.一种锆酸铅钡薄膜的制备方法,其特征在于包括以下步骤:
(a)将醋酸铅与醋酸钡一起溶解在冰醋酸与去离子水中;为了补偿晶化过程中铅元素的挥发造成的损失,原料中加入15%~20%过量的醋酸铅;
(b)将乙酰丙酮加入至四正丙氧基锆与2-甲氧基乙醇混合溶液中,并在室温下搅拌30~35分钟;
(c)将步骤(a)制得的铅/钡溶液与步骤(b)制得的锆溶液混合并于室温下搅拌2~2.5小时,获得锆酸铅钡溶胶;
(d)时效24小时后,用直径0.2微米的过滤器将锆酸铅钡溶胶进行过滤,然后将其均匀地滴在事先用丙酮和1-丙醇洗涤干净的Pt(111)/TiOx/SiO2/Si(100)基片上;
(e)自旋涂膜转速为4000/rpm,单层涂膜时间为25~35秒,每涂完一层,先将其置于300~350℃热板上热解3~4分钟,以充分去除有机物;然后再将其置于500~550℃热板上预晶化5~7分钟;
(f)待沉积完8层厚后,将锆酸铅钡薄膜置于管式炉中进行最终晶化退火处理,退火温度为700~800℃,时间为30~40分钟,气氛为空气。
2.根据权利要求1所述的锆酸铅钡薄膜的制备方法,其特征在于:所述锆酸铅钡薄薄膜的厚度约300~350纳米。
3.根据权利要求1所述的锆酸铅钡薄膜的制备方法,其特征在于:所述锆酸铅钡溶胶的浓度为0.25~0.35摩尔。
CN201610368299.5A 2016-05-30 2016-05-30 锆酸铅钡薄膜的制备方法 Pending CN106064944A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610368299.5A CN106064944A (zh) 2016-05-30 2016-05-30 锆酸铅钡薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610368299.5A CN106064944A (zh) 2016-05-30 2016-05-30 锆酸铅钡薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN106064944A true CN106064944A (zh) 2016-11-02

Family

ID=57420899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610368299.5A Pending CN106064944A (zh) 2016-05-30 2016-05-30 锆酸铅钡薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106064944A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN112062578A (zh) * 2020-09-17 2020-12-11 广西大学 一种提高介电材料电场击穿强度的方法
CN112062564A (zh) * 2020-09-17 2020-12-11 广西大学 一种pmn-psn超高击穿电场薄膜材料的制备方法
CN115057701A (zh) * 2022-06-09 2022-09-16 哈尔滨工业大学 一种具有室温大电卡效应的复合薄膜材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038078A (zh) * 1988-07-30 1989-12-20 崔耀东 锅炉高效除垢剂
CN1350071A (zh) * 2001-09-14 2002-05-22 中国科学院上海硅酸盐研究所 无铅锆钛酸钡功能陶瓷薄膜的湿化学法制备技术
CN101048345A (zh) * 2004-08-31 2007-10-03 昭和电工株式会社 钛酸钡、其制造方法和电容器
CN105174942A (zh) * 2015-09-15 2015-12-23 奈申(上海)智能科技有限公司 提高钛酸钡基电卡陶瓷制冷器件性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038078A (zh) * 1988-07-30 1989-12-20 崔耀东 锅炉高效除垢剂
CN1350071A (zh) * 2001-09-14 2002-05-22 中国科学院上海硅酸盐研究所 无铅锆钛酸钡功能陶瓷薄膜的湿化学法制备技术
CN101048345A (zh) * 2004-08-31 2007-10-03 昭和电工株式会社 钛酸钡、其制造方法和电容器
US20080145292A1 (en) * 2004-08-31 2008-06-19 Showa Denko K.K. Barium Titanate, Production Process Thereof and Capacitor
CN105174942A (zh) * 2015-09-15 2015-12-23 奈申(上海)智能科技有限公司 提高钛酸钡基电卡陶瓷制冷器件性能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG B, ET AL: "A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3Thin Film at Room Temperature", 《ADVANCED FUNCTIONAL MATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN112062578A (zh) * 2020-09-17 2020-12-11 广西大学 一种提高介电材料电场击穿强度的方法
CN112062564A (zh) * 2020-09-17 2020-12-11 广西大学 一种pmn-psn超高击穿电场薄膜材料的制备方法
CN112062564B (zh) * 2020-09-17 2022-05-17 广西大学 一种pmn-psn超高击穿电场薄膜材料的制备方法
CN115057701A (zh) * 2022-06-09 2022-09-16 哈尔滨工业大学 一种具有室温大电卡效应的复合薄膜材料及其制备方法

Similar Documents

Publication Publication Date Title
Zhao et al. Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility
Lin et al. Large energy storage density, low energy loss and highly stable (Pb0. 97La0. 02)(Zr0. 66Sn0. 23Ti0. 11) O3 antiferroelectric thin-film capacitors
CN106064944A (zh) 锆酸铅钡薄膜的制备方法
Qiao et al. Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0. 5Na0. 5) 0.94+ xBa0. 06TiO3 ceramics
Pokharel et al. Dielectric studies of phase transitions in (Pb 1− x Ba x) ZrO 3
Xu et al. Structure, piezoelectric properties and ferroelectric properties of (Na0. 5Bi0. 5) 1− xBaxTiO3 system
Qi et al. Electromechanical properties of Mn-doped Pb (In1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 piezoelectric ceramics
Badapanda et al. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic
Ciuchi et al. Preparation and properties of La doped PZT 90/10 ceramics across the ferroelectric–antiferroelectric phase boundary
Li et al. Effects of preparation method on the microstructure and electrical properties of tungsten bronze structure Sr2NaNb5O15 ceramics
Jia et al. Improved piezoelectric properties of Pb (Mg1/3Nb2/3) O3-PbTiO3 textured ferroelectric ceramics via Sm-doping method
CN103172373A (zh) 三元铁电固溶体铌镱酸铅-铌锌酸铅-钛酸铅
Peng et al. P-GaN-substrate sprouted giant pure negative electrocaloric effect in Mn-doped Pb (Zr0. 3Ti0. 7) O3 thin film with a super-broad operational temperature range
Lee et al. Thickness-dependent switching behavior of 0.8 (Bi0. 5Na0. 5) TiO3-0.2 SrTiO3 lead-free piezoelectric thin films
Otoničar et al. Effects of poling on the electrical and electromechanical response of PMN–PT relaxor ferroelectric ceramics
CN110498681A (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
Hu et al. Relaxor ferroelectric behaviour observed in (Ca0. 5Sr0. 5Ba0. 5Pb0. 5) Nb2O7 perovskite layered structure ceramics
Said et al. Dielectric, pyroelectric, and ferroelectric properties of gadolinium doped Sr0. 53Ba0. 47Nb2O6 ceramic
Huang et al. Superior piezoelectric performance with high operating temperature in bismuth ferrite-based ternary ceramics
Huang et al. Enhanced ferroelectric and piezoelectric properties of (1-x) BaZr0. 2Ti0. 8O3–xBa0. 7Ca0. 3TiO3 thin films by sol–gel process
WO2004097854A1 (ja) 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法
CN106467395B (zh) Bnt-bst-knn反铁电储能陶瓷及其制备方法
Chi et al. Microstructures and electrical properties of 0.5 (Ba0. 7Ca0. 3) TiO3–0.5 Ba (Zr0. 2Ti0. 8) O3 thin films prepared by a sol–gel route
CN101388434B (zh) 一种硅/钴酸镧锶/锆钛酸铅三层结构铁电材料的制备方法
He et al. Structural, Piezoelectric and Dielectric Properties of K 0.4 Na 0.6 NbO 3-Bi 0.5 Li 0.5 ZrO 3-CaZrO 3 Ternary Lead-Free Piezoelectric Ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161102

WD01 Invention patent application deemed withdrawn after publication