CN106051138B - 纯电动汽车双电机自动变速器控制系统及其控制方法 - Google Patents

纯电动汽车双电机自动变速器控制系统及其控制方法 Download PDF

Info

Publication number
CN106051138B
CN106051138B CN201610682328.5A CN201610682328A CN106051138B CN 106051138 B CN106051138 B CN 106051138B CN 201610682328 A CN201610682328 A CN 201610682328A CN 106051138 B CN106051138 B CN 106051138B
Authority
CN
China
Prior art keywords
motor
module
control
gear
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610682328.5A
Other languages
English (en)
Other versions
CN106051138A (zh
Inventor
伍松
周振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201610682328.5A priority Critical patent/CN106051138B/zh
Publication of CN106051138A publication Critical patent/CN106051138A/zh
Application granted granted Critical
Publication of CN106051138B publication Critical patent/CN106051138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本发明纯电动汽车双电机自动变速器控制系统及其控制方法,涉及电动汽车控制领域,该控制系统包括的控制单元、传感器检测信号模块、开关选择信号模块、执行控制模块、故障显示模块、双电机模块、变速箱模块,采用高速数字信号处理芯片DSPTMS320F28335能够实时控制,同时还采用了双电机自动变速控制,可以实现四种驱动模式的切换,提高了电动汽车的动力性和经济性,采用加速踏板开度变化率、车速、爬坡坡度角大小三参数规律,制订了自动变速和变扭以及坡道起步的控制策略,并且解决了坡道动力不足以及最高车速较低的问题。

