CN106033025B - 一种刀具磨损监测方法及系统 - Google Patents

一种刀具磨损监测方法及系统 Download PDF

Info

Publication number
CN106033025B
CN106033025B CN201510105515.2A CN201510105515A CN106033025B CN 106033025 B CN106033025 B CN 106033025B CN 201510105515 A CN201510105515 A CN 201510105515A CN 106033025 B CN106033025 B CN 106033025B
Authority
CN
China
Prior art keywords
profile
processing groove
actual measurement
doc
cutting depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510105515.2A
Other languages
English (en)
Other versions
CN106033025A (zh
Inventor
陈增源
李荣彬
李莉华
王孝忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Polytechnic University HKPU
Original Assignee
Hong Kong Polytechnic University HKPU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong Polytechnic University HKPU filed Critical Hong Kong Polytechnic University HKPU
Priority to CN201510105515.2A priority Critical patent/CN106033025B/zh
Publication of CN106033025A publication Critical patent/CN106033025A/zh
Application granted granted Critical
Publication of CN106033025B publication Critical patent/CN106033025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种刀具磨损监测方法及系统,所述方法包括以下步骤:使用刀具在加工样品的加工面上纵切,以形成加工槽;刀具为带有圆刀鼻的单点钻石刀具;获取加工槽的每一个绘图节点的坐标;并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓;并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;测量每一个2D轮廓的实测切削深度DoCM;并分别计算得到每一个2D轮廓所围的实测面积SM;根据多个2D轮廓的实测面积和实测切削深度,绘制DoCM的回归直线,并绘制该回归直线的置信区间;判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限;更换该刀具。本发明的刀具磨损监测方法实用性强和自动化程度高。

