CN106053327A - 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法 - Google Patents

一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法 Download PDF

Info

Publication number
CN106053327A
CN106053327A CN201610599430.9A CN201610599430A CN106053327A CN 106053327 A CN106053327 A CN 106053327A CN 201610599430 A CN201610599430 A CN 201610599430A CN 106053327 A CN106053327 A CN 106053327A
Authority
CN
China
Prior art keywords
electrode
potential
current
electrochemical
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610599430.9A
Other languages
English (en)
Inventor
王炜
朱书武
张弘
褚威
黄珂超
刘�东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghuang Expressway Management Office Department Of Transportation Of Hubei Province
Original Assignee
Huanghuang Expressway Management Office Department Of Transportation Of Hubei Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanghuang Expressway Management Office Department Of Transportation Of Hubei Province filed Critical Huanghuang Expressway Management Office Department Of Transportation Of Hubei Province
Priority to CN201610599430.9A priority Critical patent/CN106053327A/zh
Publication of CN106053327A publication Critical patent/CN106053327A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法。将待测混凝土试样中的钢筋、对电极和参比电极分别与电化学工作站对应连接,饱和甘汞电极作为参比电极,铂电极为辅助电极,钢筋电极片为工作电极;采用恒电流脉冲法获得电位‑时间曲线;在电位衰减曲线上找两点满足ηt2t1=0.37,则其时间差就为所求时间常数τ;其中,ηt2、ηt1是电流中断后时间t2和t1的极化电位。恒电流脉冲技术相对于线性极化和电化学阻抗谱在测试钢筋的腐蚀速率方面具有较好的相关性,但在具体应用时须根据实际情况合理选取初始参数。