Description

纯电动汽车双电机自动变速器控制系统及其控制方法
技术领域
本发明涉及电动汽车控制领域,特别涉及一种纯电动汽车双电机自动变速器控制系统及其控制方法。
背景技术
随着能源短缺和环境污染的问题日益严重,纯电动汽车作为节能环保的汽车,越来越受到政府和企业的重视。而且随着汽车电子的飞速发展,汽车智能化是大势所趋。电动汽车手动变速器虽然结构简单,成本低,但是存在操作不便、最高车速较低、爬坡动力性不足,特别是在坡道起步方面存在动力性不足的问题。
发明内容
本发明的目的是提供一种纯电动汽车双电机自动变速器控制系统及其控制方法,能够实现成本较低、换挡平顺、合理换挡,并能解决坡道动力动力不足以及最高车速较低的问题。
本发明为实现上述目的采用的技术方案是:一种纯电动汽车双电机自动变速器控制系统,其特征在于,包括的控制单元、传感器检测信号模块、开关选择信号模块、执行控制模块、档位及故障显示模块、双电机模块、变速箱模块,所述的传感器检测信号模块包括分别与控制单元相连的制动踏板位置传感器C1、加速踏板位置传感器C2、检测爬坡度的角度传感器C3和车速传感器C4;所述的开关选择信号模块包括分别与控制单元相连的手动及自动挡档位的选择开关K1、行驶模式开关K2;所述的执行控制模块包括相互连接的换挡执行机构、高速电磁换向阀,换挡执行机构与变速箱模块连接,高速电磁换向阀与控制单元双向连接,双电机模块的输入端与控制单元连接,双电机模块的输出端与变速箱模块连接,变速箱模块再与汽车的驱动桥连接,车速传感器C4还与汽车的驱动桥连接,所述的双电机模块包括主电机和辅电机,所述的换挡执行机构包括一号离合器、二号离合器、三号离合器及锁止器。
本发明采用的进一步技术方案是:所述控制单元包括数字信号处理芯片和自带的CAP模块、ADC模块、I/O输入模块、PWMⅠ模块、PWMⅡ模块、SCI模块、电源电路、复位电路、程序储存空间和数据储存空间,以及外围的脉冲整形电路、模拟信号调理电路、I/O输入调理电路、高速电磁换向阀驱动电路、电机驱动电路、显示器驱动电路、CAN接口电路;其中车速传感器C4连接到脉冲整形电路,脉冲整形电路连接数字信号处理芯片的CAP模块,检测爬坡度的角度传感器C3、加速踏板位置传感器C2、制动踏板位置传感器C1分别连接到模拟信号调理电路,模拟信号调理电路连接数字信号处理芯片的ADC模块,手动及自动挡的选择开关K1、行驶模式开关K2分别连接I/O输入调理电路,I/O输入调理电路连接数字信号处理芯片的I/O输入模块;数字信号处理芯片的PWMⅠ模块连接高速电磁换向阀驱动电路,高速电磁换向阀驱动电路连接高速电磁换向阀,数字信号处理芯片的PWMⅡ模块连接电机驱动电路,电机驱动电路连接双电机模块,数字信号处理芯片的SCI模块连接显示器驱动电路,显示器驱动电路连接档位及故障显示器,数字信号处理芯片连接CAN接口电路。
本发明采用的进一步技术方案是:所述的数字信号处理芯片为DSPTMS320F28335。
本发明采用的进一步技术方案是:所述的变速箱模块包括定轴齿轮机构、行星齿轮机构、传动轴、动力输出轴及联动机构;定轴传动机构包括一号齿轮、二号齿轮、三号齿轮、五号齿轮和六号齿轮,行星齿轮机构包括行星齿轮、行星架和太阳轮,联动机构主要包括四号齿轮、齿圈,同时三号离合器和锁止器连接在联动机构中,其中主电机和辅电机布置在系统的同侧,主电机与一号齿轮连接,一号齿轮与一号离合器主动盘连接,一号离合器从动盘通过传动轴和行星齿轮机构的太阳轮连接,辅助电机和二号离合器主动盘连接,二号离合器从动盘和六号齿轮连接,五号齿轮连接在传动轴上,六号齿轮和五号齿轮相啮合;一号齿轮与二号齿轮相啮合,二号齿轮通过固定传动轴和三号齿轮连接,三号齿轮和四号齿轮相啮合,四号齿轮通过三号离合器、锁止器和齿圈连接;锁止器一端和变速箱壳连接,锁止器另一端和齿圈连接。
本发明为实现上述目的采用的另一技术方案是:一种用于上述的纯电动汽车双电机自动变速器控制系统的控制方法,其特征在于,其步骤如下:(一) 汽车上电,判断系统初始化是否成功,是直接进入下一步,否判断初始化是否超时,超时显示初始化失败,未超时则继续判断系统初始化是否成功;(二) 读取传感器检测信号模块和开关选择信号模块的信号;(三)判断是否为自动档,是直接进入下一步,否则进入手动档驾驶,后返回程序;(四)判断车辆是否行驶中,是直接进入下一步,否则根据自动档起步控制策略起步,再进入下一步;(五) 根据自动档换挡策略进行变速和变扭;(六) 检测各模块电流电压是否正常,是返回程序,返回上述步骤(二),否则显示系统故障。