Description

一种刀具磨损监测方法及系统
技术领域
本发明涉及刀具磨损监测领域,尤其涉及一种刀具磨损监测方法及系统。
背景技术
为了使用单点钻石刀具来制造微透镜阵列(如复眼等),在没有将单点钻石刀具从刀架上移走时,单点钻石刀具的磨损以及使用寿命需要保持监测。这是因为在通过单点钻石刀具纵切加工槽时,单点钻石刀具是保持与加工槽的配合状态;若单点钻石刀具离开加工槽时,加工槽会发生回弹。而单点钻石刀具的磨损和使用寿命在单点钻石刀具被使用时是很难实时监测的。
发明内容
本发明针对现有的单点钻石刀具的磨损和使用寿命在单点钻石刀具被使用时是很难实时监测的问题,提出了一种刀具磨损监测方法及系统。
本发明就上述技术问题提出以下技术方案:
本发明提出了一种刀具磨损监测方法,包括以下步骤:
步骤S1、使用刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
步骤S2、获取加工槽的每一个绘图节点的坐标;并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓;并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
步骤S3、测量每一个2D轮廓的实测切削深度DoCM;并分别计算得到每一个2D轮廓所围的实测面积SM
步骤S4、根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
步骤S5、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限。
本发明上述的刀具磨损监测方法中,所述步骤S3还包括测量每一个2D轮廓的实测弦长AWM的步骤;
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为 m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标, ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标。
本发明上述的刀具磨损监测方法中,所述步骤S4还包括获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1 的2D轮廓的实测面积
本发明上述的刀具磨损监测方法中,步骤S4还包括获取自由度为(n-2)时的置信区间的T值t的步骤,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值。
本发明上述的刀具磨损监测方法中,置信区间的置信度α采用0.01。
本发明提出了一种刀具磨损监测系统,包括:
驱动模块、用于使刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
扫描模块、用于获取加工槽的每一个绘图节点的坐标,并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓,并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
测量模块、用于测量每一个2D轮廓的实测切削深度DoCM,并分别计算得到每一个2D轮廓所围的实测面积SM
计算模块、用于根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
判断模块、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限。
本发明上述的刀具磨损监测系统中,所述测量模块还用于测量每一个2D轮廓的实测弦长AWM
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为 m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标, ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标。
本发明上述的刀具磨损监测系统中,所述计算模块还用于获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1 的2D轮廓的实测面积
本发明上述的刀具磨损监测系统中,计算模块还用于获取自由度为(n-2)时的置信区间的T值t,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值。
本发明上述的刀具磨损监测系统中,置信区间的置信度α采用0.01。
本发明的刀具磨损监测方法就是通过实测刀鼻半径的离散来判断单点钻石刀具什么时候需要被更换。本发明的刀具磨损监测方法能够做到对单点钻石刀具的磨损和使用寿命做到实时监测,实用性强和自动化程度高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为加工样品的加工槽的横截面的示意图;
图2为加工槽的横截面的面积和凹线长度的计算示意图;
图3为本发明的加工样品的加工槽的加工示意图;
图4为通过移相干涉测量模式测量加工槽的尺寸的示意图;
图5为由PSI模式测量的加工槽的3D轮廓的示意图;