Description

一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法
技术领域
本发明属于土木工程技术领域,具体涉及一种混凝土中钢筋锈蚀程度的电化学检测方法。
背景技术
混凝土结构中钢筋锈蚀是伴随砼结构全寿命周期内不断发展的化学反应过程,在自然环境条件下,通常使用一定的年限会发生锈蚀,进而影响到建筑安全。因此,需要对混凝土结构中钢筋锈蚀的程度和速率进行测量判定,以便于及时维护;所以,对钢筋锈蚀的正确检测与评价可以对构件的剩余使用寿命和可能的维修提供十分重要的数据和建议。
目前,半电池法和电阻率法能快速地检测混凝土内部钢筋腐蚀的概率,但这两种方法只能定性地表征钢筋腐蚀的热力学趋势,无法获取定量的腐蚀动力学参数,且均受混凝土保护层厚度和相对湿度的影响,测试结果不能完全反映真实情况。鉴于此,基于Stern-Geary公式的线性极化法(LPR)得到广泛推广,但是LPR法在使用过程也中会出现诸多不确定因素,如Stern-Geary公式中的常数B值以及极化面积等,都影响了测试结果的准确性。
电化学阻抗谱方法的原理是通过测量所得的频率范围很宽的阻抗谱来研究锈蚀电极系统,优点是能够比其它常规的电化学测量方法得到更多动力学信息及电极界面结构的信息。但是,该技术方案的不足之处在于:测试耗时较长至少约一小时,且需要具备较高的电化学理论知识和专业背景,因此具有使用局限性。
发明内容
本发明目的在于提供一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法。
为达到上述目的,采用技术方案如下:
一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法,包括以下步骤:
1)将待测混凝土试样中的钢筋、对电极和参比电极分别与电化学工作站对应连接,饱和甘汞电极(SCE)作为参比电极,铂电极为辅助电极,钢筋电极片为工作电极;
2)采用恒电流脉冲(GPM)法测试对腐蚀体系施加1-50mA的阴极恒电流脉冲,采样频率10-500Hz,脉冲维持1-10s后中断电流,获得电位-时间曲线;当电流中断后,电位会瞬间下降,充电的双电层电容开始向钢筋腐蚀反应放电,电位以近指数形式衰减;
3)在电位衰减曲线上找两点满足ηt2t1=0.37,则其时间差就为所求时间常数τ;其中,ηt2、ηt1是电流中断后时间t2和t1的极化电位。
本发明提供的混凝土中钢筋锈蚀程度的电化学检测方法有益效果如下:
恒电流脉冲法通过时间常数τ和双电层电容Cdl得出与钢筋腐蚀相关的极化电阻Rp,是一种具有较大应用前景的电化学方法。
恒电流脉冲技术可快速获取钢筋腐蚀界面腐蚀动力学参数,且对体系扰动小,不受钢筋真实暴露面积的影响,有较强的适应性。
钝化钢筋的时间常数和极化电阻均大于活化腐蚀钢筋,而本发明钝化钢筋的双电层电容值比活化腐蚀钢筋小。
恒电流脉冲技术相对于线性极化和电化学阻抗谱在测试钢筋的腐蚀速率方面具有较好的相关性,且测量结果真实可靠,测试仪器价格便宜,但在具体应用时须根据实际情况合理选取初始参数。
附图说明
图1:测试装置示意图;
图2:恒电流脉冲脉冲获得的E-t图。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。
本发明钢筋混凝土中钢筋锈蚀程度的电化学监测方法如下:
将待测混凝土试样中的钢筋、对电极和参比电极分别与电化学工作站对应连接,饱和甘汞电极(SCE)作为参比电极,铂电极为辅助电极,钢筋电极片为工作电极;如图1所示。
采用恒电流脉冲(GPM)法测试对腐蚀体系施加1-50mA的阴极恒电流脉冲,采样频率10-500Hz,脉冲维持1-10s后中断电流,获得电位-时间曲线;当电流中断后,电位会瞬间下降,充电的双电层电容开始向钢筋腐蚀反应放电,电位以近指数形式衰减;如图2所示。
其中,恒电流脉冲(GPM)法得到极化电阻Rp,并通过下面的Stern-Geary公式由Rp求得钢筋腐蚀电流密度icorr
icorr=B/Rp (1)
式中:icorr为钢筋腐蚀电流密度,μA·cm-2;Rp为钢筋的极化电阻,kΩ·cm2;B为Stern-Geary常数,mV。根据阴阳极Tafel常数βc和βa(Tafel曲线),可以求出B值。
B=(βa·βc)/2.303(βac) (2)
本发明采用修正的Randles等效电路对钢筋-模拟混凝土孔溶液体系进行拟合。其中,Rs为溶液电阻,Cdl和Rp分别为钢筋表面的双电层电容和极化电阻。用饱和Ca(OH)2溶液来模拟混凝土孔隙溶液,通过NaHCO3和NaOH来调节pH。
对该电路施加脉冲电流ΔI时,其电位极化η为:
η = Δ I · R s + Δ I · R p [ 1 - exp ( - t C d l R p ) ] - - - ( 3 )
GPM电位响应曲线由双电层电容的充电过程及放电过程两部分组成。在施加电流的瞬间,电位有一直线上升段ΔI·Rs,之后电位变化是双电层电容的充电过程。当足够长平衡时间te后,电位达到稳态,也即最大极化电位ηmax
ηmax=ΔI·Rs+ΔI·Rp(t→∞) (4)
则由式(3)和式(4)可得:
η m a x - η = Δ I · R p · exp ( - t C d l R p ) - - - ( 5 )
对式(5)两端取自然对数可得:
l n ( η m a x - η ) = l n ( Δ I · R p ) - - t C d l R p - - - ( 6 )
一旦脉冲扰动电流中断,ΔI·Rs瞬间消失,此时电位为真实极化电位。在电位衰减曲线上取点可得出t,当电流中断后,电位会瞬间下降ΔI·Rs,此后充电的双电层电容开始向钢筋腐蚀反应放电,电位会以近指数形式衰减为:
lnη m a x - lnη t = t C d l R p - - - ( 7 )
式中,ηmax是电流中断时的最大极化电位,ηt是电流中断后时间t的极化电位。在电位衰减曲线上任取两个时间点t1和t2,令Δt=t2-t1,根据式(7)可知:
η t 2 - η t 1 = exp ( - Δ t C d l R p ) - - - ( 8 )
令Δt=CdlRp,则可得:
ηt2t1=exp(-1)=0.37 (9)
在电位衰减曲线上找两点满足ηt2/ηt1=0.37,则其时间差Δt=RpCdl就为所求时间常数τ。可见,τ与试样面积无关,因此GPM测量不受试样面积的限制,有较强的适应性。此时Cdl由电位响应曲线(双电层电容充电过程)的斜率dE/dt和脉冲电流ΔI决定:
C d l = Δ I d E / d t - - - ( 10 )
从电流中断一定时间后开始取第一个点t1和第二个点t2,以此得到时间常数τ。
实验例1
实验材料为Q345B(16Mn)碳钢,组成为(wt%):C 0.26,Mn 1.26,P 0.009,Si0.063,S 0.031,余量为Fe。实验前将加工好的Q345B钢试样四周用环氧树脂密封,只留下0.5cm2表面作为工作区。每次电化学测试开始之前,工作电极表面依次用800#、1200#、1500#的SiC砂纸磨平,丙酮除油,蒸馏水冲洗,冷风吹干,备用。用饱和Ca(OH)2溶液来模拟混凝土孔隙液,通过加入一定量的NaOH调节pH为13.6,模拟高碱性环境。电极在模拟液中浸泡24h后进行线性极化、电化学阻抗以及恒电流脉冲测试。表1为电化学测试数据。
表1电化学测试数据(pH13.6)
线性极化 交流阻抗 恒电流脉冲
极化电阻,kΩ·cm2 330±40 420±50 280+50
时间常数,τ/s --- --- 10-23
实验例2
同样采用Q345B电极,用饱和Ca(OH)2溶液来模拟混凝土孔隙溶液,通过加入一定量的NaHCO3调节pH为10.6,模拟碳化后孔隙液,同时加入0.05MNaCl。电极在模拟液中浸泡24h后进行线性极化、电化学阻抗以及恒电流脉冲测试。表2为电化学测试数据。
表2电化学测试数据(pH10.6+0.05MNaCl)
线性极化 交流阻抗 恒电流脉冲
极化电阻,kΩ·cm2 0.91±0.15 1.25±0.20 1.53±0.50
时间常数,τ/s --- --- 1.25-1.8
从实验例1和例2可以看出,三种电化学方法获得的极化电阻Rp在同一数量级,具有较好的相关性,可以直观的判断金属腐蚀大小。而由恒电流脉冲获得的时间常数τ也可以区分金属电极腐蚀状态,当时间常数小于4s时,认为金属处于活化状态,腐蚀较大;当时间常数大于8s时,金属处于钝化状态,腐蚀很小。

