CN106053424A - 一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法 - Google Patents
一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法 Download PDFInfo
- Publication number
- CN106053424A CN106053424A CN201610222318.3A CN201610222318A CN106053424A CN 106053424 A CN106053424 A CN 106053424A CN 201610222318 A CN201610222318 A CN 201610222318A CN 106053424 A CN106053424 A CN 106053424A
- Authority
- CN
- China
- Prior art keywords
- thc
- urine
- cooh
- coffee ring
- raman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法。本发明将咖啡环效应与便携式拉曼技术相结合,利用咖啡环现象的分离富集效应,有效地对尿液样本中的不同物质进行分离和富集。在此基础上,通过便携式拉曼对形成的咖啡环沉积物进行高分辨微区检测,将采集到的光谱数据与THC‑COOH标准物质的拉曼光谱进行比对,准确锁定THC‑COOH谱峰,即可在现场快速判断尿液中是否含有此物质。
Description
技术领域
本发明涉及一种尿液中大麻代谢物的检测方法,具体涉及一种通过将咖啡环效应与拉曼光谱技术联用检测尿液中大麻代谢物的方法。
背景技术
自20世纪60年代以来,大麻在世界范围内滥用。大麻、海洛因与可卡因是世界公认的三大滥用传统毒品,其中大麻因价廉、摄取方便而成为滥用最为广泛的毒品。在我国,近年来部分娱乐场所也出现了吸食大麻的人群,这不仅危害摄入者的身心健康,而且会引发一系列严重的社会问题,严重危及社会安全。
大麻成分极为复杂,起精神活性作用的主要是四氢大麻酚(简称THC)。大麻进入人体后,主要成分THC在肝脏等器官和组织中被水解为11-羟基-四氢大麻酚,而后进一步被氧化成四氢大麻酸(THC-COOH),最终经尿液排出体外。因此,尿液中的代谢物THC-COOH是大麻分析的主要目标物,其检测结果可作为是否吸食大麻的直接证据。目前,对于尿液中THC-COOH的检测方法主要有气相色谱法(GC)、气相色谱-质谱联用(GC-MS)、高效液相色谱法(HPLC)、液相色谱串联质谱法(LC-MS/MS)等。已有的这几类方法,具有灵敏度高、检出限低(一般低于2ng/mL)等优点,但大都需要复杂的柱前衍生操作,耗时耗力,无力应对需大规模筛查的突发状况。因此,建立一种低成本、快速、准确的尿液中THC-COOH的检测方法,对于打击毒品泛滥、保护人民身心健康以及维护社会稳定都是及有必要的。
发明内容
针对现有技术存在的不足,本发明提供了一种尿液中大麻代谢物的检测方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
一种尿液中大麻代谢物的检测方法,包括以下几个步骤:
(1)配制THC-COOH标准溶液;
(2)将THC-COOH标准溶液与阴性尿液以不同的比例混合,得到THC-COOH浓度不同的阳性尿样及阴性空白尿样;
(3)将步骤(1)中配制的THC-COOH标准溶液及步骤(2)中得到的尿样分别取适量滴加在基底上,于室温下自然蒸干后得到咖啡环沉积物;
(4)对THC-COOH标准溶液形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱;
(5)对THC-COOH含量不同的各尿样形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱图;
(6)将各尿样咖啡环沉积物的拉曼光谱与THC-COOH标准物质的拉曼光谱进行对比分析,判断尿样中是否含有THC-COOH。
所述的一种尿液中大麻代谢物的检测方法,所述步骤(4)和(5)中采集拉曼光谱图后,对所采集的拉曼光谱进行光谱信号预处理以实现降噪滤波的目的,进而准确提取各特征谱区。
所述的一种尿液中大麻代谢物的检测方法,所述步骤(3)中的基底为金属薄片或镀金膜载玻片基底。
本发明的有益效果:
本发明充分结合了咖啡环效应的分离富集特性和便携式拉曼光谱的微区高分辨检测能力,提供了一种低成本、快速且准确的检测尿液中大麻代谢物THC-COOH的新方法。该方法具有检测成本低、操作简便、检测速度快等优点,且无需消耗化学试剂,环保无污染,可及时、准确地对可疑对象进行检测。
本方法的检出限为15ng/mL;单个样品检测速度为10分钟/样品,可同时并行开展多个样品的同时筛查,检测通量可高达50样品/分钟;检测CV值≤10%;样品量:50μL。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1
一种尿液中大麻代谢物的检测方法,包括以下几个步骤:
1.配制浓度为100μg/mL的THC-COOH标准溶液;
2.用移液枪分别取适量上述储备液,以不同的比例与阴性尿液混合,得到THC-COOH浓度分布为0、0.01、0.02、0.03、0.04、0.05、0.1、0.15、0.2、0.5、1、5、10、20、50μg/mL的尿样,经超声振荡混合均匀后,备用;
3.用移液枪分别取5μL步骤1中得到的THC-COOH标准溶液和步骤2中得到的含不同浓度THC-COOH的尿样,依次滴加在金属薄片或镀金膜载玻片基底上,于室温下自然蒸干后得到咖啡环沉积物;
4.对步骤3中THC-COOH标准溶液形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱;
5.对步骤3中THC-COOH含量不同的各尿样形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱图;
6.将步骤5中得到的各尿样咖啡环沉积物的拉曼光谱与步骤4中得到的THC-COOH标准溶液咖啡环沉积物的拉曼光谱进行对比,判断尿样中有无THC-COOH存在;
7.若诊断THC-COOH的存在,便携式拉曼光谱系统自动显示。
THC-COOH的分子结构中具有多种不饱和共价键,因而具有明显的曼特征谱峰。利用咖啡环效应这一自然现象,可以使尿样中的各种物质得到分离和富集。再通过便携式拉曼光谱仪对所形成的咖啡环沉积物进行微区扫描分析,将所采集光谱与THC-COOH标准物质的拉曼光谱进行对比分析,不仅可以判断尿样中是否含有THC-COOH,而且可以确定其在咖啡环区域中的分布情况。本发明将咖啡环效应与便携式拉曼技术相结合,利用咖啡环现象的分离富集效应,有效地对尿液样本中的不同物质进行分离和富集。在此基础上,通过便携式拉曼对形成的咖啡环沉积物进行高分辨微区检测,将采集到的光谱数据与THC-COOH标准物质的拉曼光谱进行比对,准确锁定THC-COOH谱峰,即可在现场快速判断尿液中是否含有此物质。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (3)