图6为从加工槽的3D轮廓中选出的加工槽的横截面的2D轮廓的示意图;
图7为非接触式光学分析系统的计算过程的流程图;
图8为和DoCM的关系的示意图;
图9为当实测切削深度DoCM与实测刀鼻半径RM的比例在1000到5000之间时的放大1000倍的2D轮廓的第一示意图;
图10为当实测切削深度DoCM与实测刀鼻半径RM的比例在1000到5000之间时的放大1000倍的2D轮廓的第二示意图;
图11为当实测切削深度DoCM与实测刀鼻半径RM的比例在1000到5000之间时的放大1000倍的2D轮廓的第三示意图;
图12为当实测切削深度DoCM与实测刀鼻半径RM的比例在1000到5000之间时的放大1000倍的2D轮廓的第四示意图;
图13为加工槽的实测切削深度DoCM为0.03235μm时的2D轮廓的示意图;
图14为加工槽的实测切削深度DoCM为0.1μm时的2D轮廓的示意图;
图15为加工槽的实测切削深度DoCM为0.2μm时的2D轮廓的示意图;
图16为加工槽的实测切削深度DoCM为0.3μm时的2D轮廓的示意图;
图17为加工槽的实测切削深度DoCM为0.4μm时的2D轮廓的示意图;
图18为加工槽的实测切削深度DoCM为0.5μm时的2D轮廓的示意图;
图19为当加工槽的实测切削深度DoCM为1μm时实测刀鼻半径RM的变化示意图;
图20为当加工槽的实测切削深度DoCM处于0.75μm与1.5μm时时实测刀鼻半径RM的一个变化示意图;
图21为当加工槽的实测切削深度DoCM处于0.75μm与1.5μm时时实测刀鼻半径RM的另一个变化示意图;
图22为加工槽的40个2D轮廓的集合图;
图23为当加工槽的实测切削深度DoCM超过1.5μm时,单点钻石刀具的划动方向和加工样品的加工面的微动损伤会发生回弹的示意图。
具体实施方式
本发明提出了一种测量刀具的刀鼻半径(Tool Nose Radius)的方法。这样,通过比较刀具的初始刀鼻半径和实测刀鼻半径,就可以监测刀具的刀具磨损(Tool Wear)。
刀具的刀鼻半径的计算模型
本发明的技术原理是:通过测量加工样品的加工槽的切削深度(Depth of Cut)和弦长,来计算得到刀具的刀鼻半径。这里,加工槽是由刀具切削而成。
具体地,刀具为带有圆刀鼻的单点钻石刀具(Single Point Diamond Tool);本发明的刀鼻半径的测量方法是基于采用单点钻石刀具所完成的纵切试验实现的。
参照图1,图1示出了加工样品的加工槽的横截面的示意图。
如图1所示,区域BCED为加工样品的加工槽的横截面;弧BDE为加工槽的横截面的凹线;线OB为单点钻石刀具的刀鼻半径;∠BOE=θ;点Dr为在切削前加工槽的预设最低点;点D为在切削后加工槽的最低点;
这样,预设切削深度为DrC,实测切削深度为DC。
参照图2,图2为加工槽的横截面的面积和凹线长度的计算示意图。图2所示的参数的定义如表1所示。
表1
根据平面几何知识,加工槽的横截面BCED的理论面积ST为:
根据微积分知识,加工槽的横截面BCED的实测面积SM等于矩形BFME的面积减去异形BFMED的面积,即:
这里,n1为加工槽的凹线BDE上的点的总编号;m为从1到n1中任意一个编号;xm为加工槽的凹线BDE上的编号为m的点的x轴坐标,ym为加工槽的凹线BDE上的编号为 m的点的y轴坐标。
DoCM为加工槽的实测切削深度;AWM为加工槽的实测弦长;
进一步地,根据平面几何知识,加工槽的凹线BDE的理论弧长ALT为:
ALT=Rθ (3)
而根据微积分知识,加工槽的凹线BDE的实测弧长ALM为:
这里,这里,x和y分别表示加工槽的凹线BDE上点的x坐标和y坐标;n1为加工槽的凹线BDE上的点的总编号;m为从1到n1中任意一个编号;
进一步地,根据平面几何知识,加工槽的理论切削深度DoCT为:
加工槽的实测切削深度DoCM为:
DoCM=CD=yC-yD (6)
根据平面几何知识,加工槽的理论弦长AWT为:
加工槽的实测弦长AWM为:
AWM=BE=xB-xE (8)
在式(1)-(8)中,SM、ALM、DoCM以及AWM都可以通过实际测量得到。
如果我们假设ST=SM,DoCT=DoCM,则根据式(1)和(5),有:
纵切试验
本发明采用四轴联动数控超精密机床(Four-axis CNC Ultra-precisionMachine,由美国的穆尔纳米技术公司生产,型号为Nanotech 350FG),参照图3,图3示出了本发明的加工样品的加工槽的加工示意图。其中,加工样品被固定在固定装置的侧面上,这里,固定装置呈柱状。然后,采用四轴联动数控超精密机床控制单点钻石刀具对加工样品进行纵切,从而在加工样品上开设加工槽。伴随着单点钻石刀具对加工样品的加工,加工槽的实测切削深度从0慢慢增大到2μm,而单点钻石刀具偏离竖直方向的角度始终保持0.01°。在本试验中,加工样品的材料选用6061铝合金,其尺寸为10mm×3mm×3mm。
在进行纵切试验之前,加工样品的加工面朝着四轴联动数控超精密机床放平。纵切试验的参数见表2所示。具体地,单点钻石刀具的真实刀鼻半径为2.48mm,润滑油为普通的机油。在进行纵切试验之前,单点钻石刀具放置在加工样品下方5mm处,并且,单点钻石刀具与刀工样品的加工面的垂直距离为-3μm。如图3所示,在进行纵切试验时,单点钻石刀具以600mm/min的进刀速度沿z轴方向走刀15mm,同时沿y轴方向走刀3μm。这样,通过上述进刀方式,在加工样品上,一个切削深度从0到2μm变化、延伸长度为10mm的加工槽就加工完成。