Claims (2)

1.一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法,其特征在于包括以下步骤:
1)将待测混凝土试样中的钢筋、对电极和参比电极分别与电化学工作站对应连接,饱和甘汞电极作为参比电极,铂电极为辅助电极,钢筋电极片为工作电极;
2)采用恒电流脉冲法测试对腐蚀体系施加1-50mA的阴极恒电流脉冲,采样频率10-500Hz,脉冲维持1-10s后中断电流,获得电位-时间曲线;当电流中断后,电位会瞬间下降,充电的双电层电容开始向钢筋腐蚀反应放电,电位以近指数形式衰减;
3)在电位衰减曲线上找两点满足ηt2t1=0.37,则其时间差就为所求时间常数τ;其中,ηt2、ηt1是电流中断后时间t2和t1的极化电位。
2.如权利要求1所述钢筋混凝土中钢筋锈蚀程度的电化学监测方法,其特征在于还包括以下步骤:
当时间常数τ小于4s时,判定金属处于活化状态,腐蚀较大;
当时间常数τ大于8s时,判定金属处于钝化状态,腐蚀很小。
CN201610599430.9A 2016-07-27 2016-07-27 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法 Pending CN106053327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610599430.9A CN106053327A (zh) 2016-07-27 2016-07-27 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610599430.9A CN106053327A (zh) 2016-07-27 2016-07-27 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法

Publications (1)

Publication Number Publication Date
CN106053327A true CN106053327A (zh) 2016-10-26

Family

ID=57417220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610599430.9A Pending CN106053327A (zh) 2016-07-27 2016-07-27 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法

Country Status (1)

Country Link
CN (1) CN106053327A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072602A (zh) * 2017-07-21 2018-05-25 天津大学 一种对不锈钢焊缝区加速腐蚀的电化学方法
CN109374519A (zh) * 2018-11-09 2019-02-22 南京航空航天大学 一种基于交流阻抗谱法表征混凝土中钢筋锈蚀速率的检测方法
CN109596511A (zh) * 2018-12-10 2019-04-09 新源动力股份有限公司 燃料电池双极板耐蚀性测试方法
CN109930155A (zh) * 2019-03-22 2019-06-25 中国矿业大学 一种劣化混凝土修复加固的电化学方法
CN112502757A (zh) * 2020-12-15 2021-03-16 山东科技大学 一种锚杆支护系统的腐蚀防护、现场腐蚀监测方法和装置
CN114216842A (zh) * 2021-12-24 2022-03-22 华中科技大学 钢筋混凝土加速锈蚀时通电效率的在线监测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517069B2 (ja) * 2010-12-27 2014-06-11 住友大阪セメント株式会社 鋼材の腐食状態測定方法
US20140210494A1 (en) * 2013-01-30 2014-07-31 Giatec Scientific Inc. Electrical methods and systems for concrete testing
CN105203449A (zh) * 2015-10-13 2015-12-30 东南大学 一种模拟混凝土孔溶液中钢筋锈蚀测试的腐蚀池
CN105547988A (zh) * 2016-01-08 2016-05-04 海南瑞泽新型建材股份有限公司 钢筋混凝土锈蚀试验装置及试验方法
CN105738273A (zh) * 2016-03-08 2016-07-06 浙江工业大学 模拟混凝土中钢筋自然非均匀锈蚀的试验方法及试验装置
CN205384214U (zh) * 2016-03-10 2016-07-13 广州声华科技有限公司 一种钢筋混凝土模拟腐蚀试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517069B2 (ja) * 2010-12-27 2014-06-11 住友大阪セメント株式会社 鋼材の腐食状態測定方法
US20140210494A1 (en) * 2013-01-30 2014-07-31 Giatec Scientific Inc. Electrical methods and systems for concrete testing
CN105203449A (zh) * 2015-10-13 2015-12-30 东南大学 一种模拟混凝土孔溶液中钢筋锈蚀测试的腐蚀池
CN105547988A (zh) * 2016-01-08 2016-05-04 海南瑞泽新型建材股份有限公司 钢筋混凝土锈蚀试验装置及试验方法
CN105738273A (zh) * 2016-03-08 2016-07-06 浙江工业大学 模拟混凝土中钢筋自然非均匀锈蚀的试验方法及试验装置
CN205384214U (zh) * 2016-03-10 2016-07-13 广州声华科技有限公司 一种钢筋混凝土模拟腐蚀试验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
施锦杰 等: "恒电流脉冲法研究钢筋在模拟混凝土孔溶液中的腐蚀行为", 《北京科技大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072602A (zh) * 2017-07-21 2018-05-25 天津大学 一种对不锈钢焊缝区加速腐蚀的电化学方法
CN109374519A (zh) * 2018-11-09 2019-02-22 南京航空航天大学 一种基于交流阻抗谱法表征混凝土中钢筋锈蚀速率的检测方法
CN109596511A (zh) * 2018-12-10 2019-04-09 新源动力股份有限公司 燃料电池双极板耐蚀性测试方法
CN109930155A (zh) * 2019-03-22 2019-06-25 中国矿业大学 一种劣化混凝土修复加固的电化学方法
CN112502757A (zh) * 2020-12-15 2021-03-16 山东科技大学 一种锚杆支护系统的腐蚀防护、现场腐蚀监测方法和装置
CN114216842A (zh) * 2021-12-24 2022-03-22 华中科技大学 钢筋混凝土加速锈蚀时通电效率的在线监测装置和方法
CN114216842B (zh) * 2021-12-24 2024-06-04 华中科技大学 钢筋混凝土加速锈蚀时通电效率的在线监测装置和方法

Similar Documents

Publication Publication Date Title
CN106053327A (zh) 一种钢筋混凝土中钢筋锈蚀程度的电化学监测方法
Sathiyanarayanan et al. Corrosion monitoring of steel in concrete by galvanostatic pulse technique
Gabrielli et al. Review of applications of impedance and noise analysis to uniform and localized corrosion
Gonzalez et al. Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages
CN104978490A (zh) 一种预测老龄飞机金属结构日历寿命的新方法
Vedalakshmi et al. Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies
Haruna et al. Electrochemical noise analysis for estimation of corrosion rate of carbon steel in bicarbonate solution
JP7239859B2 (ja) 予測式導出方法及び予測式導出装置
CN103487480B (zh) 快速预测氯盐环境中钢筋混凝土寿命的方法
Garcia-Ochoa et al. Using recurrence plot to study the dynamics of reinforcement steel corrosion
CN101482478B (zh) 包含疲劳载荷的金属任意腐蚀损伤t-h曲线测试方法
CN104406904A (zh) 一种预测混凝土硫酸盐侵蚀深度的方法
Qiao et al. Identification of the reinforcing steel's corrosion state in RC beams based on electrochemical sensor
Jin et al. Continuous monitoring of steel corrosion condition in concrete under drying/wetting exposure to chloride solution by embedded MnO2 sensor
Jeong et al. Electrochemical performance evaluation of corrosion monitoring sensor for reinforced concrete structures
Edgemon et al. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis
Eichler et al. Investigations on the re‐passivation of carbon steel in chloride containing concrete in consequence of cathodic polarisation
CN106556564A (zh) 一种混凝土用钢筋腐蚀性能的评价方法
CN101782491A (zh) 一种预测金属材料土壤腐蚀速率的方法
Du et al. Research on the difference of characteristics at Steel/electrolyte interface under cathodic protection and in High-pH alkaline solution
Alsit et al. Experimental and numerical investigation of stress corrosion cracking in AISI 4340 steel under near neutral solution conditions
Ciubotariu et al. Corrosion studies of carbon steel X60 by electrochemical methods
Varela et al. Monitoring cathodic shielding and corrosion under disbonded coatings
Tan et al. New electrochemical methods for visualizing dynamic corrosion and coating disbondment processes on simulated pipeline conditions
CN103678907B (zh) 钢混结构腐蚀电化学特征的分数微分识别算法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026

RJ01 Rejection of invention patent application after publication