本发明采用的进一步技术方案是:在步骤(四)中自动档起步控制时,坡道起步的控制方法包括以下步骤:(a)车辆静止,读取制动踏板位置传感器的信号,判断有无制动信号,无直接进入下一步,有则继续返回读取制动踏板位置传感器的信号;(b)根据所读取角度传感器的角度值,当坡道i>15%为上坡,当角度方向相反时i>15%为下坡,当i的大小小于15%是定为平路标志,判断是否为上坡,是直接进入下一步,否则判断是否为下坡,是下坡则控制自动变速器于转矩耦合模式,转矩大小为0,转入下面步骤(f),不是下坡则定为平路标志,也转入下面步骤(f);(c)根据角度传感器采集到的信号信息判断坡度,然后结合车身自重计算出滚动阻力以及大概需要的扭矩:(d)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合驱动模式;(e)根据上步计算给出电机所需要的大概扭矩,然后判断转速n>=0,是直接进入下一步,否则控制单元发出控制信号给PWMⅡ模块适当增加电机转矩,再根据上步计算给出电机所需要的大概扭矩,然后继续判断转速n>=0;(f)判断标定时间内有无加速踏板信号,有直接进入下一步,无则取消起步扭矩;(g)根据加速踏板信号,给出相应的电机转矩指令。
本发明采用的进一步技术方案是:在步骤(五)中进行变速和变扭的控制方法包括以下步骤:(A)读取传感器检测信号模块和开关选择信号模块信号,判断是否需要变速或变扭,是直接进入下一步,否则继续本步骤;(B)判断是否是转矩耦合驱动模式,是直接进入下一步,否则根据加速踏板开度以及变化、当前车速,以及让电机尽量工作在高效区的原则,判断是否需要单电机驱动模式,是则进入下面步骤(E), 否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制一号离合器和锁止器分别处于分离状态,三号离合器和二号离合器处于分别处于结合状态,双电机处于转速耦合驱动模式,后进入下面步骤(G);(C)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合模式;(D)控制单元根据加速踏板开度以及变化率、坡度,当前车速,向PWMⅡ模块发出信号,来控制双电机,从而实现电动汽车变速以及变扭,之后转到最后一步任务结束;(E)判断是否需要主电机驱动,是直接进入下一步,否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器和一号离合器分别处于分离状态,锁止器和二号离合器分别处于结合状态,电动汽车处于辅电机驱动模式,后进入下面步骤(G);(F)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制一号离合器和锁止器处于结合状态,二号离合器、三号离合器分别处于分离状态,电动汽车处于主电机驱动模式;(G)控制单元根据加速踏板开度以及变化率,当前车速,向PWMⅡ模块发出信号,来控制电机,从而实现电动汽车变速以及变扭,任务结束。
本发明纯电动汽车双电机自动变速器控制系统及其控制方法具有如下有益效果:1、本发明纯电动汽车双电机自动变速器控制系统的传感器检测信号模块还包括检测爬坡度的角度传感器,能够检测电动汽车的爬坡的坡度,便于坡道的控制;2、采用了高速电磁换向阀,执行时更加灵敏;3、采用了双电机自动变速器结构,可以实现主电机驱动、辅电机驱动、转速耦合驱动、转矩耦合驱动四种模式的切换;4、采用了车速,角传感器信号,加速踏板开度三参数的换挡规律;5、采用了双电机自动变速器电控装置坡道起步控制方法,能解决坡道动力动力不足问题;6、采用了双电机和变速箱模块,能够根据不同的路况和驾驶员的意图进行模式切换,从而既满足经济性的要求又满足动力性的要求;7、本发明采用了具有运算快、运算精度高、容量大、功能强大、性价比高的DSPTMS320F28335作为微处理器芯片,实现了控制的实时性和高效性。
下面结合附图和实施例对本发明纯电动汽车双电机自动变速器控制系统及其控制方法作进一步的说明。
附图说明
图1是本发明纯电动汽车双电机自动变速器控制系统的整体模块框图;
图2是本发明纯电动汽车双电机自动变速器控制系统的电路原理框图;
图3是本发明纯电动汽车双电机自动变速器控制系统的控制单元硬件内部结构框图;
图4是本发明纯电动汽车双电机自动变速器控制系统的双电机模块和变速箱模块的连接构造图;
图5是本发明纯电动汽车双电机自动变速器控制系统的控制方法的控制主流程图;
图6是本发明纯电动汽车双电机自动变速器控制系统的控制方法中坡道起步控制方法流程图;
图7是本发明纯电动汽车双电机自动变速器控制系统的控制方法中变速和变扭控制方法流程图;
