CN106048530A - 一种透明导电氧化物薄膜及其制备方法 - Google Patents

一种透明导电氧化物薄膜及其制备方法 Download PDF

Info

Publication number
CN106048530A
CN106048530A CN201610573667.XA CN201610573667A CN106048530A CN 106048530 A CN106048530 A CN 106048530A CN 201610573667 A CN201610573667 A CN 201610573667A CN 106048530 A CN106048530 A CN 106048530A
Authority
CN
China
Prior art keywords
film
oxide film
transparent conductive
conductive oxide
tco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610573667.XA
Other languages
English (en)
Inventor
刘生忠
肖锋伟
訾威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201610573667.XA priority Critical patent/CN106048530A/zh
Publication of CN106048530A publication Critical patent/CN106048530A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明一种透明导电氧化物薄膜及其制备方法,加热温度低,操作简单,成本低廉,易于实现。所述的方法是在柔性绝缘衬底上制备透明导电氧化物薄膜时或已经制备得到透明导电氧化物薄膜后,将厚度为纳米级到毫米级的TCO膜或其预制膜置在电磁辐射中进行处理以提高电导和/或透光性能。本发明利用电磁辐射加热优化透明导电氧化物薄膜质量的方法通过电磁辐射选择性加热TCO薄膜(合金膜或导电氧化物薄膜)。利用电磁辐射辐射的高频变化的电磁场诱导导电薄膜中的电子随电磁场高频运动,从而使导电薄膜本身瞬间发热。而作为基片的复合材料,不导电,不会被显著加热。从而能够在低温下对不耐高温的衬底材料上的TCO薄膜进行热处理。

Description

一种透明导电氧化物薄膜及其制备方法
技术领域
本发明涉及柔性导电材料技术领域,具体为一种透明导电氧化物薄膜及其制备方法。
背景技术
随着信息技术和光电产品的飞跃发展,柔性导电材料越来越受到人们的重视与关注,在许多领域具有广阔的应用前景,如光伏电池,显示屏等等。现有TCO镀膜技术都是利用热蒸发、电子束蒸发、真空溅射、化学气相沉积、喷涂等方法,这些方法要想得到高透过率、高导电率的TCO膜就必须对衬底基片加不小于200℃的温度,而这么高的温度使PET类的复合材料很难使用,或即使在低温下能镀成TCO薄膜,膜的电学或光学特性达不到技术使用要求。因此,PET塑料耐温性差,这制约了其在柔性太阳电池、柔性显示领域的应用。如何在低温条件下制备具有良好光电特性优异的TCO电极成了关键。衬底材料(一般为高分子材料)不能加很高的温度(一般小于150℃),然而TCO材料在制备过程中,需要加热温度高于300℃,这就造成低温下制备的TCO材料性能很差。
发明内容
针对现有技术中存在的问题,本发明提供一种透明导电氧化物薄膜及其制备方法,加热温度低,操作简单,成本低廉,易于实现。
本发明是通过以下技术方案来实现:
一种透明导电氧化物薄膜的制备方法,在柔性绝缘衬底上制备透明导电氧化物薄膜时或已经制备得到透明导电氧化物薄膜后,将厚度为纳米级到毫米级的TCO膜或其预制膜置在电磁辐射中进行处理以提高电导和/或透光性能。
优选的,电磁辐射的频率为100MHz-300GHz。
进一步,电磁辐射的频率为1-10GHz。
再进一步,电磁辐射的频率为2-3GHz。
优选的,电磁辐射的波长为1-3000mm。
优选的,TCO预制膜采用金属合金薄膜和金属氧化物薄膜,TCO膜或其预制膜的厚度在不小于1纳米。
优选的,加热处理时在氧气、空气、氮气或氩气的气氛中或真空中进行。
优选的,柔性衬底采用玻璃、高分子材料或金属箔。
优选的,透明导电氧化物薄膜采用掺杂的氧化铟、掺杂的氧化锡和掺杂的氧化锌的一种或多种的混合物、合金或叠层薄膜;透明导电氧化物薄膜制备时采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的镀膜方式。
一种由以上任意一种方法制备得到的透明导电氧化物薄膜。
与现有技术相比,本发明具有以下有益的技术效果:
本发明利用电磁辐射加热优化透明导电氧化物薄膜质量的方法通过电磁辐射选择性加热TCO薄膜(合金膜或导电氧化物薄膜)。利用电磁辐射辐射的高频变化的电磁场诱导导电薄膜中的电子随电磁场高频运动,从而使导电薄膜本身瞬间发热。而作为基片的复合材料,不导电,不会被显著加热。从而能够在低温下对不耐高温的衬底材料上的TCO薄膜进行热处理,该方法不但解决了在低温下制备柔性材料上的TCO这一难题,而且也是一种快速加热处理导电薄膜的好方法,可以广泛应用于柔性显示领域及光伏领域。
附图说明
图1为本发明在镀膜过程中进行电磁辐射热处理的操作示意图。
图2为本发明在镀膜过程后进行电磁辐射热处理的操作示意图。
图中:1电磁辐射源,2电磁辐射窗口,3电磁辐射,4真空或某种体气气氛,5沉积有导电膜的柔性材料卷,6主动滚轮,7从动滚轮,8导电薄膜沉积过程。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明利用电磁辐射加热优化透明导电氧化物薄膜质量的方法为:首先在绝缘体衬底上制备TCO薄膜(该预制TCO膜的要求是必须导电);将制备的TCO薄膜置于电磁辐射场中对其加热处理,热处理过程是在有利于优化TCO膜的气氛中或真空中进行,如氧气、空气、氮气或氩气等,使其导电、透光性能得到提升,得到优化的透明导电氧化物薄膜。其中在绝缘体衬底上制备透明导电氧化物薄膜是采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的方式。本发明所使用的电磁辐射波频率在10MHz至300GHz之间。薄膜制备和热处理使用卷到卷技术。
其中,TCO薄膜采用掺杂的氧化铟、掺杂的氧化锡和掺杂的氧化锌中的一种或多种的混合物、合金或叠层薄膜。柔性绝缘体衬底采用玻璃、高分子材料或金属箔;其中高分子材料优选的采用PET、聚酰胺、聚碳酸酯或聚乙烯。本发明中预制膜类型包括:目的是用于制备TCO(透明导电氧化物)薄膜的各类氧化物膜以及合金薄膜。导电薄膜沉积过程可以为蒸发镀膜过程、溅射镀膜过程、化学气相沉积镀膜过程、等薄膜沉积过程。
实施例1
用磁控溅射的方法将ITO沉积在PET复合材料卷上,按图1所示装置对预制过程中的ITO薄膜进行处理,按照以下进行:
1、用磁控溅射设备制备ITO薄膜,溅射条件:
2、PET复合材料卷,厚度:0.125mm;宽度:150mm;长度:300m。
3、电磁辐射波发生器,频率:2.5GHz,功率30瓦。
4、卷传动速度为1米/秒,ITO薄膜表面温度达到230℃(激光测温计测量)。卷传动速度决定了ITO薄膜可以达到的温度,最终决定处理后薄膜的透过率及电阻率。
5、处理后的结果,
1)透过率:处理前80%,处理后89%;
2)电阻率:处理前6.7×10-4Ω·cm,处理后2.6×10-4Ω·cm。
实施例2
用电子束蒸镀法将AZO沉积在白玻璃衬底上,按图2所示装置对预制好的AZO薄膜进行处理,按照以下进行:
1.用中科北仪ZZSX-500电子束蒸发设备蒸镀AZO膜,蒸发条件:
2.白玻璃衬底,厚度:0.9mm;宽度:100mm;长度:100mm。
3.电磁辐射波发生器:频率:2GHz。功率20瓦。
4.处理时间:20秒,AZO膜表面温度达到315℃(激光测温计测量)。
5.处理后的结果:
1)透过率:处理前87%,处理后91%;
2)电阻率:处理前1.87×10-3Ω·cm,处理后8.2×10-4Ω·cm。
实施例3
用电子束蒸镀法将ITO沉积在PET衬底上,按图1所示装置对预制好的ITO薄膜进行处理。按照以下进行:
1.用中科北仪ZZSX-500电子束蒸发设备蒸镀ITO膜,蒸发条件:
2.PET衬底,厚度:0.125mm;宽度:150mm;长度:150mm。
3.电磁辐射波发生器:频率:3GHz。功率30瓦
4.处理时间:20秒,ITO膜表面温度达到273℃(激光测温计测量)。
5.处理后的结果:
1)透过率:处理前79%,处理后90%;
2)电阻率:处理前4.9×10-4Ω·cm,处理后3.7×10-4Ω·cm。
实施例4
采用的频率为100MHz电磁辐射对ITO膜进行热处理,处理后的透过率达到90%以上,电阻率下降。
实施例5
采用的频率为1GHz电磁辐射对ITO膜进行热处理,处理后的透过率达到90%以上,电阻率下降。
实施例6
采用的频率为10GHz电磁辐射对ITO膜进行热处理,处理后的透过率达到90%以上,电阻率下降。
实施例7
采用的频率为300GHz电磁辐射对ITO膜进行热处理,处理后的透过率达到90%以上,电阻率下降。
由于TCO薄膜一般只有100纳米左右,根据电磁辐射有效作用TCO薄膜深度的决定因素之一,就是电磁辐射的频率。并且TCO薄膜越薄需要的频率越高。因此,只有选用很高频率的电磁辐射才能对很薄的TCO薄膜进行有效加热。本发明选用频率为100MHz–300GHz电磁辐射波段的电磁辐射,对厚度在纳米级到微米级的TCO薄膜进行有效加热,并取得了很好的加热效果。

Claims (10)

1.一种透明导电氧化物薄膜的制备方法,其特征在于,在柔性绝缘衬底上制备透明导电氧化物薄膜时或已经制备得到透明导电氧化物薄膜后,将厚度为纳米级到毫米级的TCO膜或其预制膜置在电磁辐射中进行处理以提高电导和/或透光性能。
2.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,电磁辐射的频率为100MHz-300GHz。
3.根据权利要求2所述的一种透明导电氧化物薄膜的制备方法,其特征在于,电磁辐射的频率为1-10GHz。
4.根据权利要求3所述的一种透明导电氧化物薄膜的制备方法,其特征在于,电磁辐射的频率为2-3GHz。
5.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,电磁辐射的波长为1-3000mm。
6.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,TCO预制膜采用金属合金薄膜和金属氧化物薄膜,TCO膜或其预制膜的厚度在不小于1纳米。
7.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,加热处理时在氧气、空气、氮气或氩气的气氛中或真空中进行。
8.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,柔性衬底采用玻璃、高分子材料或金属箔。
9.根据权利要求1所述的一种透明导电氧化物薄膜的制备方法,其特征在于,透明导电氧化物薄膜采用掺杂的氧化铟、掺杂的氧化锡和掺杂的氧化锌的一种或多种的混合物、合金或叠层薄膜;透明导电氧化物薄膜制备时采用热蒸发、电子束蒸发、真空溅射、化学气相沉积或喷涂的镀膜方式。
10.一种由权利要求1-9中任意一项制备得到的透明导电氧化物薄膜。
CN201610573667.XA 2016-07-20 2016-07-20 一种透明导电氧化物薄膜及其制备方法 Pending CN106048530A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610573667.XA CN106048530A (zh) 2016-07-20 2016-07-20 一种透明导电氧化物薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610573667.XA CN106048530A (zh) 2016-07-20 2016-07-20 一种透明导电氧化物薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106048530A true CN106048530A (zh) 2016-10-26

Family

ID=57188547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610573667.XA Pending CN106048530A (zh) 2016-07-20 2016-07-20 一种透明导电氧化物薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106048530A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523792A (zh) * 2017-09-28 2017-12-29 苏州诺耀光电科技有限公司 一种真空溅射镀膜装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824649A (zh) * 2014-01-25 2014-05-28 陕西师范大学 一种利用电磁加热优化透明导电氧化物薄膜质量的方法
CN104766675A (zh) * 2015-03-11 2015-07-08 中山大学 微波在制备透明导电薄膜中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824649A (zh) * 2014-01-25 2014-05-28 陕西师范大学 一种利用电磁加热优化透明导电氧化物薄膜质量的方法
CN104766675A (zh) * 2015-03-11 2015-07-08 中山大学 微波在制备透明导电薄膜中的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523792A (zh) * 2017-09-28 2017-12-29 苏州诺耀光电科技有限公司 一种真空溅射镀膜装置

Similar Documents

Publication Publication Date Title
Hu et al. Infrared transparent carbon nanotube thin films
JP5404915B2 (ja) 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス
CN106756840A (zh) 一种耐高温柔性透明导电薄膜及其制备方法与应用
CN103993288B (zh) 一种透明导电FTO/Ag/FTO复合薄膜的制备方法
Muneshwar et al. Development of low temperature RF magnetron sputtered ITO films on flexible substrate
CN101294272A (zh) 柔性衬底上室温溅射沉积氧化铟锡透明导电薄膜的方法
Figueira et al. Optimization of cuprous oxides thin films to be used as thermoelectric touch detectors
Kim et al. Design of transparent multilayer film antenna for wireless communication
Li et al. High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure
Lee et al. Effect of AlOx protection layer on AgNWs for flexible transparent heater
CN103824649B (zh) 一种利用电磁加热优化透明导电氧化物薄膜质量的方法
Kang et al. Highly flexible, hydrophobic, and large area plasma‐polymer‐fluorocarbon/Cu/SiNx transparent thin film heater and thermotherapy pad application
CN106048530A (zh) 一种透明导电氧化物薄膜及其制备方法
Zhu et al. Highly transparent conductive F-doped SnO2 films prepared on polymer substrate by radio frequency reactive magnetron sputtering
Heinß et al. High-rate deposition of thick aluminum coatings on plastic parts for electromagnetic shielding
Eltresy et al. AgITO for high‐performance semi‐transparent wideband antenna applications
Lin et al. The optical and electrical properties of F doped ZnO thin film by different post-annealing temperatures
Kumar et al. Thermally stable indium-free transparent electrode using ultrathin Ag film
Kim et al. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells
Chițanu The influence of deposition parameters on structural, optical and electrical properties of AZO thin film
Strümpfel et al. Low ohm large area ITO coating by reactive magnetron sputtering in DC and MF mode
Singh et al. Indium Tin Oxide (ITO) films on flexible substrates for organic light emitting diodes
CN106868470A (zh) 一种利用原子层沉积技术通过置换反应制备透明铜薄膜导电电极的方法
Wen et al. Improved electrical and optical properties of ultra-thin tin doped indium oxide (ITO) thin films by a 3-dimensionally confined magnetron sputtering source
CN104099565B (zh) 一种氧化镍压控薄膜变容管的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026

RJ01 Rejection of invention patent application after publication