1.一种尿液中大麻代谢物的检测方法,其特征在于,包括以下几个步骤:
(1)配制THC-COOH标准溶液;
(2)将THC-COOH标准溶液与阴性尿液以不同的比例混合,得到THC-COOH浓度不同的阳性尿样及阴性空白尿样;
(3)将步骤(1)中配制的THC-COOH标准溶液及步骤(2)中得到的尿样分别取适量滴加在基底上,于室温下自然蒸干后得到咖啡环沉积物;
(4)对THC-COOH标准溶液形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱;
(5)对THC-COOH含量不同的各尿样形成的咖啡环沉积进行便携式拉曼光谱扫描,采集其拉曼光谱图;
(6)将各尿样咖啡环沉积物的拉曼光谱与THC-COOH标准物质的拉曼光谱进行对比分析,判断尿样中是否含有THC-COOH。
2.根据权利要求1所述的一种尿液中大麻代谢物的检测方法,其特征在于:所述步骤(4)和(5)中采集拉曼光谱图后,对所采集的拉曼光谱进行光谱信号预处理以实现降噪滤波的目的,进而准确提取各特征谱区。
3.根据权利要求1所述的一种尿液中大麻代谢物的检测方法,其特征在于:所述步骤(3)中的基底为金属薄片或镀金膜载玻片基底。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610222318.3A CN106053424A (zh) | 2016-04-12 | 2016-04-12 | 一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610222318.3A CN106053424A (zh) | 2016-04-12 | 2016-04-12 | 一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106053424A true CN106053424A (zh) | 2016-10-26 |
Family
ID=57484266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610222318.3A Pending CN106053424A (zh) | 2016-04-12 | 2016-04-12 | 一种尿液中大麻代谢物的咖啡环效应沉积拉曼光谱检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106053424A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113533227A (zh) * | 2021-05-25 | 2021-10-22 | 何威 | 一种吸毒人员监测系统和方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122249A (zh) * | 2014-07-03 | 2014-10-29 | 上海师范大学 | 一种唾液中毒品代谢物现场的检测方法 |
CN104614361A (zh) * | 2015-01-21 | 2015-05-13 | 中国科学院合肥物质科学研究院 | 一种尿样中毒品的sers检测方法 |
CN104977288A (zh) * | 2014-04-14 | 2015-10-14 | 中国科学院生态环境研究中心 | 一种基于咖啡环效应的多环芳烃检测方法 |
CN105271110A (zh) * | 2015-09-18 | 2016-01-27 | 北京工业大学 | 一种利用咖啡环效应用于制备致密纳米颗粒薄膜和有序纳米线薄膜的方法 |
-
2016
- 2016-04-12 CN CN201610222318.3A patent/CN106053424A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977288A (zh) * | 2014-04-14 | 2015-10-14 | 中国科学院生态环境研究中心 | 一种基于咖啡环效应的多环芳烃检测方法 |
CN104122249A (zh) * | 2014-07-03 | 2014-10-29 | 上海师范大学 | 一种唾液中毒品代谢物现场的检测方法 |
CN104614361A (zh) * | 2015-01-21 | 2015-05-13 | 中国科学院合肥物质科学研究院 | 一种尿样中毒品的sers检测方法 |
CN105271110A (zh) * | 2015-09-18 | 2016-01-27 | 北京工业大学 | 一种利用咖啡环效应用于制备致密纳米颗粒薄膜和有序纳米线薄膜的方法 |
Non-Patent Citations (2)
Title |
---|
DONGMAO ZHANG等: "Raman Detection of Proteomic Analytes", 《ANALYTICAL CHEMISTRY》 * |
WEIPING ZHOU等: "Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect", 《NANOSCALE RESEARCH LETTERS》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113533227A (zh) * | 2021-05-25 | 2021-10-22 | 何威 | 一种吸毒人员监测系统和方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hasegawa et al. | Identification and quantitation of 5-fluoro-ADB, one of the most dangerous synthetic cannabinoids, in the stomach contents and solid tissues of a human cadaver and in some herbal products | |
Singh et al. | Evaluating the hematological and clinical-chemistry parameters of kratom (Mitragyna speciosa) users in Malaysia | |
Smith et al. | Mass spectrometry for real-time quantitative breath analysis | |
Beck et al. | Detection of drugs of abuse in exhaled breath using a device for rapid collection: comparison with plasma, urine and self-reporting in 47 drug users | |
Lu et al. | Quality difference study of six varieties of Ganoderma lucidum with different origins | |
Silverman et al. | After the fall: late-time spectroscopy of Type IIP supernovae | |
Mercolini et al. | Monitoring of chronic Cannabis abuse: An LC–MS/MS method for hair analysis | |
Moosmann et al. | Hair analysis for THCA‐A, THC and CBN after passive in vivo exposure to marijuana smoke | |
US20140127326A1 (en) | Detection of Cancer by Volatile Organic Compounds From Breath | |
Seferaj et al. | Evaluation of a new simple collection device for sampling of microparticles in exhaled breath | |
CN104165937A (zh) | 一种高效液相-高分辨率飞行时间串联质谱法检测血液中降血糖以及降血压药物的方法 | |
Wille et al. | Driving under the influence of cannabis: pitfalls, validation, and quality control of a UPLC-MS/MS method for the quantification of tetrahydrocannabinol in oral fluid collected with StatSure, Quantisal, or Certus collector | |
CN106814155B (zh) | 一种西红柿中烟碱的手性分析合相色谱串联质谱法 | |
Habala et al. | DART–LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids | |
CN106896174B (zh) | 一种无烟气烟草制品中烟碱的手性分析合相色谱串联质谱法 | |
Španěl et al. | Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion | |
Ruzsanyi | Ion mobility spectrometry for pharmacokinetic studies-–exemplary application | |
Świądro et al. | Development of a new method for drug detection based on a combination of the dried blood spot method and capillary electrophoresis | |
Li et al. | A novel baseline-correction method for standard addition based derivative spectra and its application to quantitative analysis of benzo (a) pyrene in vegetable oil samples | |
Nicolaou et al. | Application of an ultra-performance liquid chromatography-tandem mass spectrometric method for the detection and quantification of cannabis in cerumen samples | |
CN105891376A (zh) | 跌打镇痛膏质量标准及其检验方法 | |
He et al. | Identification of Ophiopogonis Radix from different producing areas by headspace‐gas chromatography‐ion mobility spectrometry analysis | |
Yang et al. | UHPLC-QQQ-MS/MS assay for the quantification of dianthrones as potential toxic markers of Polygonum multiflorum Thunb: applications for the standardization of traditional Chinese medicines (TCMs) with endogenous toxicity | |
Qin et al. | Quantification and semiquantification of multiple representative components for the holistic quality control of Allii Macrostemonis Bulbus by ultra high performance liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry | |
Zhao et al. | A practical quality control method for saponins without UV absorption by UPLC-QDA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161026 |
|
RJ01 | Rejection of invention patent application after publication |