部分附图标号说明:1-主电机,2-辅电机,3-一号齿轮,4-二号齿轮,5-三号齿轮,6-三号离合器,7-锁止器,8-行星齿轮,9-行星架,10-动力输出轴,11-一号离合器,12-传动轴,13-二号离合器,14-五号齿轮,15-四号齿轮,16-六号齿轮,17-齿圈,18-太阳轮,19-固定传动轴,20-联动机构。
具体实施方式
如图1、图2所示,本发明纯电动汽车双电机自动变速器控制系统,包括的控制单元70、传感器检测信号模块71、开关选择信号模块72、执行控制模块73、档位及故障显示模块74、双电机模块75、变速箱模块76,所述的传感器检测信号模块71包括分别与控制单元相连的制动踏板位置传感器C1、加速踏板位置传感器C2、检测爬坡度的角度传感器C3和车速传感器C4;所述的开关选择信号模块72包括分别与控制单元相连的手动及自动挡档位的选择开关K1、行驶模式开关K2;所述的执行控制模块73包括相互连接的换挡执行机构、高速电磁换向阀,换挡执行机构与变速箱模块连接,高速电磁换向阀与控制单元双向连接,双电机模块的输入端与控制单元70连接,双电机模块75的输出端与变速箱模块76连接,变速箱模块76再与汽车的驱动桥连接,车速传感器C4还与汽车的驱动桥连接,所述的双电机模块75包括主电机1和辅电机2,所述的换挡执行机构包括一号离合器11、二号离合器13、三号离合器6及锁止器7。
请同时参考图3所示,所述控制单元包括数字信号处理芯片和自带的CAP模块、ADC模块、I/O输入模块、PWMⅠ模块、PWMⅡ模块、SCI模块、电源电路、复位电路、程序储存空间和数据储存空间,以及外围的脉冲整形电路、模拟信号调理电路、I/O输入调理电路、高速电磁换向阀驱动电路、电机驱动电路、显示器驱动电路、CAN接口电路;所述的数字信号处理芯片为DSPTMS320F28335。其中CAP模块是脉冲捕获模块,其中PWMⅠ模块和PWMⅡ模块中的PWM是Pulse Width Modulation的简称,即脉冲宽度调制。SCI模块即串口通讯模块,ADC模块即模数转换器模块。其中车速传感器C4连接到脉冲整形电路,脉冲整形电路连接数字信号处理芯片的CAP模块,检测爬坡度的角度传感器C3、加速踏板位置传感器C2、制动踏板位置传感器C1分别连接到模拟信号调理电路,模拟信号调理电路连接数字信号处理芯片的ADC模块,手动及自动挡的选择开关K1、行驶模式开关K2分别连接I/O输入调理电路,I/O输入调理电路连接数字信号处理芯片的I/O输入模块;数字信号处理芯片的PWMⅠ模块连接高速电磁换向阀驱动电路,高速电磁换向阀驱动电路连接高速电磁换向阀,数字信号处理芯片的PWMⅡ模块连接电机驱动电路,电机驱动电路连接双电机模块75,数字信号处理芯片的SCI模块连接显示器驱动电路,显示器驱动电路连接档位及故障显示器74,数字信号处理芯片连接CAN接口电路,通过CAN接口电路,数字信号处理芯片输出信号给其他微处理器。
请同时参考图4所示,所述的变速箱模块76包括定轴齿轮机构、行星齿轮机构、传动轴12、动力输出轴10及联动机构20;定轴传动机构包括一号齿轮3、二号齿轮4、三号齿轮5、五号齿轮14和六号齿轮16,行星齿轮机构包括行星齿轮8、行星架9和太阳轮18,联动机构主要包括四号齿轮15、齿圈17,同时三号离合器6和锁止器7连接在联动机构中,其中主电机1和辅电机2布置在系统的同侧,主电机1与一号齿轮3连接,一号齿轮3与一号离合器11主动盘连接,一号离合器11从动盘通过传动轴12和行星齿轮机构的太阳轮18连接,辅助电机2和二号离合器13主动盘连接,二号离合器13从动盘和六号齿轮16连接,五号齿轮14连接在传动轴12上,六号齿轮16和五号齿轮14相啮合;一号齿轮3与二号齿轮4相啮合,二号齿轮4通过固定传动轴19和三号齿轮5连接,三号齿轮5和四号齿轮15相啮合,四号齿轮15通过三号离合器6、锁止器7和齿圈17连接;锁止器7一端和变速箱壳连接,锁止器7另一端和齿圈17连接。
纯电动汽车双电机自动变速器控制系统的四种工作模式,主要的工作控制部件是一号离合器11、二号离合器13、三号离合器6及锁止器7,通过控制这些换挡执行机构可以实现四种驱动模式的切换,下面详细说明四种驱动模式。当一号离合器11和锁止器7处于结合状态,二号离合器13、三号离合器6分别处于分离状态,主电机1驱动一号离合器11主动盘,一号离合器11从动盘驱动带动输入轴12,输入轴带动太阳轮18,这时齿圈17固定,行星架9作为动力输出,此时为主电机驱动模式。当三号离合器6和一号离合器11分别处于分离状态,锁止器7和二号离合器13分别处于结合状态,辅电机2驱动二号离合器13主动盘,二号离合器13从动盘带动传动齿轮16,传动齿轮16和传动齿轮14啮合,传动齿轮14带动输入轴12,输入轴12带动太阳轮18,齿圈17固定,行星架9作为动力输出,此时为辅电机驱动模式。