表2
在完成纵切试验后,加工槽的尺寸会通过非接触式光学分析系统(Non-contactOptical Profiling System,Wyko NT8000)来测量;在测量时,光学分析系统会对加工槽的形貌放大 20倍。
加工槽的具体测量参数被列于表3中;其中,20×光学透镜采用0.4的数值孔径,4.7mm 的焦距以及0.75μm的光学分辨率。
表3
为了分析加工槽尺寸的测量结果,本发明采用移相干涉测量(Phase ShiftingInterferometry,简称PSI)模式来测量加工槽的尺寸,而加工槽的尺寸的测量精度达到1nm,如图4所示。
然后,通过采用非接触式光学分析系统的直接递送媒体(Through TransmissiveMedia, TTM)模式,由PSI模式测量的加工槽的每个点的3D数据将组合成一个完整的3D轮廓。该3D轮廓的分辨率大概为660×22000(pixels),抽样长度大概为480nm,如图5所示。
最后,如图6所示,加工槽的横截面的2D轮廓能够从加工槽的3D轮廓中选出来,为进一步的数据分析做准备。这里,加工槽的2D轮廓总共有40个。
在图6中,加工槽的实测切削深度DoCM等于加工槽y值的最大值与最小值之差,即式(6);加工槽的实测弦长AWM等于图2所示的线BE的长度,即式(8);加工槽的横截面的实测面积SM由式(2)算出;加工槽的凹线的实测弧长ALM由式(4)算出;这样,根据式(2)、(4)、(6)和(8),SM、ALM、DoCM以及AWM都能通过非接触式光学分析系统计算得到。
图7示出了非接触式光学分析系统的计算过程的流程图。
在该流程图中,首先根据式(10)-(13)以及输入参数x0i=DoCM和y0i=SM计算得到。这里,n为[x0i,y0i]的数据组数,也即2D轮廓的个数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
然后根据式(14)和(15)计算a,b;在式子(14)和(15)中,t为置信因子,能够根据置信度α(这里,α=0.01,可以理解,置信度α可以根据加工样品材料的不同而进行确定,还可以采用0.05或者其他值)和n(自由度加上2),按照t分布表查找出。
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0(i+1)为编号为i+1 的2D轮廓的实测面积
这里,b为回归直线的斜率,而a为回归直线在y轴上的截距。因此,回归直线能用式(16)表示:
y1=a+bx1 (16)
线性回归的残差标准偏差P1通过式(17)计算得到:
然后,置信界限P2和预测界限P3的参数根据式(18)和(19)计算得到:
这样,置信界限直线和预测界限直线便可以通过式(20)和(21)表示:
y2=y1±t×P2 (20)
y3=y1±t×P3 (21)
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值。
非接触式光学分析系统的主要用于找到符合的回归直线,并计算置信界限和预测界限。在非接触式光学分析系统的输出结果中,40组的2D轮廓的数据及其回归直线都被绘制出来。并且,99%的置信界限直线和99%预测界限直线也会绘制出来。
试验结果及讨论
根据非接触式光学分析系统计算得到的数据,和DoCM的关系被绘制出来,如图8 所示。
在图8中,为y轴,实测切削深度DoCM为x轴。
表4列出了非接触式光学分析系统计算得到的处理结果。
表4
根据表4的结果,通过式(9),单点钻石刀具的实测刀鼻半径RM就被计算出来,为2.50mm。
图9-12分别绘制了当实测切削深度DoCM与实测刀鼻半径RM的比例在1000到5000之间时的放大1000倍的2D轮廓的示意图。
如果对单点钻石刀具进行更为周到的设计时,则该单点钻石刀具能够对加工样品进行切削,使该加工样品的加工槽的实测切削深度DoCM慢慢达到0.5μm。此时,会出现两个问题;如图13-18所示,问题(1)是:加工槽的实测弧长ALM被扩宽,这里,在图13-18中,最右边的Z表示加工槽的实测切削深度DoCM;问题(2)是:加工样品的加工面起皱。这两个问题都是由对加工样品的加工面加工时表面张力引起的。
当加工槽的实测切削深度DoCM从0.5μm增大到1μm时,问题(1)和(2)不太明显,但会影响实测刀鼻半径RM的准确性,如图19所示。
当加工槽的实测切削深度DoCM处于0.75μm与1.5μm时,加工槽是具有最理想的切削效果,如图20和图21所示。
当加工槽的实测切削深度DoCM超过1.5μm时,单点钻石刀具的划动方向和加工样品的加工面的微动损伤会发生回弹,此时,加工样品的额外部分会被刮掉,如图22所示。此时,实测刀鼻半径RM的测量精度会受到影响,如图23所示。
问题(1)会导致加工槽的横截面的实测面积SM的低估,而问题(2)会导致加工槽的横截面的实测面积SM的高估。基于图8所示的线性结果,上述两个问题所造成的效果会相互抵消。图8暗示了加工面的微动损伤与回弹力的相关性。
图22示出了加工槽的40个2D轮廓的集合图。在图22中,我们可以发现,加工槽的2D轮廓的底部是平的(这是由于回弹力导致的),加工槽的2D轮廓的侧面边缘是紊乱的(这是由于附着磨损导致的)。
基于对加工槽的2D轮廓的侧面边缘、单点钻石刀具的状态的微观分析,可以发现,刀具磨损并没有发生。图23中示出的方框1所表示的靠近刀鼻的紊乱侧面边缘能够被看作是纳米硬质刀具磨损的前兆。就这一点而言,紊乱侧面边缘将被作为刀具磨损监测的目标。然而,这种刀具磨损监测方式比较草率。因为紊乱侧面边缘是随机发生的,其累计的净效应会诱导多次实测刀鼻半径的离散。而这种离散会扩大置信界限和预测界限。从四轴联动数控超精密机床的角度来看,当实测刀鼻半径的严重离散导致加工形状错误,单点钻石刀具会接近其使用寿命的极限。单点钻石刀具在其破损之前,无论失去了多少边缘锐度,都需要被更换。本发明的方法就是通过实测刀鼻半径的离散来判断单点钻石刀具什么时候需要被更换。
基于上述试验和计算,本发明提供了一种刀具磨损监测方法,包括以下步骤:
步骤S1、使用刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
步骤S2、获取加工槽的每一个绘图节点的坐标;并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓;并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
步骤S3、测量每一个2D轮廓的实测切削深度DoCM;并分别计算得到每一个2D轮廓所围的实测面积SM
所述步骤S3还包括测量每一个2D轮廓的实测弦长AWM的步骤;
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为 m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标, ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标。
步骤S4、根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
步骤S4还包括获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1 的2D轮廓的实测面积
进一步地,步骤S4还包括获取自由度为(n-2)时的置信区间的T值t的步骤,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值。
优选地,置信区间的置信度α采用0.01。可以理解,置信度α可以根据加工样品材料的不同而进行确定,还可以采用0.05或者其他值。
步骤S5、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限;
步骤S6、更换该刀具。
与监测方法对应的,本发明还提出了一种刀具磨损监测系统,包括:
驱动模块、用于使刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
扫描模块、用于获取加工槽的每一个绘图节点的坐标,并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓,并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
测量模块、用于测量每一个2D轮廓的实测切削深度DoCM,并分别计算得到每一个2D轮廓所围的实测面积SM
具体地,所述测量模块还用于测量每一个2D轮廓的实测弦长AWM
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为 m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标, ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标。
计算模块、用于根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
所述计算模块还用于获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1 的2D轮廓的实测面积
计算模块还用于获取自由度为(n-2)时的置信区间的T值t,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值。
置信区间的置信度α采用0.01。可以理解,置信度α可以根据加工样品材料的不同而进行确定,还可以采用0.05或者其他值。
判断模块、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限。
本发明的刀具磨损监测方法就是通过实测刀鼻半径的离散来判断单点钻石刀具什么时候需要被更换。本发明的刀具磨损监测方法能够做到对单点钻石刀具的磨损和使用寿命做到实时监测,实用性强和自动化程度高。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (4)

1.一种刀具磨损监测方法,其特征在于,包括以下步骤:
步骤S1、使用刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
步骤S2、获取加工槽的每一个绘图节点的坐标;并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓;并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
步骤S3、测量每一个2D轮廓的实测切削深度DoCM;并分别计算得到每一个2D轮廓所围的实测面积SM
步骤S4、根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
步骤S5、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限;
所述步骤S3还包括测量每一个2D轮廓的实测弦长AWM的步骤;
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标,ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标;
所述步骤S4还包括获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1的2D轮廓的实测面积
步骤S4还包括获取自由度为(n-2)时的置信区间的T值t的步骤,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值;
t根据置信度α和n,按照t分布表查找出。
2.根据权利要求1所述的刀具磨损监测方法,其特征在于,置信区间的置信度α采用0.01。
3.一种刀具磨损监测系统,其特征在于,包括:
驱动模块、用于使刀具在加工样品的加工面上纵切,以形成加工槽,其中,刀具为带有圆刀鼻的单点钻石刀具;
扫描模块、用于获取加工槽的每一个绘图节点的坐标,并通过该加工槽的每一个绘图节点的坐标绘制该加工槽的3D轮廓,并根据该3D轮廓,获取多个加工槽横截面的2D轮廓;
测量模块、用于测量每一个2D轮廓的实测切削深度DoCM,并分别计算得到每一个2D轮廓所围的实测面积SM
计算模块、用于根据多个2D轮廓的实测面积SM和实测切削深度DoCM,绘制DoCM的回归直线,并绘制该回归直线的置信区间;
判断模块、判断每一个2D轮廓的采样点(DoCM)是否处于所述置信区间中,若否,则判断该刀具已被磨损到使用寿命的极限;
所述测量模块还用于测量每一个2D轮廓的实测弦长AWM
则实测面积SM为:
其中,n1为2D轮廓的凹线上的绘图节点的总编号;m为从1到n1的自然数变量;xm为2D轮廓的凹线上的编号为m的绘图节点的x轴坐标,ym为2D轮廓的凹线上的编号为m的绘图节点的y轴坐标;xm+1为2D轮廓的凹线上的编号为m+1的绘图节点的x轴坐标,ym+1为2D轮廓的凹线上的编号为m+1的绘图节点的y轴坐标;
所述计算模块还用于获取2D轮廓的总编号的步骤,则回归直线的方程为:
y1=a+bx1
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
x0(i+1)为编号为i+1的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y0(i+1)为编号为i+1的2D轮廓的实测面积
计算模块还用于获取自由度为(n-2)时的置信区间的T值t,则回归直线的置信区间为[y1-t×P2,y1+t×P2],其中,
其中,
n为2D轮廓的总编号,也为[x0i,y0i]的数据组数;
x0i为编号为i的2D轮廓的实测切削深度DoCM
y0i为编号为i的2D轮廓的实测面积
y1(x1=x0i)为在当x1=x0i时回归方程的y轴坐标;
而t为当自由度为(n-2)时的置信区间的T值;
t根据置信度α和n,按照t分布表查找出。
4.根据权利要求3所述的刀具磨损监测系统,其特征在于,置信区间的置信度α采用0.01。
CN201510105515.2A 2015-03-11 2015-03-11 一种刀具磨损监测方法及系统 Active CN106033025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510105515.2A CN106033025B (zh) 2015-03-11 2015-03-11 一种刀具磨损监测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510105515.2A CN106033025B (zh) 2015-03-11 2015-03-11 一种刀具磨损监测方法及系统

Publications (2)

Publication Number Publication Date
CN106033025A CN106033025A (zh) 2016-10-19
CN106033025B true CN106033025B (zh) 2019-02-12

Family

ID=57149722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510105515.2A Active CN106033025B (zh) 2015-03-11 2015-03-11 一种刀具磨损监测方法及系统

Country Status (1)

Country Link
CN (1) CN106033025B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549468A (zh) * 2009-04-24 2009-10-07 北京邮电大学 基于影像的刀具在线检测与补偿系统及方法
CN101804583A (zh) * 2010-02-22 2010-08-18 南京航空航天大学 基于槽切铣削刀具轮廓复制的磨损测量方法
CN102501140A (zh) * 2011-11-22 2012-06-20 南京航空航天大学 一种球头铣刀定位及磨损监测方法
CN102528562A (zh) * 2012-02-28 2012-07-04 上海大学 微型铣刀在线自动对刀与破损检测装置
CN102581700A (zh) * 2012-02-28 2012-07-18 上海大学 视频与激光融合的旋转刀具在线自动检测装置
CN102681488A (zh) * 2012-05-24 2012-09-19 南京航空航天大学 一种铣削加工工件表面形貌的建模方法
CN103586740A (zh) * 2013-10-31 2014-02-19 东华大学 一种微细精密加工刀具工作形貌在位检测装置及方法
CN103674511A (zh) * 2013-03-18 2014-03-26 北京航空航天大学 一种基于emd-svd与mts的机械磨损件性能评估与预测方法
CN104182620A (zh) * 2014-08-07 2014-12-03 华北电力大学 用寿命系数对盘形滚刀磨损量进行预测的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526507C2 (sv) * 2003-06-05 2005-09-27 Metso Paper Inc Förfarande och system för övervakning av ett lager i en roterande maskin
JP5444412B2 (ja) * 2012-05-30 2014-03-19 ファナック株式会社 加工処理の評価を行うための情報を表示する表示部を備えた数値制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549468A (zh) * 2009-04-24 2009-10-07 北京邮电大学 基于影像的刀具在线检测与补偿系统及方法
CN101804583A (zh) * 2010-02-22 2010-08-18 南京航空航天大学 基于槽切铣削刀具轮廓复制的磨损测量方法
CN102501140A (zh) * 2011-11-22 2012-06-20 南京航空航天大学 一种球头铣刀定位及磨损监测方法
CN102528562A (zh) * 2012-02-28 2012-07-04 上海大学 微型铣刀在线自动对刀与破损检测装置
CN102581700A (zh) * 2012-02-28 2012-07-18 上海大学 视频与激光融合的旋转刀具在线自动检测装置
CN102681488A (zh) * 2012-05-24 2012-09-19 南京航空航天大学 一种铣削加工工件表面形貌的建模方法
CN103674511A (zh) * 2013-03-18 2014-03-26 北京航空航天大学 一种基于emd-svd与mts的机械磨损件性能评估与预测方法
CN103586740A (zh) * 2013-10-31 2014-02-19 东华大学 一种微细精密加工刀具工作形貌在位检测装置及方法
CN104182620A (zh) * 2014-08-07 2014-12-03 华北电力大学 用寿命系数对盘形滚刀磨损量进行预测的方法

Also Published As

Publication number Publication date
CN106033025A (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
Bolar et al. Measurement and analysis of cutting force and product surface quality during end-milling of thin-wall components
DeVries Analysis of material removal processes
Tomov et al. Development of mathematical models for surface roughness parameter prediction in turning depending on the process condition
Jamshidi et al. Identification of active number of grits and its effects on mechanics and dynamics of abrasive processes
AU2016251428A1 (en) Method and device for machining a tool by removing material
Leach et al. Development of material measures for performance verifying surface topography measuring instruments
Groß et al. Determination of the surface topography of ball end micro milled material measures
Seewig et al. A model-based approach for the calibration and traceability of the angle resolved scattering light sensor
Schönemann et al. Digital surface twin for ultra-precision high performance cutting
Brecher et al. Simulation based model for tool life prediction in bevel gear cutting
CN103949963B (zh) 一种遍历连续抛光表面的随机路径生成方法
CN106033025B (zh) 一种刀具磨损监测方法及系统
Ismail et al. Geometrical transcription of diamond electroplated tool in ultrasonic vibration assisted grinding of steel
US20160116269A1 (en) Component measurement system having wavelength filtering
US10401828B2 (en) Method for deducing geometrical defects of an optical article turning machine
CN104835754B (zh) 具有减小不准确性且维持对比度的填充元件的计量目标
Klauer et al. Micro milling of areal material measures–Study on surface generation for different up and down milling strategies
Weaver et al. Quantifying accuracy of a concept laser metal additive machine through the NIST test artifact
Jerez-Mesa Microtexturing of industrial surfaces via radial ultrasonic vibration-assisted machining: An analytical model and experimental validation
Ancio et al. Study of turned surfaces by principal component analysis
Nagy Influence of measurement settings on areal roughness with confocal chromatic sensor on face-milled surface
CN103692295B (zh) 一种超精密凸锥镜测量-抛光修正系统中的优化处理方法
Islam et al. Dimensional accuracy achievable in wire-cut electrical discharge machining
CN103111629A (zh) 一种使用金刚石车床加工金属反射镜的方法
CN106573355A (zh) 用于确定镜片机加工刀具在被配置成用于机加工眼科镜片的车削机床中的位置的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant