CN106061369A - 生物力学活动监测 - Google Patents

生物力学活动监测 Download PDF

Info

Publication number
CN106061369A
CN106061369A CN201480070109.0A CN201480070109A CN106061369A CN 106061369 A CN106061369 A CN 106061369A CN 201480070109 A CN201480070109 A CN 201480070109A CN 106061369 A CN106061369 A CN 106061369A
Authority
CN
China
Prior art keywords
sensor
motion
signal
vibration
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480070109.0A
Other languages
English (en)
Inventor
R·威德亚纳森
N·诺兰
R·伍德沃德
S·谢费尔宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ip2ipo Innovations Ltd
Original Assignee
Imperial Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Innovations Ltd filed Critical Imperial Innovations Ltd
Publication of CN106061369A publication Critical patent/CN106061369A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • A61B5/4362Assessing foetal parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4851Prosthesis assessment or monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/006Detecting skeletal, cartilage or muscle noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/02Foetus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/10Athletes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/12Healthy persons not otherwise provided for, e.g. subjects of a marketing survey
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • A61B2560/0247Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
    • A61B2560/0257Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using atmospheric pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02411Detecting, measuring or recording pulse rate or heart rate of foetuses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Abstract

一种可佩戴式传感器设备,包括:运动传感器,被配置为感测二维或三维运动和传感器的方向;以及振动传感器,被配置为感测声学振动。所述设备包括用于将运动传感器和振动传感器附接到身体的装置。所述传感器设备能够结合用于许多应用的身体运动长期监测肌动图肌肉活动。

Description

生物力学活动监测
技术领域
本发明涉及用于监测和/或分析例如人类或动物身体中生物力学活动的设备和方法。
背景技术
监测人类生物力学活动是包括临床和非临床环境等不同范围技术应用的一项重要功能。在临床环境中,这些功能可以包括健康监测,诸如用于诊断、治疗干预、康复、保健和胎儿监测等。在非临床环境中,这些功能可以包括提供人机接口、机器人控制、触觉系统和用于体育训练用途的系统等。
当提供综合肌肉活动和运动记录时,现有技术的系统集中于使用肌电图(EMG)传感器监测肌肉活动,即,监测由骨骼肌产生的电活动。这种技术可能有明显的缺点,并且对诸如实验室和临床护理机构等良好控制环境外的使用具有限制。这种电记录系统一般需要单用途传感器(例如出于临床安全和卫生的原因)并使用用于将传感器附接到身体上的粘合剂和导电凝胶以确保与人类被测者的充分电接触。这对肌肉活动感测的实用性和易用性、使用的环境和使用的持续时间施加限制。因此,用这种传感器获取的详细数据可能仅在短时间获得,用于有限范围的被测者运动。
发明内容
本发明的一个目的在于提供一种用于监测和/或分析生物力学活动的替代技术,其降低或者减轻某些或全部这些缺点。
根据一个方面,本发明提供了一种可佩戴式传感器设备,包括:
运动传感器,被配置为感测二维或三维运动和传感器的方向;
振动传感器,被配置为感测声学振动;以及
用于将运动传感器和振动传感器附接到身体的装置。
所述声学振动可以是或者可以表示为生物声学信号。所述声学振动可以是生物声学振动。所述运动传感器可以包括惯性测量单元。所述振动传感器可以被配置为感测骨骼肌振动。所述惯性测量单元可以包括加速度计、陀螺仪和磁力计中的一个或多个。所述惯性测量单元可以被配置为感测传感器本体在空间中围绕至少一个轴的旋转。所述惯性测量单元能够感测三个垂直轴的平移运动和/或围绕三个垂直轴的旋转。所述振动传感器可以包括声学压力传感器。所述振动传感器可以包括加速度计、麦克风和压电换能器中的一个或多个。所述振动传感器可以包括:容积腔室,所述容积腔室在一端通过柔性膜封闭;以及压力换能器,耦接到所述腔室位于所述柔性膜的远端。所述设备可以包括气压计。所述气压计可以被配置为感测环境压力。所述振动传感器和所述气压计可以由单个传感器提供。
所述设备还可以包括数据记录装置,被耦接为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的声学信号(诸如肌肉振动信号或肌动图肌肉信号),并将所述信号存储为时间的函数。所述设备还可以包括分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的肌肉信号(或肌动图肌肉信号),并对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。分类处理器可以被配置为使用运动信号和肌肉振动信号(或肌动图肌肉信号)两者来确定所述可佩戴式传感器设备所附接的身体的多个关节部分的运动或姿势的同步模式。所述肌肉振动信号可以是肌动图肌肉信号。所述分类处理器可以被配置为基于所述肌动图肌肉信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。
所述分类处理器可以被配置为将来自所述振动传感器的信号分离成窗口化数据。所述分类处理器可以被配置为对所述窗口化数据进行聚类分析,以确定来自所述振动传感器的信号与活动类型之间的相关性。
所述聚类分析可以包括:确定所述窗口化数据的群集,以及比较群集的一个或多个属性与一个或多个阈值。群集的属性可以是群集内的窗口化数据的属性的平均值。一个或多个属性包括以下中的一个或多个:陀螺仪幅值,峰值陀螺仪幅值,环境压力,用户的节奏(其可以是单位时间中所取的若干步)和运动传感器的方向。
所述设备还可以包括:分类处理器,被配置为接收来自所述运动传感器的运动信号,接收来自所述气压计的环境压力信号以及接收来自所述振动传感器的信号,并基于接收到的信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。
所述设备还可以包括:分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的肌肉振动信号(诸如肌动图肌肉信号),并基于所述运动信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类,以及识别在所述运动或姿势的模式的过程中使用的肌肉活动。所述分类处理器还可以被配置为确定所识别的肌肉活动是否符合与运动的分类模式相一致的预定模式。
所述设备还可以包括:分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的声学信号,并确定所述声学信号何时对应于胎动。
所述设备还可以包括:接口模块,被配置为基于所述分类处理器的输出为计算机处理器提供输出控制信号。所述设备还可以包括:接口模块,被配置为基于所述分类处理器的输出为运动设备提供输出控制信号。所述设备还可以包括所述运动设备。所述运动设备可以包括假肢或机器人装置。
根据另一个方面,本发明提供一种对人类或动物被测者的至少一部分的运动或姿势模式进行分类的方法,包括以下步骤:
从附接到所述被测者的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述被测者的振动传感器同时获得振动信号,所述振动信号指示感测到的骨骼肌振动或来自所述被测者的其它声学输出;以及
使用所述运动信号和所述感测到的振动信号(诸如骨骼肌振动信号)以对所述被测者的至少一部分的运动或姿势的模式进行分类。
来自所述被测者的其它声学输出可以包括由于胎动导致的声学输出。所述方法还可以包括:使用运动信号和感测到的振动信号以对所述被测者的多个关节身体部分的运动或姿势的模式进行分类。所述方法还可以包括:使用运动信号和感测到的振动信号以控制计算机处理器或运动设备的运动。所述振动信号可以是骨骼肌振动信号。
根据另一个方面,本发明提供一种协助人类被测者康复的方法,包括:
从附接到身体的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述被测者的振动传感器同时获得振动信号,所述振动信号指示感测到的骨骼肌振动或来自所述被测者的其它声学输出(诸如所述被测者的心率和呼吸);以及
使用至少所述运动信号对所述被测者的至少一部分的运动或姿势的模式进行分类;
确定所述被测者的至少一部分的运动或姿势的模式是否符合感测到的骨骼肌振动信号的预定模式;以及
取决于所述被测者的至少一部分的运动或姿势的模式是否与感测到的骨骼肌振动信号的预定模式一致,提供可听或可视的反馈给用户。
根据另一个方面,本发明提供一种监测母体的胎动的方法,包括:
从附接到母体的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述母体的一个或多个声学振动传感器同时获得声学振动信号;以及
使用至少来自所述运动传感器的所述运动信号以确定母体活动的时间段以从振动信号中衰减或排除母体声学振动信号,从而检测与胎动相关联的声学振动。
所述声学振动信号可以是生物声学信号。所述方法还可以包括:使用从所述声学振动传感器获得的声学振动信号来确定胎儿的方向。所述方法还可以包括:使用从所述声学振动传感器获得的声学振动信号以产生来自母体和/或胎儿身体的心率或呼吸速率。
附图说明
现将参照附图以示例的方式描述本发明的实施例,在附图中:
图1示出可佩戴式活动传感器设备的示意图;
图2示出实现在膝盖护具中的可佩戴式活动传感器的透视图;
图3示出包括信号处理和分析处理模块的可佩戴式活动传感器设备的示意图;
图4示出在十步行走过程中被测者的x、y和z加速度及其分类;
图5示出被测者佩戴布置在上臂和前臂上的带有实时反馈显示的两个活动传感器;
图6示出在拳头紧握的前臂等距收缩过程中获得的肌动图(MMG)数据的曲线图;
图7示出在从坐到站任务过程中从(a)肌电图感测;(b)加速度计MMG感测;(c)麦克风MMG感测;以及(d)磁角速率和重心(MARG)感测收集的传感器数据;
图8示出响应于被测者行走的运动传感器数据和肌动图传感器数据;
图9示出被分类为在MMG数据上重叠的静止和运动时间段以进一步支持活动分类的运动传感器的曲线图;
图10示出设置在被测者的大腿和小腿上的可佩戴式活动传感器以及在站立和提膝任务过程中从其接收到的传感器数据;
图11示出(a)声学传感器输出,以及(b)对应于怀孕被测者的胎动的基于凝胶的振动传感器输出;
图12示出用于检测胎动的可佩戴式活动监测器;
图13示出用于对被测者的运动(包括被测者体内的胎动)进行分类的方法的流程图;
图14示出用于对被测者的步态、姿势或运动进行分类的方法的另一个流程图;
图15示出声学传感器输出和对应于怀孕被测者体内的胎动的母体感觉数据;
图16示出(a)陀螺仪和(b)被测者在行走任务过程中的对应肌肉响应数据;以及
图17示出(a)陀螺仪数据,(b)带有计算出的幅值的加速度计数据,(c)未处理的(原始)MMG数据,(d)滤波后的MMG数据,以及(e)被测者在行走任务过程中的滤波和处理后的MMG。
具体实施方式
肌动图(MMG)肌肉感测利用骨骼肌发射的低频振动,与肌电感测不同,肌动图肌肉感测的测量不需要电极、凝胶或皮肤直接接触。这对于日常使用中的更高效实现提供可能性。已经发现,结合肌动图肌肉感测和二维或三维运动感测可以通过结合人类动力学和肌肉活动信息提供人活动监测的显著进步。诸如MMG传感器等生物声学传感器可以容易地以较低的成本提供,并可以封装在容易附接到被测者的身体的轻便的可佩戴的包装中而无需使用复杂的程序以确保与被测者的皮肤有良好的电接触。
在一个总的方面,本文所描述的技术结合使用惯性测量单元(IMU)和声学传感器(例如诸如肌动图(MMG)传感器等生物声学传感器),用于肌肉活动感测或胎动监测。本文所描述的相对于感测肌动图肌肉信号的布置还可以用于更一般地感测生物声学信号或肌肉振动信号。
图1示出可佩戴式活动传感器1的示意图,该可佩戴式活动传感器1包括支撑结构2、运动传感器3和肌肉振动传感器4。支撑结构2可以是用于附接到人类或动物身体适当位置的任何合适的结构。在一个示例中,如图2所示,支撑结构是柔性的可拉伸膝盖护具20,两个运动传感器3缝入口袋21,肌肉振动传感器4在支撑结构20的内表面上具有抵靠被测者皮肤的膜。使用诸如膝盖护具20的柔性支撑结构2或管状绷带允许被测者一般不受阻碍地运动并适于长时间(例如一整天或数天)佩戴。许多其它形式的可佩戴式活动传感器是可能的,例如集成到衣物以及用于附接到身体的任何合适的部分,诸如臂、腿、手、躯干等。活动传感器可以定位在身体任何合适的位置,通过这些位置可以感测四肢或身体运动并且可以检测任何目标肌肉群的振动。在另一个示例中,如图10所示并且在下文更详细讨论的,活动传感器可以被设置在被测者的膝盖的两侧,即大腿和小腿。这种布置提供特定于腿的上部和下部的运动信号和来自大腿和小腿的肌肉振动信号。这种布置在相对于行走、站立、坐和躺卧、步态和姿势分析等的监测活动中是特别有用的,如将在下面进一步讨论的。
运动传感器3优选地包括一个或多个惯性测量单元(IMU),其可以由三轴陀螺仪和加速度计以及还包括三轴式磁力计的磁角速率和重心(MARG)传感器阵列构成。然而,在一个总的方面,可以使用能够感测传感器本体在空间中的二维或三维平移运动和传感器本体围绕空间中的至少一个轴的旋转的任何运动传感器。优选地,运动传感器应当能够感测三个垂直轴(前进/后退、上/下、左/右)的平移运动以及围绕三个垂直轴(俯仰、偏转和滚动)的旋转。然而,应当理解的是,某些类型的运动跟踪可能不需要所有六个自由度。MARG传感器由于其成本低、体积小、重量轻和准确性而成为优选。
肌动图肌肉振动传感器优选地包括压力传感器。MMG肌肉振动是由骨骼肌发射的低频振动,被认为是由肌肉纤维的横向振荡产生的肌肉的力学活动。MMG振动传感器收集指示收缩肌肉的力学属性(诸如疲劳)的信号。与EMG传感器不同,MMG传感器不需要凝胶或直接皮肤接触,并可以重复使用和由不熟练的使用者轻松施用,例如,这是因为MMG传感器所需的放置准确度可以不如EMG传感器严格。使用MMG传感器测量的收集时间大于使用EMG传感器所实现的。MMG振动传感器可以包括一个或多个加速度计、麦克风、压电换能器、水听器或激光距离传感器。优选的示例是麦克风传感器形式的压力传感器,其在检测肌肉活动时提供非常准确的结果并且由于很少受运动噪声影响而获益。它还容易集成到柔性支撑结构2中,如上文所讨论的。
MMG振动传感器优选地设置容积腔室,其带有在该腔室的外壳中的开口上拉伸的膜。当所述膜由于肌肉振动变形时使用麦克风检测容积腔室的容积的差异。当所述膜被放置在被测者的肌肉上时,横向收缩产生肌肉形式的物理变化(physical change),进而改变膜位置和/或曲面并在腔室内产生压力变化。特别相关的麦克风信号在1Hz至256Hz之间,并且因此优选在0.5kHz至1kHz之间采样。信号可以使用基于运算放大器的前置放大器被增强,前置放大器将信号功率提高大约21倍的因子,尤其在1Hz至1kHz的范围中,这对于具有在25±2.5Hz范围内的主频的MMG的信号而言是足够的。
进一步参考图1,可佩戴式活动传感器1被耦接到微处理器5,该微处理器5被配置为经由通信链路6a接收来自运动传感器3的运动信号以及经由通信链路6b接收来自振动传感器4的肌肉振动信号。通信链路6a、6b可以是有线链路或无线链路。微处理器5可以耦接到用于记录来自运动传感器3和振动传感器4的数据的本地存储器7。因此,在一个总的方面,活动传感器可以包括数据记录装置,其耦接为接收来自运动传感器3的运动信号以及接收来自振动传感器4的肌动图肌肉信号,并将这些信号存储为时间的函数。这些函数可以由微处理器和存储器7来提供。
优选地,可以由微处理器5同时收集MMG数据和运动数据(例如,来自MARG传感器)。用于两种类型的传感器的采样速率可以是相同的或不同的。来自适用于步态分析的MARG传感器的示例性采样速率为16Hz。微处理器5可以具有多个通道以立即收集来自多个运动传感器/多个振动传感器的数据或者可以部署多个处理器,每个用于一个或多个传感器或传感器组。如果需要的话,(多个)微处理器还可以接收来自其它类型的传感器的信号,和/或在来自其它类型的传感器的其它感测事件的数据中加标记。其它感测事件可以包括例如从ECG数据检测到的生理现象。
在一种布置中,微处理器5和/或存储器7被安装在柔性支撑结构2上与适当的电源一起作为活动传感器1的一个组成部分。在另一种布置中,通信链路6a、6b可以包括短距离无线链路,诸如蓝牙或其它近场通信信道,并且微处理器5和存储器7可以位于单独的装置上。在一个优选的示例中,所述单独的装置可以是移动电话、智能电话或其它个人计算装置。使用例如USB接口的有线链路也是可能的。
在可替代的布置中,肌肉振动传感器4可以被任何其它声学传感器或生物声学传感器所替代。在这样的布置中,对MMG信号的引用可以被对声学信号的对应引用所替代。例如,可以执行替代肌肉活动分析的其它生物声学振动分析。生物声学传感器可以收集指示胎动的信号以及MMG信号。在以类似于上述MMG传感器的方式构建的生物声学传感器中,当将所述膜放置在母体的腹部上时,由胎动导致的振动信号引起腔室中的压力变化。
活动传感器1具有广泛的应用,下文讨论其中所选择的应用。
康复
使用活动传感器1,可以连续监测病人的活动以允许新的干预治疗。可以长时间地记录来自运动跟踪和生理感测两者的数据。记录肌肉活动提供响应于康复的病人健康和进展方面的重要线索。表示被测者长时间(例如一整天甚至一个星期)的自然运动和肌肉活动的更精确的数据可以提供在病人监测上的划时代的飞跃,并为诸如中风和神经肌肉疾病等病况实现整个范围的新康复治疗。
应用包括膝盖手术前和手术后康复监测、姿势观察、摔倒检测、人工控制和操纵以及一般人(主要是老年人和儿童)的活动分析。结合肌肉活动和运动数据通过增加对病况的知识以及增加两种不同形式的生物力学信息来为人体测量开拓新的视野。运动和肌肉活动分别给予重要的信息,但是在协同结合时为医疗和临床干预提供更好的信息。
步态/运动/姿势分类
长时间收集的数据,无论是惯性数据还是肌肉数据,都包含了特定于单独的被测者的大量信息和特征。然而,如果没有适当的分析,可能很难从噪声及不相关的数据中区分出这些特征。因此,活动传感器可以包括分类处理器,以便分析收集到的数据并提取特定于被测者的信息和特征。分类处理器被配置为接收来自运动传感器3的运动信号,以及还可以接收来自振动传感器4的肌动图肌肉信号,并对身体的至少一部分的运动或姿势的模式进行分类。通常,这将是可佩戴式传感器所附接的身体的一部分,但在某些情况下,可以从更远离可佩戴式传感器的身体的其它部分确定运动或姿势。分类处理器可以被配置为区分站立、坐、躺卧和行走活动和各种不同的姿势。因此,分类处理器可配置为从已知活动和/或姿势类型的库或数据库识别对应于接收到信号的一个或多个活动和/或姿势。分类处理器可配置有适于检测指示预定活动和/或姿势的签名信号的算法。
在一种算法中,适用于安装在膝盖上方的大腿部的图2的膝盖护具传感器设备可用于感测重力的方向。在站立姿势过程中,x平面正指向地面,这给出大约-1±0.1g的读数,并且另一个平面(y和z)得到0±0.1g的读数。在坐着时,y平面现正指向地面,这将给出大约-1±0.1g的读数并且其它平面(x和z)读数为0±0.1g。然后,肌肉活动数据可以与特定的站立姿势相关联。
行走的分类可通过例如结合来自每个平面的加速度计数据被检测以使用等式1确定幅值,其中i是当前样本而n是样本的总数;x、y和z表示来自每个相应的平面的加速度:
阈值是由每个被测者通过在直线上五步受控行走任务所确定的。检索数据并且通过试错来离线确定所述阈值直到计算值也确定被测者已经行走五步。静止状态被确定为每当幅值低于阈值时的状态,如等式2。
静止=幅值<阈值 (2)
高于阈值的任何时间段被认为是活动的。然后,数据被分成一秒的窗口并且每个窗口的平均值被用于通过相对于平均窗口检查静止时间段来确定被测者处于什么状态。由于被测者的腿在步幅之间是静止的,所以一秒窗口(one second windows)允许识别每一步,因此计算被翻倍为计步器以确定所走的步数。如果数据窗口被认为是“活动的”,则步态段被分类为行走。然而,如果数据窗口表明被测者是静止的,则计算确定处于哪个平面重力中以确定站立或坐着。在被测者侧卧或者在算法无法识别的平面中的重力情况下,被测者的状态可以被放入可进行不同分类的“其它”类别中。
图4示出使用上述阈值技术正确地确定活动时间段的十步行走的分析。实线41表示x轴加速度,点划线42表示y轴加速度,以及虚线43表示z轴加速度。对应于幅值的组合加速度计数据由线44表示。预定阈值已被设定在0.3g,并且当组合数据超过0.3g时,行走运动可以被分类。此分类由实线45表示,站立姿势指示为+1(部分45a)且行走运动指示为0(部分45b)。该方法被确定为在行走校准测试过程中对于15个测试大约90%准确。
虽然上述布置仅需要运动传感器数据来对身体的至少一部分的运动或姿势(例如行走、站立、坐)的通常模式进行分类,但是肌肉振动传感数据可以与其一起使用以进一步细化分类处理。
例如,可以使用肌肉振动检测数据来检测和分类与运动的主要模式分开的或不同的身体其它运动,运动的主要模式是使用运动传感器数据分类的,如下文进一步讨论的。
因此,在一个总的方面中,分类处理器可以被配置为使用运动信号和肌动图肌肉信号两者来确定附接可佩戴式传感器设备的身体的多个关节部分的运动或姿势的同步模式。
在另一个布置中,可佩戴式活动传感器设备可以被配置为皮带。基于皮带式传感器可以被配置为监测平衡、姿势和关键肌肉活动;促进采用新的运动模式;以及向病人提供关于改善腰痛中他们的进展的直接反馈。所述设备可以被配置为监测和促进与背部功能障碍相关联的关键姿势肌肉的用户活动,主要是下腹部和臀部肌肉,并且活动监测器将跟踪平衡和姿势。通过不断测量姿势和提供实时生物反馈,可佩戴式传感器设备将提供促进活动姿势矫正的能力。
图3示出配置为提供与被测者运动相关联的肌肉使用相关的分析和反馈的活动监测系统的示意图。
可佩戴式活动传感器30包括皮带形式的支撑结构31,该支撑结构31支撑运动传感器3和肌肉振动传感器4,诸如先前结合图1所描述的。传感器33、34被耦接到包括运动分析模块32和肌肉活动分析模块33的处理器。运动分析模块32可以被配置为执行诸如识别身体运动和/或肢体运动以及识别姿势等功能,如前所述。肌肉活动分析模块33可以被配置为识别单个肌肉活动以及识别参与感测到的振动事件的肌肉或肌肉群。来自模块32、33的运动和肌肉活动数据都合并到传感器数据融合模块34,使得可以适时地对准单个运动和/或姿势“事件”。关联过程35可以被配置为将各种运动和/或姿势事件与肌肉活动事件相关联。
然后,来自关联过程35的关联数据可以用于提供一个或多个可能的反馈过程36。
在一个示例中,反馈过程36可以提供运动和相关的肌肉活动的视觉显示,例如随着时间推移的图表,供医生或被测者查看。反馈过程可以提供一段时间内(例如连续几天)监测的运动和相关的肌肉活动,以指示预定姿势和/或活动分类的肌肉活动是否随时间变化。这样的反馈过程可以用于指示随着时间推移的活动或姿势属性的改进或退步。
在另一个示例中,反馈过程36可以通过视觉或听觉反馈直接向佩戴传感器的被测者提供实时分析。例如,处理器可以包括分类处理器,其基于运动信号对被测者的身体的至少一部分的运动或姿势的模式进行分类并识别与该运动或姿势的模式相关联的肌肉活动,以及确定对于感测到的肌肉活动是否符合与运动的分类模式相一致的预定模式。此预定模式可以表示对于给定的感测到的运动或姿势的理想或最佳肌肉活动。在感测到的肌肉活动不符合对于感测到的运动或姿势的肌肉活动的理想或最佳模式的情况下,反馈过程36可以被配置为向佩戴活动传感器的被测者提供实时警报。该实时警报可以是协助被测者的指示,诸如不良姿势或不良运动执行的警告,改善姿势的指示、改变位置的指示、进入指定运动模式或类似模式的指示。
图14示出用于分类被测者的步态、姿势或运动的另一种算法1400的流程图。算法1400在非监督分类算法中结合运动和肌肉活动。算法1400能够识别八个通常执行的活动:行走、跑动、上楼梯、下楼梯、在电梯中上升、在电梯中下降、站立和躺卧。第九个“活动”包含噪声,并且其它未分类的活动数据也可以被归类。
算法可以由被配置为接收以下信号的分类处理器来执行:
从运动传感器接收运动信号;
从气压计接收环境压力信号;以及
从振动传感器接收生物声学信号。
分类处理器被配置为基于接收到的信号对附接有传感器的身体的至少一部分的运动或姿势的模式进行分类。
在两个阶段1402、1404中算法1400处理数据。在大组群集阶段1402中,数据或时间窗口被分成三组之一,每组与不同类型的活动相关:静止活动1424(诸如站立、躺卧和电梯),动态活动1426(诸如行走、跑动和噪声),以及动态高度活动1428(诸如在楼梯上行进)。在随后的活动分类阶段1404中,来自每个群集组的窗口还被分成九个更具体的活动之一。
在大组群集阶段1402的开始,来自每个传感器类型(生物声学和加速度计)的数据被窗口化1430。窗口尺寸可以被选择为若干个数据样本或一段时间。例如,200个样本的窗口尺寸(在50Hz下的4秒数据)可以用于惯性数据。这样的窗口可以重新定尺寸,以便获得用于以不同的速率取样的其它传感器的相同的窗口尺寸。例如,四个样本窗口可以用于在1Hz下操作的气压计,而4000个样本窗口可以用于1kHz下的MMG操作。已经发现,有50%重叠的窗口在50Hz下为惯性数据产生适当良好的结果。
惯性数据可以可选地使用运动平均值来进行平滑,以减少该算法的输出上的瞬变噪声的影响。示例性运动平均值为:
ys n = 1 2 N + 1 ( y ( n + N ) + y ( n + N - 1 ) + ... + y ( n - N ) )
其中,ysn是用于第n个数据点的平滑值,N是ysn的任一侧上的相邻数据点的数量,以及2N+1为跨度,诸如15个数据点。在进行平滑之后,也可以执行窗口化1430。
在可选的平滑步骤之后确定窗口化数据的特征。在这个示例中,为加速度计的三个轴(x,y和z)中的每一个确定四个特征(均值、标准差、幂和协方差),得到每个窗口12个参数。这些特征可以使用下面的等式来计算。
&mu; = 1 N &Sigma; n = 1 N y n
&sigma; = 1 N - 1 &Sigma; n = 1 N ( y n - &mu; ) 2
C O V ( a , b ) = &Sigma; n = 1 N ( a n - &mu; a ) ( b n - &mu; b ) N
在上述等式中,n是当前数据点,N是窗口中的数据点的总数(在本示例中为200),y是一个轴的数据集,μ是均值,σ是标准差,并且a和b分别对应于三个加速度计轴(x,y或z)中的一个。COV表示共价矩阵:
C O V = x , x x , y x , z y , x x , y y , z z , x z , y z , z
协方差矩阵的对角线中的数值是一个轴的协方差对自身施加所得到的该轴的方差,并且因此可忽略。同样地,对角线下方的数值是对角线上方的数值的镜像数值并且也可以忽略。
使用平方欧几里德距离法的K均值聚类算法可以用于基于由上述四个特征创建的参数矩阵将窗口化数据群集成三个群集之一。K均值算法的目标函数是:
J = &Sigma; n = 1 N &Sigma; k = 1 K r n k | | y n - c k | | 2 ,
其中,同样,y、n和k分别是数据集、当前数据点和当前群集。N是数据集中的数据点的总数。K是群集组的数量(在本示例中为三个,其与动态活动1426、动态高度活动1428和静止活动1424相关)。ck是当前群集的质心,而rnk是二进制指示符变量(其中如果数据点属于群集k则rnk等于一,否则为零)。
为了预测属于三个群集组之一的数据点,必须找到rnk和ck的数值以便最小化J。ck的初始值可以随机确定。然后可以重复计算rnk和ck的两个阶段直到结果收敛。实现收敛的过程总结如下。
1)用随机值初始化群集的质心。
2)使用下式将每个数据点归属于最接近的群集:
3)使用下式重新评估每个群集的位置,使得其与属于该集群中的所有数据点的均值对应:
c k = &Sigma; n r n k y n &Sigma; n r n k
4)重复步骤2和3直到结果收敛。
不同的初始群集质心可产生略微不同的结果,上述步骤可以重复多次,比如五次,使用初始群集的质心位置的不同集合,以便提供更准确的结果。
对每个窗口执行上述步骤。现在,每个窗口放在三个群集组之一中,仍然不知道在该窗口中被测者在执行哪个特定种类的活动(活动动态1426、动态高度活动1428和静止活动1424)。也就是说,三个组中的哪个与活动动态、动态高度活动和静止活动相关是未知的。使用先验方法来通过假设每个活动的某些特性和其相关的群集组将每个窗口分隔成已知的活动。
为每个窗口确定陀螺仪幅值和气压计梯度。为每个群集组计算这些参数的平均值,然后该平均值用于标记三个集群组中的哪个属于静止组、动态组或动态高度组。
通过确定(1432)一个组的平均陀螺仪幅值低于第一阈值速率(诸如50°/s)来限定静止组1424。
通过确定(1432)一个组的平均陀螺仪幅值高于第一阈值速率以及通过确定(1434)该组的平均气压计梯度低于压力阈值梯度(诸如0.1米)来限定动态组1426。
通过确定(1432)一个组的平均陀螺仪幅值高于第一阈值速率以及通过确定(1434)该组的平均气压计梯度高于上述压力阈值梯度来限定来动态高度组1428。
对于动态组1426,确定(1436)该组中的集群的峰值陀螺仪幅值是否高于第二阈值速率(诸如100°/s)。如果该群集的陀螺仪幅值不高于第二阈值速率,则该群集的活动被归类为“噪声”1460。如果该群集的陀螺仪幅值高于第二阈值速率,则确定(1438)被测者的节奏是否大于节奏阈值(诸如每分钟150步)。如果被测者的节奏不大于节奏阈值,则群集的活动被归类为“行走”1462。如果被测者的节奏大于节奏阈值,则群集的活动被归类为“跑动”1464。
对于动态高度组1428,确定(1440)该组中的集群是否发生了气压变化。如果发生了气压变化,则群集的活动被归类为“楼梯”1466。压力的增加指示高度的降低(在电梯/楼梯中下行),而压力的减少指示高度的增加。如果未发生气压变化,则确定(1436)该集群的峰值陀螺仪幅值是否高于第二阈值速率且该群集被视为上述动态组1426进行处理。
对于静止组1424,确定(1442)该组中的集群是否发生了MMG活动。如果发生了MMG活动,则确定(1440)该群集是否发生了气压变化,且该群集接着被视为上述动态高度组1428进行处理。如果未发生MMG活动,则也确定(1444)该群集是否发生了气压变化。然而,在这种情况下:
如果发生了气压变化,则群集的活动被归类为“电梯”1468;或者
如果未发生气压变化,则确定(1446)装置所处的重力平面。在本示例中,如果装置位于Y或Z平面,则群集的活动被归类为“躺卧”1470,如果装置位于X平面,则群集的活动被归类为“站立”1472。
下表示出算法1400的两项试验中的平均检测准确度的分解。试验包含进行各种活动的六个被测者。通过验证每个确定窗口活动与被测者在该窗口中实际活动来确定准确度从每次试验中正确的窗口除以窗口的总数来计算百分比。通过取所有被测者和试验的准确度的均值,发现总的准确度为97%。
S=站立,L=躺卧,W=行走,R=跑动,SD=楼梯下行,
SU=楼梯上行,LD=电梯下行,LU=电梯上行。
算法1400可以被应用而无需要求执行控制实验或收集前数据标签,并且算法1400可以在无监督环境下使用。与此相反,使用监督分类的方法要求每个已知活动的额外试验。在预期步态或肌肉活动随时间变化的应用(诸如物理疗法或步态再训练)中,需要在每次使用会话之前重新确定监督分类的试验性实验,使得这些方法不便于实际应用。因此,非监督分类的使用可以在无方向性人类活动的分类中提供更高的准确度。
胎动和健康监测
对于可佩戴式传感器设备的另一种应用是在胎儿监测的领域。
胎动通常使用超声或MRI扫描来量化,这两者都是昂贵的且必须在临床环境中进行。此外,当在临床环境中对病人进行扫描时,没有办法来可靠地监测时间窗口外的胎动。母体感觉到胎动减少是产科服务咨询的常见原因,但胎动的母体感知是非常主观的且依赖于病人。错误地感知胎动减少可能会在已经焦急的病人群组中导致高度焦虑。
诸如以上所述的可佩戴式活动传感器也适于较长时间或长期的胎儿监测。运动传感器和振动传感器可合并入传感器,例如合并入腰部支撑带或生育支撑带。胎儿监测的一个特殊问题可能是将对应于母体运动的信号和对应于胎动的信号分离。
在一个示例中,传感器可以包括被配置为接收来自运动传感器3的运动信号以及接收来自振动传感器4的声学信号或肌动图肌肉信号并确定信号何时对应于胎动的分类处理器。
在一个优选的布置中,信号处理算法识别可以归属于母体活动的运动和/或肌肉信号并从输入信号中分离出这些信号以确定归属于胎儿活动的信号。可以监测给定时间段的胎动的频率和强度以确保胎儿的安康。优选地,胎动信号可以包括由声学振动传感器接收到的声学信号。数据可以被记录并定期下载或连续地评估,并且如果存在超过阈值的一段时间不活动或减少活动则触发警报。
在一种布置中,可以使用来自运动传感器的运动信号以将母体活动检测为时间的函数,其中包括运动和姿势,诸如站立、坐、行走、呼吸和心跳。然后,当可以跟踪对应于胎动的声学振动信号而不被母体活动闭塞(occlusion)时,母体活动的时间段可以用于隔离各个时间段。在去除母体运动数据之后,剩余的声学传感器数据可以用于检测子宫内的胎动。胎儿声学传感器数据可以包括匹配于指示胎儿活动的预定模板的声学签名。
其它信号处理算法可以被认为是从由声学传感器所捕获的信号中分离与母体活动相关的干扰信号,从而隔离指示胎动的胎儿声学信号。
其它传感器类型可以被添加到设备中用于增强监测。
图11示出为监测来自感觉胎动的被测者的声学输出的系统监测声学信号输出。所使用的设备包括两个廉价的生物声学传感器和惯性测量单元(IMU),以及用于验证的附加传感器,合并入背部支撑带。附加传感器是能够检测诸如与胎动相关联的腹部振动等低频振动的昂贵的电活动聚合物凝胶传感器。被测者在实验的时间中处于静止,以减少母体运动伪影(artefact)。来自传感器的数据被平滑并且绘出信号能量。来自凝胶传感器的处理后的数据在图11b中被示出为“振动输出”。高亮窗口110、111、112示出30秒窗口内取自凝胶传感器输出(被分类为两个简单运动110、112和复合运动111)的简单和复合胎动的数量。这个输出被用作基线以与生物声学传感器进行比较来测试它捕获相同运动的能力。该传感器的输出以同样的方式进行处理,在图11a中被示出为“声学签名”。结果表明,由廉价的生物声学传感器捕获了相同的简单和复合运动。因此,对应于母体评估的简单和复合胎动用生物声学传感器捕获,并且传感器输出可以经处理以识别这些运动。IMU可以用于确定母体活动,使得能够如上所述隔离胎儿活动,下面参考图16和图17。
可以通过设置在整个孕妇腹部的若干个生物声学传感器在子宫中定位胎动。在单个生物声学传感器上可见的更大的信号幅值可以提供子宫内胎儿位置的感测。
图12示出生育支撑结构1200,其为诸如参考图1所描述的可佩戴式活动传感器设备的支撑结构的一个示例,并且可以提供在图11(上文)或图15中(下文)所述的生物声学数据。支撑结构1200包括惯性感测单元3和六个生物声学传感器4。生物声学传感器4设置在两行4a、4b中并且在支撑结构1200的内表面上抵靠被测者1202的皮肤设置。生物声学传感器4被配置为感测声学振动且惯性传感单元3被配置为感测二维或三维运动和传感器4的方向。
每个生物声学传感器4优选地设置具有在腔室的外壳中的开口上拉伸的膜的容积腔室。每当膜通过生物声学振动而变形时使用麦克风检测容积腔室的容积的差异。当生物声学传感器4被放置在孕妇的腹部上时,由胎动导致的振动信号导致生物声学传感器4的相应腔室中的压力变化。在一些示例中,胎动的位置和强度可以用于确定子宫内的胎儿方向。例如,设备1200可以用于识别胎儿臀位的胎儿。
图13示出用于通过收集和结合来自三维加速度计和生物声学传感器的信息对被测者的运动(包括胎动)进行分类的方法1300的流程图。
由加速度计提供(1302)三维运动和方向信号。确定(1304)由加速度计检测出的加速度的幅值。可以使用例如如前所述的等式(1)来确定(1304)幅值。然后,对加速度计数据进行窗口化(1306)并使用阈值使用例如如前所述的等式(2)来检测窗口化数据1308的运动。数据的窗口可以是数据的样本或者在一个时间间隔内采集的样本的离散数量。
一个或多个生物声学传感器与由加速度计获取数据并行地提供(1310)声学振动数据。声学振动数据通过滤波器1312,诸如一阶巴特沃斯滤波器。滤波后的振动数据被窗口化(1314)并且确定(1316)窗口化数据的特征。为加速度计的三个轴(x,y和z)中的每个确定(1316)四个特征(均值、标准差、幂和协方差),得到每个窗口十二个参数。相对于图14详细描述了从窗口化数据提取特征并且类似的技术可以使用在本算法1300的确定(1316)中。
聚类算法1318用于对每个窗口进行分类。例如,使用平方欧几里德距离法的K均值聚类算法可以用于基于从上述四个特征创建的参数矩阵将窗口化数据聚类到群集的一个组。集群的数值指示被测者在与该群集相关联的窗口期间正在进行的活动的类型。已经发现使用聚类算法提供对数据进行分类的可适应的稳健的方法,并且与使用预先现有的曲线对观察数据进行分类的其它方法相比可以具有优势。还参考图14的方法示例进一步详细讨论聚类分析。
在结合步骤1320中,检测到运动的加速度计数据的窗口被用于确定哪些生物声学数据的窗口与被测者体内的生物声学活动相关以及哪些窗口与噪声信号相关。在这个阶段,通过结合运动传感器数据和声学振动数据已从其它数据分离(1322)有用的信息。在下面进一步参考图16和图17描述在消除振动伪影中使用惯性数据。
图15a至图15d示出监测来自感受胎动的两个怀孕被测者的声学输出的系统的声学或生物声学信号输出。用于收集此数据的设备包括三个廉价的生物声学传感器、惯性测量单元(IMU)以及供怀孕被测者在她感到胎动时按压的按钮。所述设备被合并入背部支撑带。
来自生物声学传感器的数据可以使用类似于参考图13所描述的方法进行处理。例如,来自生物声学传感器的数据可以i)被平滑,ii)使用一阶巴特沃斯滤波器滤波,以及iii)分成数据集中平均大小的窗口。运动可以通过在惯性数据内比较阈值加速度来确定。可以从生物声学数据中去除运动伪影以减少误报。下面参考图16和图17详细讨论振动伪影去除的信号处理步骤的示例。确定来自每个生物声学传感器窗口的特征,包括信号的均值、标准差、以及幂。然后,这些特征通过聚类算法被处理,以便对与每个窗口相关联的活动进行分类。分类状态的示例包括:噪声、胎儿活动和静止数据。
图15a和图15b示出生物声学传感器输出1502和由怀孕被测者使用按钮记录的母体感测的胎动1504之间的相关性。生物声学传感器输出1502与由母亲感知的运动(见图15a)以及胎儿打嗝(图15c,被母亲验证)相关。该系统能够隔离母体运动、来自现实世界活动的分段数据以及提取胎动签名。结果表明,对应于母体评估的胎动因此可以用生物声学传感器来捕获,并且传感器输出可以经处理以识别这些运动。
声学传感器输出也可以用于推导出表示母体或胎儿被测者任一者或两者的心率或呼吸的心率信号或呼吸信号。
图16a和图16b示出作为时间函数的在行走任务过程中被测者的陀螺仪(GYR X,Y,Z)数据和对应的肌肉(EMG,MMG)响应数据1604-1608。
使用麦克风收集的诸如MMG数据等生物声学数据可能容易受到运动和皮肤伪影以及脚跟撞击和脚趾离地过程中引起振荡噪声的影响。由于冲击振动导致的振荡噪声可以通过使用IMU数据作为发生冲击处的指导而从MMG数据中滤出。以这种方式,IMU可以用于例如确定母体活动使得能够隔离胎儿活动。
被测者的步态过程中的平落脚时间段1602被加阴影。图16所示的观察到的MMG反应是这些时间段1602过程中最高的,如EMG反应曲线所示用于比较。在此站姿的平落脚部分过程中几乎没有MMG信号。
在一个示例中,加速度计数据在1和0之间被归一化并且以诸如1kHz的频率被重新采样,以匹配MMG的采样速率。然后,使用10Hz和150Hz之间的带通巴特沃斯滤波器滤波。然后,经滤波的信号被加速度计幅值划分。因此,当发生冲击事件时,观察到的振动信号可以显著地减少,以便补偿由这些撞击事件导致的振动。噪声降低的这种方法是有用的,这是因为在被测者步态过程中在冲击点可预期非常少的肌肉收缩并且因此在这些点的灵敏度降低对某些感测应用是可接受的。当测量到的加速度很小时,MMG活动往往只有轻微的变化。相反,在脚踝脚底弯曲过程中产生来自腓肠肌的主要肌肉活动,从而在脚趾离地前的步态周期的平落脚站姿时间段过程中信号响应是可预期的。
图17a至图17e示出作为时间的函数的以下数据:图17a中的陀螺仪数据(GYR X,Y,Z)1604-1608;图17b中带有作为虚线的计算幅值(ACC幅值)的加速度计数据(ACC X,Y,Z)1710、1711、1712;图17c中未处理(原始)的MMG数据;图17d中的滤波后的MMG数据;以及图17e的滤波并处理后的MMG。
被测者的步态过程中的平落脚时间段1702被加阴影。图17a的陀螺仪数据和图17e的处理后的MMG之间的比较示出用蓝色背景突出显示的步态的平落脚阶段与肌肉收缩时间段重合。
脚跟撞击时间段1704在图17a至图17e中被标记。这些脚跟撞击提供振动伪影。图17c和图17d中的未处理(原始)MMG和滤波后的MMG曲线包括由于脚跟撞击导致的伪影。处理后的MMG数据已被滤波、平滑和移动(motion),并通过用图17d的滤波后的MMG除以图17b的加速度计幅值来校正振动伪影。
实时生物力学活动跟踪
已使用每段肢体上的两个MARG传感器执行棒状图(stick figure)跟踪并且实时显示结果。数据可以经由蓝牙传送到在3D棒状图中显示被测者运动的计算机。每个MARG传感器使用16Hz的采样速率。
声学或MMG传感器数据的同时监测使得能够得到被测者运动的更详细信息,包括等距肌肉动作和等速肌肉动作。等距和等速运动两者均可以得到实时跟踪和显示。使用(例如麦克风感测到的)声学数据提供精确的动态数据以及静态数据,因为它不受由等速运动产生的运动噪声阻碍。优选地使用麦克风感测到的MMG数据,因为它相对不容易受身体运动的污染,身体运动可以通过使用基于加速度计的MMG数据检测,其难以在不影响低频MMG信号以及可能的高频谐波的情况下被滤除。然而,在其它布置中,可以部署基于麦克风和基于加速度计的MMG感测两者。
实时运动跟踪有许多用途,诸如为运动设备(诸如机器人系统)提供输出控制信号,其中运动设备或机器人系统的运动的控制通过例如运动(例如臂部、头部或躯干运动和/或姿态(gesture))对控制者的模拟提供。仅运动传感器可能不足以捕获用以控制诸如操纵杆或计算机鼠标或用于机器人控制的其它接口等装置的通常使用的运动的整个范围(例如手臂、手腕和手指动作)或对其不是最佳的。捕获大运动(例如手臂运动)的惯性传感器和追踪与更精细(手指)运动相关联的生理活动的稳健的声学传感器的融合提供了控制诸如等计算机、遥控机器人机构或假肢/辅助装置外围装置的新的方法。上述活动感测设备可以被配置为包括接口模块来基于分类处理器检测到的运动为这样的运动设备提供输出控制信号。输出控制信号可以提供给例如假肢或机器人装置。
在传感器被设置在被测者的上臂和前臂的示例中,运动传感器数据可以用于以高度的速度和准确度跟踪被测者的手臂运动,每个MARG运动传感器16Hz的采样速率足够跟随两段肢体的快速姿态。图5示出被测者50使用两个这样的可佩戴式传感器52a、52b显示两段臂51的运动。图6中所示的MMG传感器数据使得能够校正被测者的柔性桡侧腕屈肌的细微肌肉活动同时执行握紧拳头的等距收缩的检测。单独的手指运动也是可检测的,显示出单独数字的假肢控制的潜力。因此,这些数据的结合使得分类处理器同时使用运动信号和肌动图肌肉信号来确定身体的多个关节部分的运动的同时模式。
在另一个更一般的示例中,运动跟踪可以用来提供输入到任何计算机处理器或计算机过程的控制信号。控制信号可从运动传感器数据和声学传感器数据的结合推导出。在一个示例中,这样的运动跟踪设备可以确定对应于感测的运动或从运动传感器可推导的姿势的第一控制信号(或一组控制信号),以及对应于生物声学数据(例如MMG数据)的第二控制信号(或一组控制信号)。第一控制信号(或一组控制信号)可以相当于平移运动,诸如通过使用者的手臂和或手腕的运动检测的计算机鼠标或跟踪球的x-y控制。第二控制信号(或一组控制信号)可以相当于通过弯曲一个或多个手指、由MMG数据从使用者的手指检测到的按钮点击运动(多个)。在另一示例中,运动和姿势跟踪可以部署在可佩戴式姿态控制装置(诸如用于计算机游戏控制或虚拟现实接口的装置)中。其它示例也是容易想到的。
图7中所示的结果示出EMG(图7a)的肌肉检测与由麦克风(图7c)感测到的MMG数据进行比较;由加速度计(图7b)感测到的MMG数据与由MARG(图7d)感测到的惯性运动传感器数据进行比较。由麦克风(图7c)感测到的MMG数据示出更好的肌肉活动数据,即更少地被运动污染。惯性运动数据传感器(图7d)与MMG加速度计数据之间的相似性也强调基于麦克风的MMG数据用于减少运动伪影的益处,尤其是对非等距肌肉活动。收集关于等距收缩、运动的数据不再是一个问题。
运动传感器数据和肌肉振动传感器数据的协同作用可以在图8和图9中看到。图8在顶部曲线图和下方运动中示出带有MMG结果的五步行走。很明显,在行走时采取的各步产生的运动数据中的幅值和频率的增加,也对应于其中也可见活动增加的MMG数据。这表明运动和肌肉活动有非常密切的关系。五步行走示出每一步的肌肉活动的发生。图9示出取自被测者行走时的两小时数据集的10秒段数据。底部的曲线图示出所显示的带有的静止时间段的惯性数据(在静止时为1g,在活动时为0g)。同样地,顶部曲线图示出MMG数据但覆盖有相同的静止时间段(此时间0.2g是静止的,而0g是活动的,但模式是相同的)。当行走分析被正确校准时,静止时间段被放置在MMG数据上方以呈现何时走步取自肌肉域,进一步支持行走分类。可以看出,当静止时间段认为被测者处于活动状态时,运动和肌肉活动的更多零星峰值示出的活动是明显的,这进一步证实成功的分类。
适应棒状图模型也示出肌肉活动给出一同作用的运动和肌肉活动的新视角。图10示出被测者执行两个任务的图片:竖直站立(图10a)和45°角提膝(图10b)。图10c和10d分别示出每个任务的计算棒状图表示。图10e至图10j对于两个任务中的每个示出MMG的数据响应(图10e,10h)和大腿(图10f、图10i)和小腿(图10g、图10j)的加速度。第一个任务:竖直站立是为了示出当未执行任何动作时非常有限的肌肉活动(图10e)和运动(图10f、图10g)。这在图10中用被测者静止竖直站立的从左到右前三个图像示出,计算模型也示出直线无运动活动以及然后带有很少运动的数据响应。底部三个图像示出提膝任务(图10b),还示出被测者提起膝盖的图片,对应的模型(图10d)以及数据活动(图10h至图10j)。从运动数据很明显地看到被测者何时提起膝盖,但MMG数据还示出从提升膝盖到放下膝盖的肌肉活动。
本文所描述的传感器设备的实施例可以重量轻、价格低廉、低功率、无线、易于使用,并提供相当于标准实验室技术的结果。此外,所述传感器设备能够长时间监测运动和肌肉活动。结果表明,当与EMG读数相比时,该技术的一些实现具有高准确度。所述传感器设备可以用于在康复监测、假肢控制和一般人类活动的背景中使用的例如运动/肌肉活动的广泛测量。
其它实施例旨在落入所附权利要求的范围之内。

Claims (35)

1.一种可佩戴式传感器设备,包括:
运动传感器,被配置为感测二维或三维运动和传感器的方向;
振动传感器,被配置为感测声学振动;以及
用于将运动传感器和振动传感器附接到身体的装置。
2.根据权利要求1所述的设备,其中所述运动传感器包括惯性测量单元。
3.根据权利要求1所述的设备,其中所述振动传感器被配置为感测骨骼肌振动。
4.根据权利要求2所述的设备,其中所述惯性测量单元包括加速度计、陀螺仪和磁力计中的一个或多个。
5.根据权利要求2所述的设备,其中所述惯性测量单元被配置为感测传感器本体在空间中围绕至少一个轴的旋转。
6.根据权利要求1所述的设备,其中所述振动传感器包括声学压力传感器。
7.根据权利要求1所述的设备,其中所述振动传感器包括加速度计、麦克风和压电换能器中的一个或多个。
8.根据权利要求6所述的设备,其中所述振动传感器包括:容积腔室,所述容积腔室在一端通过柔性膜封闭;以及压力换能器,耦接到所述腔室位于所述柔性膜的远端。
9.根据权利要求1所述的设备,包括气压计,被配置为感测环境压力。
10.根据权利要求1所述的设备,还包括数据记录装置,耦接为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的肌肉振动信号,并将所述信号存储为时间的函数。
11.根据权利要求1所述的设备,还包括:
分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的肌肉振动信号,并对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。
12.根据权利要求11所述的设备,其中来自所述振动传感器的信号是肌动图肌肉信号,并且所述分类处理器被配置为基于所述肌动图肌肉信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。
13.根据权利要求11所述的设备,其中所述分类处理器被配置为使用运动信号和肌肉振动信号两者来确定所述可佩戴式传感器设备所附接的身体的多个关节部分的运动或姿势的同步模式。
14.根据权利要求11所述的设备,其中所述分类处理器被配置为:
将来自所述振动传感器的信号分离成窗口化数据;
对所述窗口化数据进行聚类分析,以确定来自所述振动传感器的信号与活动类型之间的相关性。
15.根据权利要求14所述的设备,其中所述聚类分析包括:确定所述窗口化数据的群集,以及比较群集的一个或多个属性与对应的阈值。
16.根据权利要求15所述的设备,其中所述一个或多个属性包括以下中的一个或多个:陀螺仪幅值,峰值陀螺仪幅值,环境压力,用户的节奏和运动传感器的方向。
17.根据权利要求9所述的设备,还包括:
分类处理器,被配置为接收来自所述运动传感器的运动信号、接收来自所述气压计的环境压力信号以及接收来自所述振动传感器的信号,并基于接收到的信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类。
18.根据权利要求1所述的设备,还包括:
分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的肌肉振动信号,并基于所述运动信号对所述可佩戴式传感器设备所附接的身体的至少一部分的运动或姿势的模式进行分类,以及识别在所述运动或姿势的模式的过程中使用的肌肉活动。
19.根据权利要求10、13和18中任一项所述的设备,其中来自所述肌肉振动信号的信号是肌动图肌肉信号。
20.根据权利要求18所述的设备,其中所述分类处理器还被配置为确定所识别的肌肉活动是否符合与运动的分类模式相一致的预定模式。
21.根据权利要求1所述的设备,还包括:
分类处理器,被配置为接收来自所述运动传感器的运动信号以及接收来自所述振动传感器的声学信号,并确定信号何时对应于胎动。
22.根据权利要求11或权利要求13所述的设备,还包括:接口模块,被配置为基于所述分类处理器的输出为计算机处理器提供输出控制信号。
23.根据权利要求11或权利要求13所述的设备,还包括:接口模块,被配置为基于所述分类处理器的输出为运动设备提供输出控制信号。
24.根据权利要求23所述的设备,还包括所述运动设备。
25.根据权利要求24所述的设备,其中所述运动设备包括假肢或机器人装置。
26.一种对人类或动物被测者的至少一部分的运动或姿势模式进行分类的方法,包括以下步骤:
从附接到所述被测者的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述被测者的一个或多个振动传感器同时获得振动信号,所述振动信号指示感测到的骨骼肌振动或来自所述被测者的其它声学输出;以及
使用所述运动信号和所述感测到的振动信号以对所述被测者的至少一部分的运动或姿势的模式进行分类。
27.根据权利要求26所述的方法,其中来自所述被测者的其它声学输出包括由于胎动导致的声学输出。
28.根据权利要求26所述的方法,还包括:使用运动信号和感测到的振动信号以对所述被测者的多个关节身体部分的运动或姿势的模式进行分类。
29.根据权利要求26所述的方法,还包括:使用运动信号和感测到的振动信号以控制计算机处理器或运动设备的运动。
30.根据权利要求29所述的方法,其中所述振动信号是骨骼肌振动信号。
31.一种协助人类被测者康复的方法,包括:
从附接到身体的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述被测者的一个或多个振动传感器同时获得振动信号,所述振动信号指示感测到的骨骼肌振动或来自所述被测者的其它声学输出;以及
使用至少所述运动信号对所述被测者的至少一部分的运动或姿势的模式进行分类;
确定所述被测者的至少一部分的运动或姿势的模式是否符合感测到的骨骼肌振动信号的预定模式;以及
取决于所述被测者的至少一部分的运动或姿势的模式是否与感测到的骨骼肌振动信号的预定模式一致,提供可听或可视的反馈给用户。
32.根据权利要求31所述的方法,其中所述其它声输出包括来自所述被测者的心率或呼吸。
33.一种监测母体的胎动的方法,包括:
从附接到母体的运动传感器获得运动信号,所述运动信号指示二维或三维的所述被测者的感测到的运动;
从附接到所述母体的一个或多个声学振动传感器同时获得声学振动信号;以及
使用至少来自所述运动传感器的所述运动信号以确定母体活动的时间段以从振动信号中衰减或排除母体声学振动信号,从而检测与胎动相关联的声学振动。
34.根据权利要求33所述的方法,还包括:使用从所述声学振动传感器获得的声学振动信号来确定胎儿的方向。
35.根据权利要求33所述的方法,还包括:使用从所述声学振动传感器获得的声学振动信号以产生来自母体和/或胎儿身体的心率或呼吸速率。
CN201480070109.0A 2013-11-04 2014-11-04 生物力学活动监测 Pending CN106061369A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1319434.5A GB2519987B (en) 2013-11-04 2013-11-04 Biomechanical activity monitoring
GB1319434.5 2013-11-04
PCT/GB2014/053276 WO2015063520A1 (en) 2013-11-04 2014-11-04 Biomechanical activity monitoring

Publications (1)

Publication Number Publication Date
CN106061369A true CN106061369A (zh) 2016-10-26

Family

ID=49767613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480070109.0A Pending CN106061369A (zh) 2013-11-04 2014-11-04 生物力学活动监测

Country Status (7)

Country Link
US (1) US10335080B2 (zh)
EP (1) EP3065628B1 (zh)
CN (1) CN106061369A (zh)
ES (1) ES2940664T3 (zh)
GB (1) GB2519987B (zh)
PL (1) PL3065628T3 (zh)
WO (1) WO2015063520A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106344023A (zh) * 2016-11-10 2017-01-25 重庆邮电大学 一种基于气压和加速度的非稳态呼吸波检测装置
CN106491116A (zh) * 2016-11-11 2017-03-15 深圳市响音科技有限公司 一种被动式胎心检测系统及检测方法
CN106491115A (zh) * 2016-10-28 2017-03-15 歌尔科技有限公司 一种实现语音接收和心率检测的方法和设备
CN106821308A (zh) * 2016-11-15 2017-06-13 深圳大学 一种骨骼肌刺激下收缩活动评估的方法和装置
CN107126302A (zh) * 2017-02-15 2017-09-05 上海术理智能科技有限公司 上下肢运动仿真处理方法
CN108937907A (zh) * 2017-05-26 2018-12-07 北京小米移动软件有限公司 心率的采集方法及装置
CN109846485A (zh) * 2017-11-30 2019-06-07 财团法人资讯工业策进会 提供人体姿势保健信息的电子计算装置、系统与方法
CN111166341A (zh) * 2020-01-06 2020-05-19 华东理工大学 基于加速度冲击能量聚类的摔倒识别方法及可穿戴系统
CN111248922A (zh) * 2020-02-11 2020-06-09 中国科学院半导体研究所 基于加速度计和陀螺仪的人体呼吸情况采集贴及制备方法
CN112469469A (zh) * 2018-05-25 2021-03-09 脸谱科技有限责任公司 用于提供肌肉下控制的方法和装置
US20240042308A1 (en) * 2022-08-03 2024-02-08 Sony Interactive Entertainment Inc. Fidelity of motion sensor signal by filtering voice and haptic components

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978081B2 (en) 2006-01-09 2011-07-12 Applied Technology Holdings, Inc. Apparatus, systems, and methods for communicating biometric and biomechanical information
GB201317746D0 (en) 2013-10-08 2013-11-20 Smith & Nephew PH indicator
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
HK1203120A2 (zh) * 2014-08-26 2015-10-16 高平 步態偵察器與偵察步態的方法
EP3212062B1 (en) * 2014-10-29 2019-12-25 Bloom Technologies NV Device for contraction monitoring
US11534104B2 (en) 2014-10-29 2022-12-27 Bloom Technologies NV Systems and methods for contraction monitoring and labor detection
WO2016077489A1 (en) 2014-11-11 2016-05-19 Innovaura Corporation Heart rate monitor
US10716517B1 (en) 2014-11-26 2020-07-21 Cerner Innovation, Inc. Biomechanics abnormality identification
US9713430B2 (en) * 2015-03-16 2017-07-25 Nuvo Group Ltd. Acoustic sensors for abdominal fetal cardiac activity detection
WO2016168610A1 (en) 2015-04-15 2016-10-20 Nike, Inc. Activity monitoring device with assessment of exercise intensity
JP6545516B2 (ja) * 2015-04-24 2019-07-17 株式会社オプティム 行動分析サーバ、行動分析方法及び行動分析サーバ用プログラム
US11039782B2 (en) 2015-05-27 2021-06-22 Georgia Tech Research Corporation Wearable technologies for joint health assessment
CN112546602B (zh) 2015-05-29 2022-05-24 耐克创新有限合伙公司 评估锻炼强度的活动监测装置
US20160374566A1 (en) * 2015-06-23 2016-12-29 Microsoft Technology Licensing, Llc Sample-count-based sensor data calculations
US11185275B2 (en) 2015-09-02 2021-11-30 Khalifa Univeristy of Science and Technology Low cost fetal phonocardiogram
CN105361889B (zh) * 2015-09-06 2017-12-29 江苏矽望电子科技有限公司 一种基于加速度传感器的最佳胎动计数位置的检测方法
US20210196154A1 (en) * 2015-09-21 2021-07-01 Figur8, Inc. Body part consistency pattern generation using motion analysis
US10317875B2 (en) * 2015-09-30 2019-06-11 Bj Services, Llc Pump integrity detection, monitoring and alarm generation
CN105411594A (zh) * 2015-11-02 2016-03-23 广州阿路比电子科技有限公司 一种用于采集人体运动信号的新型传感器
US10055948B2 (en) * 2015-11-30 2018-08-21 Nike, Inc. Apparel with ultrasonic position sensing and haptic feedback for activities
US11089146B2 (en) * 2015-12-28 2021-08-10 The Mitre Corporation Systems and methods for rehabilitative motion sensing
US10004461B2 (en) * 2015-12-30 2018-06-26 Automotive Research & Testing Center Physiological signal processing system and method for filtering noise generated by the same
RU168584U1 (ru) * 2016-01-11 2017-02-09 Алексей Викторович Горбунов Устройство для регистрации двигательной активности человека
KR101759621B1 (ko) * 2016-02-22 2017-07-21 주식회사 지파워 움직임 패턴 및 음향 패턴 감지 기능을 이용한 행동 분석 장치 및 이를 이용한 행동 분석 시스템
CN105726048A (zh) * 2016-05-05 2016-07-06 郑州大学第一附属医院 一种骨科常见疾病的功能锻炼监测装置
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
US10983507B2 (en) 2016-05-09 2021-04-20 Strong Force Iot Portfolio 2016, Llc Method for data collection and frequency analysis with self-organization functionality
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US20180284741A1 (en) 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for industrial internet of things data collection for a chemical production process
JP2019527566A (ja) 2016-05-13 2019-10-03 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company センサが使用可能な創傷監視および治療装置
EP3257437A1 (en) 2016-06-13 2017-12-20 Friedrich-Alexander-Universität Erlangen-Nürnberg Method and system for analyzing human gait
US11237546B2 (en) 2016-06-15 2022-02-01 Strong Force loT Portfolio 2016, LLC Method and system of modifying a data collection trajectory for vehicles
US20170360378A1 (en) * 2016-06-16 2017-12-21 Ghassan S. Kassab Systems and methods for identifying fetal movements in an audio/visual data feed and using the same to assess fetal well-being
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
WO2018022658A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation Adaptive system for deriving control signals from measurements of neuromuscular activity
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
WO2018022597A1 (en) 2016-07-25 2018-02-01 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US20200073483A1 (en) 2018-08-31 2020-03-05 Ctrl-Labs Corporation Camera-guided interpretation of neuromuscular signals
US20180028109A1 (en) * 2016-07-27 2018-02-01 Andrew TESNOW System and method for a wearable knee injury prevention
CN106308760A (zh) * 2016-08-15 2017-01-11 中国科学院深圳先进技术研究院 一种远程监测装置、系统及用于远程监测的可穿戴设备
EP3738506A1 (en) 2017-03-07 2020-11-18 Motionize Israel Ltd. Footwear sensor mounting system
US11324424B2 (en) 2017-03-09 2022-05-10 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
WO2018162736A1 (en) 2017-03-09 2018-09-13 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
SG11201909449TA (en) 2017-04-11 2019-11-28 Smith & Nephew Component positioning and stress relief for sensor enabled wound dressings
WO2018211403A1 (en) 2017-05-15 2018-11-22 Bloom Technologies NV Systems and methods for monitoring fetal wellbeing
CN110832598B (zh) 2017-05-15 2024-03-15 史密夫及内修公开有限公司 伤口分析装置和方法
AU2018288530B2 (en) 2017-06-23 2024-03-28 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
WO2019008497A1 (en) * 2017-07-04 2019-01-10 Moradi Ali SYSTEM AND METHOD FOR INCREASING DETECTION OF FLUORESCENCE
CN110996766B (zh) 2017-07-19 2023-11-28 布鲁姆技术公司 监测子宫活动和评估早产风险
GB201809007D0 (en) 2018-06-01 2018-07-18 Smith & Nephew Restriction of sensor-monitored region for sensor-enabled wound dressings
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
US11442445B2 (en) 2017-08-02 2022-09-13 Strong Force Iot Portfolio 2016, Llc Data collection systems and methods with alternate routing of input channels
CN209085657U (zh) 2017-08-02 2019-07-09 强力物联网投资组合2016有限公司 用于与化工生产工艺有关的或工业环境的数据收集系统
US11925735B2 (en) 2017-08-10 2024-03-12 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
JP2020533093A (ja) 2017-09-10 2020-11-19 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company 封入を検査するためのシステムおよび方法、ならびにセンサを装備した創傷被覆材内の構成要素
GB201804971D0 (en) 2018-03-28 2018-05-09 Smith & Nephew Electrostatic discharge protection for sensors in wound therapy
GB201718870D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Inc Sensor enabled wound therapy dressings and systems
GB201718859D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Sensor positioning for sensor enabled wound therapy dressings and systems
US11596553B2 (en) 2017-09-27 2023-03-07 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
EP3687396A1 (en) 2017-09-28 2020-08-05 Smith & Nephew plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
EP3697295A4 (en) * 2017-10-20 2021-07-14 Mindfio Limited SYSTEM AND METHOD OF ANALYSIS OF A SUBJECT'S BEHAVIOR OR ACTIVITY
JP2021502845A (ja) 2017-11-15 2021-02-04 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company 統合センサ対応型創傷モニタリングおよび/または治療被覆材ならびにシステム
WO2019147996A1 (en) 2018-01-25 2019-08-01 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
CN112074870A (zh) 2018-01-25 2020-12-11 脸谱科技有限责任公司 重构的手部状态信息的可视化
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
WO2019147958A1 (en) 2018-01-25 2019-08-01 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
WO2019148002A1 (en) * 2018-01-25 2019-08-01 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
CN112005198A (zh) 2018-01-25 2020-11-27 脸谱科技有限责任公司 基于多个输入的手部状态重建
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
WO2019147949A1 (en) * 2018-01-25 2019-08-01 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US10970936B2 (en) 2018-10-05 2021-04-06 Facebook Technologies, Llc Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10970374B2 (en) 2018-06-14 2021-04-06 Facebook Technologies, Llc User identification and authentication with neuromuscular signatures
EP3593959B1 (en) * 2018-07-10 2022-09-28 Tata Consultancy Services Limited Method and system for online non-intrusive fatigue- state detection in a robotic co-working environment
WO2020018892A1 (en) 2018-07-19 2020-01-23 Ctrl-Labs Corporation Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
WO2020028747A1 (en) * 2018-08-02 2020-02-06 The Johns Hopkins University Safety feature for use with robotically manipulated endoscopes and other tools in otolaryngology and neurosurgery
EP3836836B1 (en) 2018-08-13 2024-03-20 Meta Platforms Technologies, LLC Real-time spike detection and identification
US11273357B2 (en) 2018-08-30 2022-03-15 International Business Machines Corporation Interactive exercise experience
US20200077906A1 (en) * 2018-09-07 2020-03-12 Augusta University Research Institute, Inc. Method and System for Monitoring Brain Function and Intracranial Pressure
GB2592508B (en) 2018-09-12 2022-08-31 Smith & Nephew Device, apparatus and method of determining skin perfusion pressure
EP3853698A4 (en) 2018-09-20 2021-11-17 Facebook Technologies, LLC NEUROMUSCULAR TEXT ENTRY, WRITING AND DRAWING IN SYSTEMS WITH EXTENDED REALITY
CN112771478A (zh) 2018-09-26 2021-05-07 脸谱科技有限责任公司 对环境中的物理对象的神经肌肉控制
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
FR3089319A1 (fr) * 2018-12-04 2020-06-05 Orange Procédé d’évaluation de l’activité corporelle d’un utilisateur
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
CN111803903A (zh) * 2019-04-10 2020-10-23 深圳先进技术研究院 一种健身动作识别方法、系统及电子设备
CA3117931C (en) 2019-07-12 2023-08-15 Hadley Allen ROBERTSON Medical device usage monitoring system and method
FR3099877A1 (fr) 2019-08-14 2021-02-19 Maxime Projetti Procédé et système pour l’analyse de l’activité biomécanique et l’exposition à un facteur de risque biomécanique sur un sujet humain dans un contexte d’activité physique
US10762764B1 (en) * 2019-11-10 2020-09-01 Tomanika King Biometric monitoring system
WO2021117693A1 (ja) * 2019-12-12 2021-06-17 株式会社村田製作所 生体活動観測装置
US11006860B1 (en) * 2020-06-16 2021-05-18 Motionize Israel Ltd. Method and apparatus for gait analysis
US20210394020A1 (en) * 2020-06-17 2021-12-23 FitForm Technologies Inc. Tracking three-dimensional motion during an activity
GB2596800A (en) * 2020-07-03 2022-01-12 Imperial College Innovations Ltd A mechanomyography apparatus and associated methods
JP7456506B2 (ja) * 2020-07-30 2024-03-27 株式会社村田製作所 生体活動検出センサ
JP2024512398A (ja) * 2021-03-07 2024-03-19 リキッド ワイヤ エルエルシー ユーザの動作をフレキシブル回路によってモニタリングするとともに特徴づける装置、システム、および方法
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
CN113347522B (zh) * 2021-05-08 2022-11-11 歌尔股份有限公司 耳机的控制方法、装置、设备及存储介质
LU501493B1 (en) 2022-02-16 2023-08-16 Univerza V Mariboru An apparatus and a process for real-time monitoring of deformation of smart elastic textiles based on measurements of electromagnetic characteristics

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69530523T2 (de) * 1994-11-24 2004-03-18 The Institut Of Respiratory Medicine Ltd., Sydney Vorrichtung zur bio-physischen überwachung eines fötus
US6344062B1 (en) * 1999-03-18 2002-02-05 The State University Rutgers Biomimetic controller for a multi-finger prosthesis
US6942621B2 (en) * 2002-07-11 2005-09-13 Ge Medical Systems Information Technologies, Inc. Method and apparatus for detecting weak physiological signals
US7787946B2 (en) * 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US20060206167A1 (en) * 2005-01-06 2006-09-14 Flaherty J C Multi-device patient ambulation system
DE102007038392B8 (de) 2007-07-11 2015-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Vorhersage eines Kontrollverlustes über einen Muskel
US9597015B2 (en) * 2008-02-12 2017-03-21 Portland State University Joint angle tracking with inertial sensors
US20090292194A1 (en) * 2008-05-23 2009-11-26 Corventis, Inc. Chiropractic Care Management Systems and Methods
US8444564B2 (en) * 2009-02-02 2013-05-21 Jointvue, Llc Noninvasive diagnostic system
US8376968B2 (en) * 2009-05-15 2013-02-19 The Hong Kong Polytechnic University Method and system for quantifying an intention of movement of a user
JP5471490B2 (ja) 2010-01-20 2014-04-16 オムロンヘルスケア株式会社 体動検出装置
US8942662B2 (en) * 2012-02-16 2015-01-27 The United States of America, as represented by the Secretary, Department of Health and Human Services, Center for Disease Control and Prevention System and method to predict and avoid musculoskeletal injuries
EP2636371B1 (en) 2012-03-09 2016-10-19 Sony Mobile Communications AB Activity classification
US10130298B2 (en) * 2012-04-03 2018-11-20 Carnegie Mellon University Musculoskeletal activity recognition system and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106491115A (zh) * 2016-10-28 2017-03-15 歌尔科技有限公司 一种实现语音接收和心率检测的方法和设备
CN106344023A (zh) * 2016-11-10 2017-01-25 重庆邮电大学 一种基于气压和加速度的非稳态呼吸波检测装置
CN106491116A (zh) * 2016-11-11 2017-03-15 深圳市响音科技有限公司 一种被动式胎心检测系统及检测方法
CN106821308A (zh) * 2016-11-15 2017-06-13 深圳大学 一种骨骼肌刺激下收缩活动评估的方法和装置
CN107126302B (zh) * 2017-02-15 2020-05-22 上海术理智能科技有限公司 上下肢运动仿真处理方法
CN107126302A (zh) * 2017-02-15 2017-09-05 上海术理智能科技有限公司 上下肢运动仿真处理方法
CN108937907A (zh) * 2017-05-26 2018-12-07 北京小米移动软件有限公司 心率的采集方法及装置
CN109846485A (zh) * 2017-11-30 2019-06-07 财团法人资讯工业策进会 提供人体姿势保健信息的电子计算装置、系统与方法
CN112469469A (zh) * 2018-05-25 2021-03-09 脸谱科技有限责任公司 用于提供肌肉下控制的方法和装置
CN111166341A (zh) * 2020-01-06 2020-05-19 华东理工大学 基于加速度冲击能量聚类的摔倒识别方法及可穿戴系统
CN111248922A (zh) * 2020-02-11 2020-06-09 中国科学院半导体研究所 基于加速度计和陀螺仪的人体呼吸情况采集贴及制备方法
CN111248922B (zh) * 2020-02-11 2022-05-17 中国科学院半导体研究所 基于加速度计和陀螺仪的人体呼吸情况采集贴及制备方法
US20240042308A1 (en) * 2022-08-03 2024-02-08 Sony Interactive Entertainment Inc. Fidelity of motion sensor signal by filtering voice and haptic components

Also Published As

Publication number Publication date
ES2940664T3 (es) 2023-05-10
GB201319434D0 (en) 2013-12-18
EP3065628B1 (en) 2023-02-22
WO2015063520A1 (en) 2015-05-07
PL3065628T3 (pl) 2023-06-12
GB2519987B (en) 2021-03-03
GB2519987A (en) 2015-05-13
US10335080B2 (en) 2019-07-02
US20160262687A1 (en) 2016-09-15
EP3065628A1 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
CN106061369A (zh) 生物力学活动监测
Ghasemzadeh et al. A body sensor network with electromyogram and inertial sensors: Multimodal interpretation of muscular activities
CN108095725B (zh) 一种人体运动能力集成测试装置及其使用方法
Yang et al. Review wearable sensing system for gait recognition
Zheng et al. Position-sensing technologies for movement analysis in stroke rehabilitation
Wagenaar et al. Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology
US20190320944A1 (en) Biomechanical activity monitoring
Ricci et al. Wearable-based electronics to objectively support diagnosis of motor impairments in school-aged children
US11699524B2 (en) System for continuous detection and monitoring of symptoms of Parkinson&#39;s disease
Nguyen et al. IMU-based spectrogram approach with deep convolutional neural networks for gait classification
D'Addio et al. New posturographic assessment by means of novel e-textile and wireless socks device
US11179065B2 (en) Systems, devices, and methods for determining an overall motion and flexibility envelope
Lou et al. IMU-based gait phase recognition for stroke survivors
Jiang et al. Exploration of gait parameters affecting the accuracy of force myography-based gait phase detection
Benocci et al. Wearable assistant for load monitoring: Recognition of on—Body load placement from gait alterations
Mariani Assessment of foot signature using wearable sensors for clinical gait analysis and real-time activity recognition
US20190117129A1 (en) Systems, devices, and methods for determining an overall strength envelope
CN112674760A (zh) 一种基于可穿戴传感器的帕金森病上肢运动检测方法
Safi et al. Postural stability analysis—A review of techniques and methods for human stability assessment
Junior et al. Use of wearable inertial sensors for the assessment of spatiotemporal gait variables in children: A systematic review
Martori A wearable motion analysis system to evaluate gait deviations
López-Nava et al. Towards ubiquitous acquisition and processing of gait parameters
TWI796035B (zh) 生物力學評量系統,其生物力學感測裝置及生物力學評量平台
Turcato et al. A computational framework for the standardization of motion analysis exploiting wearable inertial sensors
Qin et al. A smart phone based gait monitor system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026

WD01 Invention patent application deemed withdrawn after publication