当三号离合器6处于分离状态,一号离合器11、锁止器7和二号离合器13分别处于结合状态,主电机1带动一号离合器11主动盘,一号离合器11从动盘带动输入轴12,辅电机2带动二号离合器13主动盘,二号离合器13从动盘带动齿轮16和传动齿轮14啮合,传动齿轮14带动输入轴12,输入轴12带动太阳轮18两电机转矩耦合共同作用于太阳轮18,齿圈17固定行星架9作为转矩耦合驱动动力输出。当一号离合器11和锁止器7分别处于分离状态,三号离合器6和二号离合器13处于分别处于结合状态,主电机1 带动一号齿轮3,一号齿轮3和二号齿轮4啮合,二号齿轮4通过固定轴19和三号齿轮5固联,三号齿轮5和四号齿轮15啮合,三号齿轮5通过联动机构带动齿圈17,辅电机2带动太阳轮18,通过行星齿轮机构,根据行星齿轮的特点行星架9作为转速耦合驱动输出。
为了简单明了理解四种驱动模式,将四种驱动模式列在下面表一中。
表一
本发明采用上述的纯电动汽车双电机自动变速器控制系统的控制方法,其步骤如下(请同时参考图5所示):
(一) 汽车上电,判断系统初始化是否成功,是直接进入下一步,否判断初始化是否超时,超时显示初始化失败,未超时则继续判断系统初始化是否成功;
(二) 读取传感器检测信号模块和开关选择信号模块的信号;
(三)判断是否为自动档,是直接进入下一步,否则进入手动档驾驶,后返回程序;
(四)判断车辆是否行驶中,是直接进入下一步,否则根据自动档起步控制策略起步,再进入下一步;
(五) 根据自动档换挡策略进行变速和变扭;
(六) 检测各模块电流电压是否正常,是返回程序,返回上述步骤(二),否则显示系统故障。
在上述步骤(四)中自动档起步控制时,坡道起步的控制方法包括以下步骤(请同时参考图6所示):
(a)车辆静止,读取制动踏板位置传感器的信号,判断有无制动信号,无直接进入下一步,有则继续返回重新读取制动踏板位置传感器的信号,再判断有无制动信号,直到没有制动信号;
(b)根据所读取角度传感器的角度值,当坡道i>15%为上坡,当角度方向相反时i>15%为下坡,当i的大小小于15%是定为平路标志,判断是否为上坡,是直接进入下一步,否则判断是否为下坡,是下坡则控制自动变速器于转矩耦合模式,转矩大小为0,转入下面步骤(f),不是下坡则定为平路标志,也转入下面步骤(f);
(c)当是上坡时,根据角度传感器采集到的信号信息判断坡度,然后结合车身自重计算出滚动阻力以及大概需要的扭矩:
(d)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合驱动模式;
(e)根据上步计算给出电机所需要的大概扭矩,然后判断转速n>=0,是直接进入下一步,否则控制单元发出控制信号给PWMⅡ模块适当增加电机转矩,再根据上步计算给出电机所需要的大概扭矩,然后继续判断转速n>=0,直到是;
(f)判断标定时间内有无加速踏板信号,有直接进入下一步,无则取消起步扭矩;
(g)根据加速踏板信号,给出相应的电机转矩指令。
在上述步骤(五)中进行变速和变扭的控制方法包括以下步骤(请同时参考图7所示):
(A)读取传感器检测信号模块和开关选择信号模块信号,判断是否需要变速或变扭,是直接进入下一步,否则继续本步骤;
(B)判断是否是转矩耦合驱动模式,是直接进入下一步,否则根据加速踏板开度以及变化、当前车速,以及让电机尽量工作在高效区的原则,判断是否需要单电机驱动模式,是则进入下面步骤(E), 否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制一号离合器和锁止器分别处于分离状态,三号离合器和二号离合器处于分别处于结合状态,双电机处于转速耦合驱动模式,后进入下面步骤(G);
(C)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合模式;
(D)控制单元根据加速踏板开度以及变化率、坡度,当前车速,向PWMⅡ模块发出信号,来控制双电机,从而实现电动汽车变速以及变扭,之后转到最后一步任务结束;
( E)判断是否需要主电机驱动,是直接进入下一步,否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器和一号离合器分别处于分离状态,锁止器和二号离合器分别处于结合状态,电动汽车处于辅电机驱动模式,后进入下面步骤(G);
(F)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制一号离合器和锁止器处于结合状态,二号离合器、三号离合器分别处于分离状态,电动汽车处于主电机驱动模式;
(G)控制单元根据加速踏板开度以及变化率,当前车速,向PWMⅡ模块发出信号,来控制电机,从而实现电动汽车变速以及变扭,任务结束。

Claims (5)

1.一种纯电动汽车双电机自动变速器控制系统,其特征在于,包括的控制单元(70)、传感器检测信号模块(71)、开关选择信号模块(72)、执行控制模块(73)、挡位及故障显示模块(74)、双电机模块(75)、变速箱模块(76),所述的传感器检测信号模块(71)包括分别与控制单元相连的制动踏板位置传感器C1、加速踏板位置传感器C2、检测爬坡度的角度传感器C3和车速传感器C4;所述的开关选择信号模块(72)包括分别与控制单元相连的手动及自动挡挡位的选择开关K1、行驶模式开关K2;所述的执行控制模块(73)包括相互连接的换挡执行机构、高速电磁换向阀,换挡执行机构与变速箱模块连接,高速电磁换向阀与控制单元双向连接,双电机模块的输入端与控制单元(70)连接,双电机模块(75)的输出端与变速箱模块(76)连接,变速箱模块(76)再与汽车的驱动桥连接,车速传感器C4还与汽车的驱动桥连接,所述的双电机模块(75)包括主电机(1)和辅电机(2),所述的换挡执行机构包括一号离合器(11)、二号离合器(13)、三号离合器(6)及锁止器(7);所述的变速箱模块(76)包括定轴齿轮机构、行星齿轮机构、传动轴(12)、动力输出轴(10)及联动机构(20);定轴传动机构包括一号齿轮(3)、二号齿轮(4)、三号齿轮(5)、五号齿轮(14)和六号齿轮(16),行星齿轮机构包括行星齿轮(8)、行星架(9)和太阳轮(18),联动机构主要包括四号齿轮(15)、齿圈(17),同时三号离合器(6)和锁止器(7)连接在联动机构中,其中主电机(1)和辅电机(2)布置在系统的同侧,主电机(1)与一号齿轮(3)连接,一号齿轮(3)与一号离合器(11)主动盘连接,一号离合器(11)从动盘通过传动轴(12)和行星齿轮机构的太阳轮(18)连接,辅助电机(2)和二号离合器(13)主动盘连接,二号离合器(13)从动盘和六号齿轮(16)连接,五号齿轮(14)连接在传动轴(12)上,六号齿轮(16)和五号齿轮(14)相啮合;一号齿轮(3)与二号齿轮(4)相啮合,二号齿轮(4)通过固定传动轴(19)和三号齿轮(5)连接,三号齿轮(5)和四号齿轮(15)相啮合,四号齿轮(15)通过三号离合器(6)、锁止器(7)和齿圈(17)连接;锁止器(7)一端和变速箱壳连接,锁止器(7)另一端和齿圈(17)连接。
2.如权利要求1所述的纯电动汽车双电机自动变速器控制系统,其特征在于,所述控制单元包括数字信号处理芯片和自带的CAP模块、ADC模块、I/O输入模块、PWMⅠ模块、PWMⅡ模块、SCI模块、电源电路、复位电路、程序储存空间和数据储存空间,以及外围的脉冲整形电路、模拟信号调理电路、I/O输入调理电路、高速电磁换向阀驱动电路、电机驱动电路、显示器驱动电路、CAN接口电路;其中车速传感器C4连接到脉冲整形电路,脉冲整形电路连接数字信号处理芯片的CAP模块,检测爬坡度的角度传感器C3、加速踏板位置传感器C2、制动踏板位置传感器C1分别连接到模拟信号调理电路,模拟信号调理电路连接数字信号处理芯片的ADC模块,手动及自动挡的选择开关K1、行驶模式开关K2分别连接I/O输入调理电路,I/O输入调理电路连接数字信号处理芯片的I/O输入模块;数字信号处理芯片的PWMⅠ模块连接高速电磁换向阀驱动电路,高速电磁换向阀驱动电路连接高速电磁换向阀,数字信号处理芯片的PWMⅡ模块连接电机驱动电路,电机驱动电路连接双电机模块,数字信号处理芯片的SCI模块连接显示器驱动电路,显示器驱动电路连接挡位及故障显示器(74),数字信号处理芯片连接CAN接口电路。
3.如权利要求2所述的纯电动汽车双电机自动变速器控制系统,其特征在于,所述的数字信号处理芯片为DSPTMS320F28335。
4.一种用于控制权利要求1所述的纯电动汽车双电机自动变速器控制系统的控制方法,其特征在于,其步骤如下:
(一) 汽车上电,判断系统初始化是否成功,是直接进入下一步,否判断初始化是否超时,超时显示初始化失败,未超时则继续判断系统初始化是否成功;
(二) 读取传感器检测信号模块和开关选择信号模块的信号;
(三)判断是否为自动挡,是直接进入下一步,否则进入手动挡驾驶,后返回程序;
(四)判断车辆是否行驶中,是直接进入下一步,否则根据自动挡起步控制策略起步,再进入下一步;
(五) 根据自动挡换挡策略进行变速和变扭;
(六) 检测各模块电流电压是否正常,是返回程序,返回上述步骤(二),否则显示系统故障;
在步骤(四)中自动挡起步控制时,坡道起步的控制方法包括以下步骤:
(a)车辆静止,读取制动踏板位置传感器的信号,判断有无制动信号,无直接进入下一步,有则继续返回读取制动踏板位置传感器的信号;
(b)根据所读取角度传感器的角度值,当坡道i>15%为上坡,当角度方向相反时i>15%为下坡,当i的大小小于15%是定为平路标志,判断是否为上坡,是直接进入下一步,否则判断是否为下坡,是下坡则控制自动变速器于转矩耦合模式,转矩大小为0,转入下面步骤(f),不是下坡则定为平路标志,也转入下面步骤(f);
(c)根据角度传感器采集到的信号信息判断坡度,然后结合车身自重计算出滚动阻力以及大概需要的扭矩:
(d)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合驱动模式;
(e)根据上步计算给出电机所需要的大概扭矩,然后判断转速n>=0,是直接进入下一步,否则控制单元发出控制信号给PWMⅡ模块适当增加电机转矩,再根据上步计算给出电机所需要的大概扭矩,然后继续判断转速n>=0;
(f)判断标定时间内有无加速踏板信号,有直接进入下一步,无则取消起步扭矩;
(g)根据加速踏板信号,给出相应的电机转矩指令。
5.如权利要求4所述的纯电动汽车双电机自动变速器控制系统的控制方法,其特征在于,在步骤(五)中进行变速和变扭的控制方法包括以下步骤:
(A)读取传感器检测信号模块和开关选择信号模块信号,判断是否需要变速或变扭,是直接进入下一步,否则继续本步骤;
(B)判断是否是转矩耦合驱动模式,是直接进入下一步,否则根据加速踏板开度以及变化、当前车速,以及让电机尽量工作在高效区的原则,判断是否需要单电机驱动模式,是则进入下面步骤(E), 否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制一号离合器和锁止器分别处于分离状态,三号离合器和二号离合器处于分别处于结合状态,双电机处于转速耦合驱动模式,后进入下面步骤(G);
(C)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器处于分离状态,一号离合器、锁止器和二号离合器分别处于结合状态,双电机处于转矩耦合模式;
(D)控制单元根据加速踏板开度以及变化率、坡度,当前车速,向PWMⅡ模块发出信号,来控制双电机,从而实现电动汽车变速以及变扭,之后转到最后一步任务结束;
(E)判断是否需要主电机驱动,是直接进入下一步,否则控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制液压油,来控制三号离合器和一号离合器分别处于分离状态,锁止器和二号离合器分别处于结合状态,电动汽车处于辅电机驱动模式,后进入下面步骤(G);
(F)控制单元发出控制信号,给高速电磁换向阀,高速电磁换向阀通过控制一号离合器和锁止器处于结合状态,二号离合器、三号离合器分别处于分离状态,电动汽车处于主电机驱动模式;
(G)控制单元根据加速踏板开度以及变化率,当前车速,向PWMⅡ模块发出信号,来控制电机,从而实现电动汽车变速以及变扭,任务结束。
CN201610682328.5A 2016-08-17 2016-08-17 纯电动汽车双电机自动变速器控制系统及其控制方法 Active CN106051138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610682328.5A CN106051138B (zh) 2016-08-17 2016-08-17 纯电动汽车双电机自动变速器控制系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610682328.5A CN106051138B (zh) 2016-08-17 2016-08-17 纯电动汽车双电机自动变速器控制系统及其控制方法

Publications (2)

Publication Number Publication Date
CN106051138A CN106051138A (zh) 2016-10-26
CN106051138B true CN106051138B (zh) 2017-12-26

Family

ID=57194665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610682328.5A Active CN106051138B (zh) 2016-08-17 2016-08-17 纯电动汽车双电机自动变速器控制系统及其控制方法

Country Status (1)

Country Link
CN (1) CN106051138B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575568B (zh) * 2017-10-19 2023-01-03 山东时风(集团)有限责任公司 电动汽车双速自动变速器电子控制单元及控制策略
CN109927530B (zh) * 2017-12-19 2024-06-21 宇通客车股份有限公司 一种纯电动双电机单行星排驱动系统和一种纯电动车辆
CN108146292B (zh) * 2017-12-22 2019-11-05 珠海广通汽车有限公司 电动汽车起步方法及电动汽车
CN108223731A (zh) * 2018-02-28 2018-06-29 广西科技大学 一种伸缩杆
CN114705416A (zh) * 2022-04-02 2022-07-05 潍柴动力股份有限公司 双电机耦合变速器的故障检测方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180103A (zh) * 2011-03-30 2011-09-14 北京理工华创电动车技术有限公司 一种电动车驱动系统
CN103122992A (zh) * 2013-02-16 2013-05-29 河南速达电动汽车科技有限公司 一种电动汽车自动换挡变速驱动系统
CN103171432A (zh) * 2013-04-07 2013-06-26 北京理工大学 一种双电机多模式耦合驱动结构
CN104477021A (zh) * 2015-01-14 2015-04-01 北京理工大学 一种双电机多模式转速耦合驱动总成
CN104534081A (zh) * 2014-12-17 2015-04-22 遵义天义利威机电有限责任公司 一种电动车线控换挡控制系统及其控制方法
CN204547733U (zh) * 2015-03-07 2015-08-12 合肥工业大学 单驱动电机的插电式混合动力汽车的两挡变速驱动系统
CN206054710U (zh) * 2016-08-17 2017-03-29 广西科技大学 纯电动汽车双电机自动变速器控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979365A (ja) * 1995-09-08 1997-03-25 Toyota Motor Corp 車両用自動変速機の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180103A (zh) * 2011-03-30 2011-09-14 北京理工华创电动车技术有限公司 一种电动车驱动系统
CN103122992A (zh) * 2013-02-16 2013-05-29 河南速达电动汽车科技有限公司 一种电动汽车自动换挡变速驱动系统
CN103171432A (zh) * 2013-04-07 2013-06-26 北京理工大学 一种双电机多模式耦合驱动结构
CN104534081A (zh) * 2014-12-17 2015-04-22 遵义天义利威机电有限责任公司 一种电动车线控换挡控制系统及其控制方法
CN104477021A (zh) * 2015-01-14 2015-04-01 北京理工大学 一种双电机多模式转速耦合驱动总成
CN204547733U (zh) * 2015-03-07 2015-08-12 合肥工业大学 单驱动电机的插电式混合动力汽车的两挡变速驱动系统
CN206054710U (zh) * 2016-08-17 2017-03-29 广西科技大学 纯电动汽车双电机自动变速器控制系统

Also Published As

Publication number Publication date
CN106051138A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106051138B (zh) 纯电动汽车双电机自动变速器控制系统及其控制方法
CN206054710U (zh) 纯电动汽车双电机自动变速器控制系统
US7226379B2 (en) Active shift transmission, transmission control unit and automobile
CN101817307B (zh) 一种电动汽车的动力总成
CN1329677C (zh) 混合电动汽车的双离合器变速装置和操作该装置的方法
CN1040083C (zh) 换档控制方法和换档控制系统
CN101983150B (zh) 混合动力装置
EP2762753A1 (en) Transmission control device for automatic transmission
CN104802790A (zh) 集成变速箱控制功能的新能源整车控制器
CN201980080U (zh) 电动车动力总成
US20070275808A1 (en) Hybrid drive device
CN103079872A (zh) 电动车辆用驱动装置
CN101082377B (zh) 自动变速器
CN103079873A (zh) 电动车辆用驱动装置
JPS58118357A (ja) 複合クラツチ式多段歯車変速機の変速制御方法および変速制御装置
CN112693298A (zh) 一种双电机可分离2挡amt电驱桥总成控制系统及方法
MX2013012475A (es) Dispositivo de control de cambio para transmision automatica.
CN104776201B (zh) 一种电动车用三挡驱动装置及其换挡控制方法
CN103386967B (zh) 用于自动变速器的控制方法及动力系统
CN102310852B (zh) 一种车用双离合器动力藕合同步器的换档控制方法及装置
JP6663095B2 (ja) 車両用自動変速機
CN1755163A (zh) 传动系变速选择和控制
JP2003335152A (ja) ハイブリッド自動車の変速制御方法及び変速制御装置
CN206112044U (zh) 一种电动汽车变速器
CN102862475A (zh) 一种电动汽车变速器及其变速方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant