CN106025074A - Perovskite solar cell and preparation method thereof - Google Patents
Perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN106025074A CN106025074A CN201610446345.9A CN201610446345A CN106025074A CN 106025074 A CN106025074 A CN 106025074A CN 201610446345 A CN201610446345 A CN 201610446345A CN 106025074 A CN106025074 A CN 106025074A
- Authority
- CN
- China
- Prior art keywords
- layer
- preparation
- present
- perovskite
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 19
- 239000012528 membrane Substances 0.000 claims description 4
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 claims 2
- 230000027756 respiratory electron transport chain Effects 0.000 claims 2
- 230000005525 hole transport Effects 0.000 abstract description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 239000010409 thin film Substances 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 230000006798 recombination Effects 0.000 abstract description 2
- 238000005215 recombination Methods 0.000 abstract description 2
- 238000003949 trap density measurement Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 24
- 239000002243 precursor Substances 0.000 description 22
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 238000004528 spin coating Methods 0.000 description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical group C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 6
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- 238000007738 vacuum evaporation Methods 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Substances ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- -1 P3HT) Chemical compound 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- AZCYBBHXCQYWTO-UHFFFAOYSA-N 2-[(2-chloro-6-fluorophenyl)methoxy]benzaldehyde Chemical compound FC1=CC=CC(Cl)=C1COC1=CC=CC=C1C=O AZCYBBHXCQYWTO-UHFFFAOYSA-N 0.000 description 1
- JEDHEMYZURJGRQ-UHFFFAOYSA-N 3-hexylthiophene Chemical compound CCCCCCC=1C=CSC=1 JEDHEMYZURJGRQ-UHFFFAOYSA-N 0.000 description 1
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- MVPPADPHJFYWMZ-IDEBNGHGSA-N chlorobenzene Chemical group Cl[13C]1=[13CH][13CH]=[13CH][13CH]=[13CH]1 MVPPADPHJFYWMZ-IDEBNGHGSA-N 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/451—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/811—Controlling the atmosphere during processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及太阳能电池技术领域,特别涉及一种钙钛矿太阳能电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a perovskite solar cell and a preparation method thereof.
背景技术Background technique
太阳能电池,又称光伏电池,是通过光电效应或者光化学效应直接把光能转化为电能的装置。目前,市场上以硅基太阳能电池为主,然而其制造工艺复杂,生产能耗大,成本高,严重制约了其大规模推广应用。Solar cells, also known as photovoltaic cells, are devices that directly convert light energy into electrical energy through the photoelectric effect or photochemical effect. At present, silicon-based solar cells are mainly used in the market, but their complex manufacturing process, high energy consumption and high cost seriously restrict their large-scale application.
自2009年以来,钙钛矿太阳能电池凭借较高的量子效率、短路电流密度、开路电压等而备受关注,其主要是利用具有ABX3(A=CH3NH3 +,HC(NH2)2+等;B=Pb2+,Sn2+等;X=Cl-,Br-,SCN-,I-等)钙钛矿结构的光伏材料实现光电转换,具有效率高、质量轻、制作工艺简单、可制备成大面积柔性器件等特点突出优点。其倒装基本结构自下而上依次为玻璃衬底、透明电极层、电子传输层、钙钛矿材料吸光层、空穴传输层、金属电极,类似于p-(pi)-i-(in)-n的多层结构,是迄今为止,除了硅太阳能电池,单结效率最高的太阳能电池。Since 2009, perovskite solar cells have attracted much attention due to their high quantum efficiency, short - circuit current density, and open - circuit voltage . 2+ , etc.; B=Pb 2+ , Sn 2+ , etc.; X=Cl - , Br - , SCN - , I - , etc.) Photovoltaic materials with perovskite structure realize photoelectric conversion, with high efficiency, light weight, and manufacturing process It is simple and can be prepared into large-area flexible devices and other outstanding advantages. Its flip-chip basic structure is a glass substrate, a transparent electrode layer, an electron transport layer, a perovskite light-absorbing layer, a hole transport layer, and a metal electrode from bottom to top, similar to p-(pi)-i-(in )-n multilayer structure, so far, except for silicon solar cells, the solar cell with the highest single-junction efficiency.
但钙钛矿太阳能电池的钙钛矿材料吸光层对水非常敏感,在湿度大的空气中会与水发生化学反应进而破坏晶体结构,导致电池性能降低。因此,钙钛矿太阳能电池的制备和使用均控制在空气相对湿度低于30%的条件下,这在很大程度上限制了其应用。However, the perovskite material light-absorbing layer of perovskite solar cells is very sensitive to water, and it will chemically react with water in the air with high humidity to destroy the crystal structure, resulting in a decrease in battery performance. Therefore, the preparation and use of perovskite solar cells are controlled under the condition of air relative humidity below 30%, which limits its application to a large extent.
发明内容Contents of the invention
本发明的目的在于提供一种钙钛矿太阳能电池及其制备方法。本发明制备得到的钙钛矿太阳能电池可用于相对湿度高的空气中,具有良好的光电性能。The object of the present invention is to provide a perovskite solar cell and a preparation method thereof. The perovskite solar cell prepared by the invention can be used in the air with high relative humidity and has good photoelectric performance.
本发明提供了一种钙钛矿太阳能电池的制备方法,所述钙钛矿太阳能电池包括依次设置的导电玻璃、电子传输层、钙钛矿层、空穴传输层、光阴极修饰层和光阴极层,对所述空穴传输层进行潮湿空气处理。The invention provides a method for preparing a perovskite solar cell. The perovskite solar cell comprises a conductive glass, an electron transport layer, a perovskite layer, a hole transport layer, a photocathode modification layer and a photocathode layer arranged in sequence, The hole transport layer was subjected to a humid air treatment.
优选的,所述潮湿空气处理具体为:在光阴极修饰层涂覆前,用潮湿空气对导电玻璃、电子传输层、钙钛矿层和空穴传输层四层复合膜结构中的空穴传输层的表面进行喷吹。Preferably, the humid air treatment is specifically: before the photocathode modification layer is coated, the hole transport layer in the four-layer composite film structure of the conductive glass, the electron transport layer, the perovskite layer and the hole transport layer is treated with moist air. surface for spraying.
优选的,所述潮湿空气的相对湿度为30~50%。Preferably, the relative humidity of the humid air is 30-50%.
优选的,所述潮湿空气的相对湿度为35~49%。Preferably, the relative humidity of the humid air is 35-49%.
优选的,所述潮湿空气的温度为20~65℃。Preferably, the temperature of the humid air is 20-65°C.
优选的,所述潮湿空气的温度为40~55℃。Preferably, the temperature of the humid air is 40-55°C.
优选的,所述潮湿空气的喷吹流速为2~4L/min。Preferably, the blowing flow rate of the humid air is 2-4 L/min.
优选的,所述潮湿空气处理的时间为8~12h。Preferably, the time for the humid air treatment is 8-12 hours.
优选的,所述喷吹的方向为垂直于空穴传输层表面。Preferably, the blowing direction is perpendicular to the surface of the hole transport layer.
本发明还提供了上述技术方案所述制备方法制备的钙钛矿太阳能电池。The present invention also provides the perovskite solar cell prepared by the preparation method described in the above technical solution.
本发明通过对空穴传输层薄膜的潮湿空气处理,利用高的相对湿度溶解薄膜中的部分有机物,加速物质在层间的传输,有助于薄膜的重建过程,进而有助于减少器件的接触电阻,提升薄膜层间传输的载流子寿命,通过电池的漏电流变小,电导性得到提高,进而提升电池电流,改善太阳能电池光电特性;同时,气流处理过程促进了氧气在空穴传输层和钙钛矿层内更好的扩散,使得薄膜材料能够更好地与空气接触,提高了空穴传输层的氧化程度和结晶性,减少了陷阱密度,降低了空穴传输层和钙钛矿层之间的界面电阻和电荷复合率,有利于提高电荷收集与传输能力,进而提升电池电流与电压,改善太阳能电池光电特性。实验结果表明,本发明提供的制备方法制备的钙钛矿太阳能电池填充因子可达0.7以上,短路电流密度可达15.24mA/cm2,开路电压可达0.95V,光电转换效率最高可达10.42%,具有良好的光电性能。The present invention uses high relative humidity to dissolve part of the organic matter in the film through the moist air treatment of the hole transport layer film, accelerates the transport of substances between layers, contributes to the reconstruction process of the film, and then helps to reduce the contact of the device resistance, improve the life of carriers transported between thin film layers, the leakage current through the battery becomes smaller, and the electrical conductivity is improved, thereby increasing the battery current and improving the photoelectric characteristics of the solar cell; at the same time, the airflow treatment process promotes the flow of oxygen in the hole transport layer And better diffusion in the perovskite layer, so that the film material can better contact with the air, improve the oxidation degree and crystallinity of the hole transport layer, reduce the trap density, and reduce the gap between the hole transport layer and the perovskite layer. The interfacial resistance and charge recombination rate between them are conducive to improving the charge collection and transmission capabilities, thereby increasing the battery current and voltage, and improving the photoelectric characteristics of solar cells. Experimental results show that the perovskite solar cell prepared by the preparation method provided by the present invention has a fill factor of more than 0.7, a short-circuit current density of 15.24mA/cm 2 , an open-circuit voltage of 0.95V, and a photoelectric conversion efficiency of up to 10.42%. , with good photoelectric properties.
本发明提供的制备方法操作简单、条件温和、能耗低、成本低廉、工艺易控,适宜大规模工业推广。The preparation method provided by the invention has the advantages of simple operation, mild conditions, low energy consumption, low cost, easy process control, and is suitable for large-scale industrial promotion.
附图说明Description of drawings
图1为本发明对比例及实施例中导电玻璃结构示意图;Fig. 1 is the structural representation of conductive glass in comparative example and embodiment of the present invention;
图2为对比例及实施例钙钛矿太阳能电池的性能测试结构示意图,其中:1-FTO导电玻璃;2-TiO2电子传输层;3-钙钛矿CH3NH3PbIxCl3-x吸光层;4-Spiro-OMeTAD空穴传输层;5-MoO3阳极修饰层;6-Ag金属电极;7-金属导线;8-负载或测试装置;9-入射光;Figure 2 is a schematic diagram of the performance test structure of the comparative example and the embodiment perovskite solar cell, wherein: 1-FTO conductive glass; 2-TiO 2 electron transport layer; 3-perovskite CH 3 NH 3 PbI x Cl 3-x Light absorbing layer; 4-Spiro-OMeTAD hole transport layer; 5-MoO 3 anode modification layer; 6-Ag metal electrode; 7-metal wire; 8-load or test device; 9-incident light;
图3为本发明对比例及实施例制备的钙钛矿太阳能电池的伏安特性曲线;Fig. 3 is the volt-ampere characteristic curve of the perovskite solar cell prepared by comparative example and embodiment of the present invention;
图4为本发明对比例及实施例制备的钙钛矿太阳能电池的PL光谱图。Fig. 4 is the PL spectrum diagram of the perovskite solar cells prepared in the comparative examples and examples of the present invention.
具体实施方式detailed description
本发明提供了一种钙钛矿太阳能电池的制备方法,所述钙钛矿太阳能电池包括依次设置的导电玻璃、电子传输层、钙钛矿层、空穴传输层、光阴极修饰层和光阴极层,对所述空穴传输层进行潮湿空气处理。The invention provides a method for preparing a perovskite solar cell. The perovskite solar cell comprises a conductive glass, an electron transport layer, a perovskite layer, a hole transport layer, a photocathode modification layer and a photocathode layer arranged in sequence, The hole transport layer was subjected to a humid air treatment.
在本发明中,所述潮湿空气处理优选为在光阴极修饰层涂覆前,用潮湿空气对导电玻璃、电子传输层、钙钛矿层和空穴传输层四层复合膜结构中的空穴传输层的表面进行喷吹。In the present invention, the humid air treatment is preferably before the photocathode modification layer is coated, using humid air to transport the holes in the four-layer composite film structure of the conductive glass, the electron transport layer, the perovskite layer and the hole transport layer. The surface of the layer is sprayed.
在本发明中,所述钙钛矿太阳能电池的制备优选包括以下步骤:In the present invention, the preparation of the perovskite solar cell preferably includes the following steps:
(1)在导电玻璃表面依次涂覆电子传输层、钙钛矿层和空穴传输层,得到四层复合膜结构;(1) On the surface of conductive glass, an electron transport layer, a perovskite layer and a hole transport layer are sequentially coated to obtain a four-layer composite film structure;
(2)对步骤(1)中所述空穴传输层的表面进行潮湿空气处理;(2) The surface of the hole transport layer described in step (1) is subjected to humid air treatment;
(3)在步骤(2)所述处理后的空穴传输层表面依次涂覆光阴极修饰层和光阴基层,得到钙钛矿太阳能电池。(3) A photocathode modification layer and a photocathode base layer are sequentially coated on the surface of the hole transport layer treated in step (2) to obtain a perovskite solar cell.
本发明对所述导电玻璃的种类没有特殊的限定,采用本领域技术人员熟知的导电玻璃即可。在本发明中,所述导电玻璃优选为FTO导电玻璃或ITO导电玻璃,更优选为FTO导电玻璃。在本发明中,所述FTO导电玻璃的方块电阻优选为6~8Ω/sq,更优选为6.5~7.5Ω/sq;所述FTO导电玻璃的透光率优选为大于85%,更优选为88~95%;所述FTO导电玻璃的刻蚀面积优选为总面积的1/4~1/2,更优选为1/3;所述FTO导电玻璃的面积优选为14~16mm×14~16mm。在本发明中,所述FTO导电玻璃作为光阳极层,具有良好的化学稳定性和良好的光电性能。The present invention has no special limitation on the type of the conductive glass, and the conductive glass well known to those skilled in the art can be used. In the present invention, the conductive glass is preferably FTO conductive glass or ITO conductive glass, more preferably FTO conductive glass. In the present invention, the sheet resistance of the FTO conductive glass is preferably 6-8Ω/sq, more preferably 6.5-7.5Ω/sq; the light transmittance of the FTO conductive glass is preferably greater than 85%, more preferably 88% ~95%; the etching area of the FTO conductive glass is preferably 1/4~1/2 of the total area, more preferably 1/3; the area of the FTO conductive glass is preferably 14~16mm×14~16mm. In the present invention, the FTO conductive glass is used as the photoanode layer, which has good chemical stability and good photoelectric performance.
本发明中优选首先对导电玻璃表面进行预处理。在本发明中,所述预处理优选包括紫外光处理。在本发明中,所述紫外光的波长优选为350~450nm;所述紫外光的强度优选为24~28mW/cm2。在本发明中,所述紫外光处理的时间优选为15~25min,更优选为18~22min。在本发明中,所述紫外光处理可以去除导电玻璃表面残留的有机杂质,改善导电玻璃表面形貌。In the present invention, it is preferable to pretreat the surface of the conductive glass first. In the present invention, the pretreatment preferably includes ultraviolet light treatment. In the present invention, the wavelength of the ultraviolet light is preferably 350-450 nm; the intensity of the ultraviolet light is preferably 24-28 mW/cm 2 . In the present invention, the time of the ultraviolet light treatment is preferably 15-25 minutes, more preferably 18-22 minutes. In the present invention, the ultraviolet light treatment can remove residual organic impurities on the surface of the conductive glass and improve the surface morphology of the conductive glass.
完成所述预处理后,本发明优选在所述预处理得到的导电玻璃表面依次涂覆电子传输层、钙钛矿层和空穴传输层,得到四层复合膜结构。本发明对所述四层复合膜结构的制备没有特殊的限定,采用本领域技术人员熟知的钙钛矿太阳能电池中四层复合膜结构的制备方法即可。After the pretreatment is completed, the present invention preferably sequentially coats an electron transport layer, a perovskite layer and a hole transport layer on the surface of the conductive glass obtained by the pretreatment to obtain a four-layer composite film structure. The present invention has no special limitation on the preparation of the four-layer composite film structure, and the preparation method of the four-layer composite film structure in the perovskite solar cell well-known to those skilled in the art can be used.
本发明对所述电子传输层的材料没有特殊的限定,采用本领域技术人员熟知的用于电子传输层的材料即可。在本发明中,所述电子传输层优选为TiO2或ZnO,更优选为TiO2。在本发明中,所述电子传输层的厚度优选为30~60nm,更优选为40~50nm。在本发明中,所述电子传输层与钙钛矿层形成欧姆接触,能够有效传输电子,同时有效阻挡空穴传输。In the present invention, there is no special limitation on the material of the electron transport layer, and materials known to those skilled in the art can be used for the electron transport layer. In the present invention, the electron transport layer is preferably TiO 2 or ZnO, more preferably TiO 2 . In the present invention, the thickness of the electron transport layer is preferably 30-60 nm, more preferably 40-50 nm. In the present invention, the electron transport layer forms an ohmic contact with the perovskite layer, which can effectively transport electrons while effectively blocking hole transport.
本发明优选在导电玻璃上涂覆电子传输层,得到双层复合膜结构。在本发明中,所述涂覆的方式优选为溅射、沉积或旋涂;本发明更优选将TiO2前驱体溶液以旋涂的方式涂覆到导电玻璃表面。在本发明中,所述旋涂的转速优选为6000~7000rpm,更优选为6400~6600rpm。在本发明中,所述旋涂优选在惰性气氛中进行。In the present invention, the electron transport layer is preferably coated on the conductive glass to obtain a double-layer composite film structure. In the present invention, the coating method is preferably sputtering, deposition or spin coating; in the present invention, it is more preferred to apply the TiO 2 precursor solution to the surface of the conductive glass by spin coating. In the present invention, the rotational speed of the spin coating is preferably 6000-7000 rpm, more preferably 6400-6600 rpm. In the present invention, the spin coating is preferably performed in an inert atmosphere.
在本发明中,所述TiO2前驱体溶液的摩尔浓度优选为0.18~0.3mol/L,更优选为0.2~0.25mol/L。在本发明中,所述TiO2前驱体溶液优选由钛源溶液和盐酸溶液混合得到。在本发明中,所述钛源与盐酸的摩尔比优选为0.18~0.3:1,更优选为0.2~0.25:1。在本发明中,所述钛源优选为有机钛源,更优选具体为异丙醇钛。在本发明中,所述钛源溶液的溶剂优选为醇类溶剂,更优选为甲醇、乙醇和丙醇中的一种或多种。在本发明中,所述钛源溶液的摩尔浓度优选为0.4~0.5mol/L,更优选为0.43~0.48mol/L。在本发明中,所述盐酸的摩尔浓度优选为1.5~2.5mol/L,更优选为1.8~2.2mol/L。In the present invention, the molar concentration of the TiO 2 precursor solution is preferably 0.18-0.3 mol/L, more preferably 0.2-0.25 mol/L. In the present invention, the TiO 2 precursor solution is preferably obtained by mixing a titanium source solution and a hydrochloric acid solution. In the present invention, the molar ratio of the titanium source to hydrochloric acid is preferably 0.18-0.3:1, more preferably 0.2-0.25:1. In the present invention, the titanium source is preferably an organic titanium source, more preferably titanium isopropoxide. In the present invention, the solvent of the titanium source solution is preferably an alcohol solvent, more preferably one or more of methanol, ethanol and propanol. In the present invention, the molar concentration of the titanium source solution is preferably 0.4-0.5 mol/L, more preferably 0.43-0.48 mol/L. In the present invention, the molar concentration of the hydrochloric acid is preferably 1.5-2.5 mol/L, more preferably 1.8-2.2 mol/L.
为使TiO2前驱体溶液在导电玻璃表面覆盖均匀,本发明优选在完成所述旋涂后进行预热。在本发明中,所述预热的温度优选为140~160℃,更优选为145~155℃;所述保温的时间优选为5~15min,更优选为8~12min。In order to make the TiO2 precursor solution evenly cover the surface of the conductive glass, the present invention preferably preheats after the spin coating is completed. In the present invention, the preheating temperature is preferably 140-160° C., more preferably 145-155° C.; the holding time is preferably 5-15 minutes, more preferably 8-12 minutes.
完成所述预热后,本发明优选将所述预热后得到的双层复合膜结构加热至退火温度进行保温。在本发明中,所述加热的速率优选为8~12℃/min;所述退火温度优选为400~500℃,更优选为440~460℃;所述保温的时间优选为1.5~2.5h,更优选为1.8~2.2h。在本发明中,所述退火可以提高二氧化钛的结晶程度。After the preheating is completed, the present invention preferably heats the double-layer composite membrane structure obtained after the preheating to the annealing temperature for heat preservation. In the present invention, the heating rate is preferably 8-12°C/min; the annealing temperature is preferably 400-500°C, more preferably 440-460°C; the holding time is preferably 1.5-2.5h, More preferably, it is 1.8 to 2.2 hours. In the present invention, the annealing can increase the crystallization degree of titanium dioxide.
完成所述退火后,本发明优选将所述退火后得到的双层复合膜结构进行氧等离子体处理。在本发明中,所述氧等离子体处理的时间优选为4~6min。在本发明中,所述氧等离子体处理可以去除二氧化钛层烧结后表面残留物,改善衬底形貌。After the annealing is completed, in the present invention, the double-layer composite film structure obtained after the annealing is preferably subjected to oxygen plasma treatment. In the present invention, the oxygen plasma treatment time is preferably 4-6 minutes. In the present invention, the oxygen plasma treatment can remove surface residues after sintering of the titanium dioxide layer and improve the morphology of the substrate.
完成所述氧等离子体处理后,本发明优选在所述电子传输层表面涂覆钙钛矿层,得到三层复合膜结构。在本发明中,所述钙钛矿层优选为CH3NH3PbIxCl3-x,0<x<3,所述x更优选为1~2。在本发明中,所述钙钛矿层的厚度优选为350~450nm,更优选为380~420nm,最优选为390~410nm。在本发明中,所述钙钛矿层作为光活性层,可以最大限度的吸收紫外-可见光谱区域的光子,进而激发电荷分离及载流子的传输。After the oxygen plasma treatment is completed, the present invention preferably coats a perovskite layer on the surface of the electron transport layer to obtain a three-layer composite film structure. In the present invention, the perovskite layer is preferably CH 3 NH 3 PbI x Cl 3-x , 0<x<3, and x is more preferably 1-2. In the present invention, the thickness of the perovskite layer is preferably 350-450 nm, more preferably 380-420 nm, most preferably 390-410 nm. In the present invention, the perovskite layer is used as a photoactive layer, which can absorb photons in the ultraviolet-visible spectrum region to the greatest extent, thereby stimulating charge separation and carrier transport.
在本发明中,所述涂覆钙钛矿层的方式优选为双源共蒸发、气相辅助溶液或溶液旋涂;本发明更优选将钙钛矿前驱体溶液旋涂在电子传输层表面。在本发明中,所述旋涂的速率优选为2000~3000rpm,更优选为2400~2600rpm。在本发明中,所述旋涂优选在惰性气氛中进行。In the present invention, the method of coating the perovskite layer is preferably dual-source co-evaporation, gas phase assisted solution or solution spin coating; in the present invention, it is more preferred to spin coat the perovskite precursor solution on the surface of the electron transport layer. In the present invention, the speed of the spin coating is preferably 2000-3000 rpm, more preferably 2400-2600 rpm. In the present invention, the spin coating is preferably performed in an inert atmosphere.
在本发明中,所述钙钛矿前驱体溶液的质量浓度优选为40~50wt%,更优选为44~46wt%。本发明优选将PbCl2、CH3NH3I与溶剂混合,加热反应得到钙钛矿前驱体溶液。在本发明中,所述PbCl2和CH3NH3I的摩尔比优选为0.3~0.5:1。在本发明中,所述溶剂优选为二甲基亚砜、乙腈和二甲基甲酰胺中的一种或多种,更优选为二甲基亚砜、乙腈和二甲基甲酰胺中的一种。In the present invention, the mass concentration of the perovskite precursor solution is preferably 40-50 wt%, more preferably 44-46 wt%. In the present invention, it is preferred to mix PbCl 2 , CH 3 NH 3 I with a solvent, heat and react to obtain a perovskite precursor solution. In the present invention, the molar ratio of PbCl 2 and CH 3 NH 3 I is preferably 0.3˜0.5:1. In the present invention, the solvent is preferably one or more of dimethylsulfoxide, acetonitrile and dimethylformamide, more preferably one or more of dimethylsulfoxide, acetonitrile and dimethylformamide kind.
在本发明中,所述混合优选在搅拌条件下进行。在本发明中,所述搅拌优选为磁力搅拌;所述搅拌的速率优选为700~900rpm,更优选为750~850rpm;所述搅拌的时间优选为10~14h,更优选为11~13h。在本发明中,所述反应的温度优选为45~55℃,更优选为48~52℃。In the present invention, the mixing is preferably performed under stirring conditions. In the present invention, the stirring is preferably magnetic stirring; the stirring speed is preferably 700-900 rpm, more preferably 750-850 rpm; the stirring time is preferably 10-14 hours, more preferably 11-13 hours. In the present invention, the reaction temperature is preferably 45-55°C, more preferably 48-52°C.
为提高钙钛矿层的结晶程度,本发明优选在完成所述旋涂后进行退火,得到三层复合膜结构。在本发明中,所述退火的温度优选为100~120℃,更优选为105~115℃;所述退火的时间优选为40~60min,更优选为45~55min。In order to improve the crystallization degree of the perovskite layer, in the present invention, annealing is preferably performed after the spin coating is completed to obtain a three-layer composite film structure. In the present invention, the annealing temperature is preferably 100-120° C., more preferably 105-115° C.; the annealing time is preferably 40-60 minutes, more preferably 45-55 minutes.
得到三层复合膜结构后,本发明优选在所述三层复合膜结构的钙钛矿层表面涂覆空穴传输层,得到四层复合膜结构。本发明对所述空穴传输层的材料没有特殊的限定,采用本领域技术人员熟知的用于空穴传输层的材料即可。在本发明中,所述空穴传输层优选为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(即Spiro-OMeTAD)、3-己基噻吩的聚合物(即P3HT)、4,4-偶氮双(4-氰基戊酸)(即PTAA)、CuSCN或CuI,在本发明中可具体为Spiro-OMeTAD。在本发明中,所述空穴传输层的厚度优选为100~300nm,更优选为180~220nm。在本发明中,所述空穴传输层可以与钙钛矿层形成欧姆接触,有效传输空穴且能有效阻挡电子的传输。After the three-layer composite film structure is obtained, the present invention preferably coats a hole transport layer on the surface of the perovskite layer of the three-layer composite film structure to obtain a four-layer composite film structure. In the present invention, there is no special limitation on the material of the hole transport layer, and materials well known to those skilled in the art can be used for the hole transport layer. In the present invention, the hole transport layer is preferably 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (i.e. Spiro-OMeTAD), polymers of 3-hexylthiophene (i.e. P3HT), 4,4-azobis(4-cyanovaleric acid) (i.e. PTAA), CuSCN or CuI, in the present invention may be specifically Spiro-OMeTAD. In the present invention, the thickness of the hole transport layer is preferably 100-300 nm, more preferably 180-220 nm. In the present invention, the hole transport layer can form an ohmic contact with the perovskite layer, effectively transport holes and effectively block the transport of electrons.
在本发明中,所述涂覆空穴传输层的方式优选为沉积或旋涂;本发明更优选将空穴传输层前驱体溶液旋涂在钙钛矿层表面。在本发明中,所述旋涂的速率优选为3500~4500rpm,更优选为3800~4200rpm。在本发明中,所述旋涂优选在惰性气氛中进行。In the present invention, the method of coating the hole transport layer is preferably deposition or spin coating; in the present invention, it is more preferred to spin coat the hole transport layer precursor solution on the surface of the perovskite layer. In the present invention, the speed of the spin coating is preferably 3500-4500 rpm, more preferably 3800-4200 rpm. In the present invention, the spin coating is preferably performed in an inert atmosphere.
在本发明中,所述空穴传输层前驱体溶液的摩尔浓度优选为0.15~0.2mol/L。本发明优选将Spiro-OMeTAD、4-叔丁基吡啶(即TBP)、锂盐(即Li-TFSI)的乙腈溶液和溶剂混合,得到空穴传输层前驱体溶液。在本发明中,所述溶剂优选为氯苯或氯仿。In the present invention, the molar concentration of the hole transport layer precursor solution is preferably 0.15-0.2 mol/L. In the present invention, the acetonitrile solution of Spiro-OMeTAD, 4-tert-butylpyridine (ie TBP), lithium salt (ie Li-TFSI) and solvent are preferably mixed to obtain the hole transport layer precursor solution. In the present invention, the solvent is preferably chlorobenzene or chloroform.
得到四层复合膜结构后,本发明对所述四层复合膜结构的空穴传输层进行潮湿空气处理。在本发明中,所述潮湿空气处理优选具体为:在光阴极修饰层涂覆前,用潮湿空气对四层复合膜结构中的空穴传输层表面进行喷吹。在本发明中,所述喷吹的方向优选为垂直于空穴传输层。After the four-layer composite membrane structure is obtained, the present invention performs humid air treatment on the hole transport layer of the four-layer composite membrane structure. In the present invention, the humid air treatment preferably specifically includes: spraying humid air on the surface of the hole transport layer in the four-layer composite film structure before coating the photocathode modification layer. In the present invention, the blowing direction is preferably perpendicular to the hole transport layer.
在本发明中,所述潮湿空气的相对湿度优选为30~50%,更优选为35~49%;所述潮湿空气的温度优选为20~65℃,更优选为40~55℃;所述潮湿空气的流速优选为2~4L/min。在本发明中,所述潮湿空气处理的时间优选为8~12h。In the present invention, the relative humidity of the moist air is preferably 30-50%, more preferably 35-49%; the temperature of the moist air is preferably 20-65°C, more preferably 40-55°C; The flow rate of humid air is preferably 2-4 L/min. In the present invention, the humid air treatment time is preferably 8-12 hours.
完成潮湿空气处理后,本发明优选在所述潮湿空气处理后的空穴传输层表面涂覆光阴极修饰层,得到五层复合膜结构。本发明对所述光阴极修饰层的材料没有特殊的限定,采用本领域技术人员熟知的用于光阴极修饰层的材料即可。在本发明中,所述光阴极修饰层优选为MoO3。在本发明中,所述光阴极修饰层的厚度优选为5~10nm。在本发明中,所述光阴极修饰层促进空穴更好的传输。After the humid air treatment is completed, the present invention preferably coats a photocathode modification layer on the surface of the hole transport layer after the humid air treatment to obtain a five-layer composite film structure. In the present invention, there is no special limitation on the material of the photocathode modification layer, and materials for the photocathode modification layer well known to those skilled in the art can be used. In the present invention, the photocathode modification layer is preferably MoO 3 . In the present invention, the thickness of the photocathode modification layer is preferably 5-10 nm. In the present invention, the photocathode modification layer promotes better hole transport.
在本发明中,所述涂覆的方式优选为真空蒸镀。在本发明中,所述真空蒸镀的真空度优选为高于3.5×10-4Pa,更优选为3.6~4×10-4Pa;所述真空蒸镀的蒸发速率优选为 In the present invention, the coating method is preferably vacuum evaporation. In the present invention, the vacuum degree of the vacuum evaporation is preferably higher than 3.5×10-4 Pa, more preferably 3.6~ 4 × 10-4 Pa; the evaporation rate of the vacuum evaporation is preferably
完成所述光阴极修饰层的涂覆后,本发明优选在所述光阴极修饰层表面涂覆光阴极层,得到钙钛矿太阳能电池。在本发明中,所述光阴极层优选为Au或Ag,更优选为Ag。在本发明中,所述光阴极层的厚度优选为80~120nm,更优选为90~110nm。在本发明中,所述涂覆的方式优选为真空蒸镀。在本发明中,所述真空蒸镀的真空度优选为高于3.5×10-4Pa,更优选为3.6~4×10-4Pa;所述真空蒸镀的蒸发速率优选为 After the coating of the photocathode modification layer is completed, the present invention preferably coats a photocathode layer on the surface of the photocathode modification layer to obtain a perovskite solar cell. In the present invention, the photocathode layer is preferably Au or Ag, more preferably Ag. In the present invention, the thickness of the photocathode layer is preferably 80-120 nm, more preferably 90-110 nm. In the present invention, the coating method is preferably vacuum evaporation. In the present invention, the vacuum degree of the vacuum evaporation is preferably higher than 3.5×10-4 Pa, more preferably 3.6~ 4 × 10-4 Pa; the evaporation rate of the vacuum evaporation is preferably
为了进一步说明本发明,下面结合实施例对本发明提供的钙钛矿太阳能电池的制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。In order to further illustrate the present invention, the preparation method of the perovskite solar cell provided by the present invention will be described in detail below in conjunction with examples, but they should not be construed as limiting the protection scope of the present invention.
对比例:Comparative example:
1.向0.46mol/L的异丙醇钛溶液中逐滴滴入等体积2mol/L的HCl溶液,配得摩尔浓度为0.23mol/L的TiO2前驱体溶液;1. Add an equal volume of 2mol/L HCl solution dropwise to the 0.46mol/L titanium isopropoxide solution to obtain a TiO2 precursor solution with a molar concentration of 0.23mol/L;
2.按照PbCl2:CH3NH3I:DMF=1.2mmol:3mmol:1mL的比例混合,在50℃下磁力搅拌12h,制得质量浓度为45wt%的钙钛矿前驱体溶液;2. Mix according to the ratio of PbCl 2 :CH 3 NH 3 I:DMF=1.2mmol:3mmol:1mL, and magnetically stir at 50°C for 12h to prepare a perovskite precursor solution with a mass concentration of 45wt%;
3.按72.3g Spiro-OMeTAD,28.8uL 4-叔丁基吡啶(TBP),17.5uL锂盐(Li-TFSI),溶于1mL氯苯溶剂的比例,配得摩尔浓度为0.17mol/L的空穴传输层前驱体溶液;3. According to the proportion of 72.3g Spiro-OMeTAD, 28.8uL 4-tert-butylpyridine (TBP), 17.5uL lithium salt (Li-TFSI), dissolved in 1mL chlorobenzene solvent, the molar concentration is 0.17mol/L Hole transport layer precursor solution;
4.采用表面方块电阻为7Ω/sq,透光率大于85%,刻蚀面积为总面积的1/3的FTO导电玻璃作为衬底及透明电极1,如图1所示;4. Use FTO conductive glass with a surface sheet resistance of 7Ω/sq, a light transmittance greater than 85%, and an etching area of 1/3 of the total area as the substrate and transparent electrode 1, as shown in Figure 1;
5.采用强度为26mW/cm2的UV紫外光处理衬底表面20min后,使用转速为6500rpm旋涂TiO2前驱体溶液,在空气中150℃先加热10min,随即升温至450℃下加热2h,之后对其氧等离子体处理表面5min,制得薄膜厚度为30nm的TiO2致密层作为电子传输层2;5. After treating the surface of the substrate with UV light with an intensity of 26mW/ cm2 for 20min, spin-coat the TiO2 precursor solution at a speed of 6500rpm, heat it in the air at 150°C for 10min, and then heat it up to 450°C for 2h. Afterwards, the surface was treated with oxygen plasma for 5min to obtain a TiO2 dense layer with a film thickness of 30nm as the electron transport layer 2;
6.采用旋涂法在电子传输层2上面旋涂浓度为45wt%的钙钛矿前驱体溶液,转速为2500rpm,旋转时间45s,然后在105℃下退火50min,得到层厚为400nm的钙钛矿薄膜作为吸光层,此过程需在惰性气体氛围中进行;6. Spin-coat a perovskite precursor solution with a concentration of 45wt% on the electron transport layer 2 with a spin-coating method at a speed of 2500rpm for a spin time of 45s, and then anneal at 105°C for 50min to obtain a perovskite with a layer thickness of 400nm The mineral thin film is used as a light-absorbing layer, and this process needs to be carried out in an inert gas atmosphere;
7.采用旋涂法在吸光层3上面旋涂浓度0.17mol/L的空穴传输层前驱体溶液,转速为4000rpm,旋转时间45s,得到薄膜厚度为100nm的空穴传输层,此过程需在惰性气体氛围中进行;7. Use the spin coating method to spin coat the hole transport layer precursor solution with a concentration of 0.17mol/L on the light-absorbing layer 3, the rotation speed is 4000rpm, and the rotation time is 45s to obtain a hole transport layer with a film thickness of 100nm. in an inert gas atmosphere;
8.将器件移到相对湿度低于30%的常温常压下静置10h(为NRT组);8. Move the device to a room temperature and pressure with a relative humidity lower than 30% and let it stand for 10 hours (NRT group);
9.采用真空热蒸镀方法,在真空度为3.7×10-4Pa下,分别以和的蒸发速率制得8nm MoO3以及100nm Ag的光阴极层。9. Using the vacuum thermal evaporation method, under the vacuum degree of 3.7×10 -4 Pa, the and The evaporation rate of 8nm MoO 3 and 100nm Ag photocathode layer.
太阳能电池性能表征参数主要有短路电流(JSC)、开路电压(VOC)、填充因子(FF)和光电转换效率(PCE)。其中,光电转换效率是表征太阳能电池的最关键指标,也是衡量太阳能电池性能的工业标准,表示单位面积的电池上输出的最大功率Pm和入射功率Pi的比值,即PCE=Pm/Pi=(JSC*VOC*FF)/Pi;填充因子表示单位受光面积的最大输出功率与JSC*VOC的比值,FF越大,表示太阳能电池性能越好,所以太阳能电池填充因子的提高,对于器件光电转换效率提升意义重大。本发明对钙钛矿太阳能电池的上述几种参数进行测定。The performance characterization parameters of solar cells mainly include short-circuit current (J SC ), open-circuit voltage (V OC ), fill factor (FF) and photoelectric conversion efficiency (PCE). Among them, the photoelectric conversion efficiency is the most critical index to characterize solar cells, and it is also an industrial standard to measure the performance of solar cells. It represents the ratio of the maximum output power P m to the incident power P i per unit area of the cell, that is, PCE=P m /P i =(J SC *V OC *FF)/P i ; fill factor represents the ratio of the maximum output power per unit light-receiving area to J SC *V OC , the larger the FF, the better the performance of the solar cell, so the fill factor of the solar cell The improvement is of great significance for the improvement of the photoelectric conversion efficiency of the device. The present invention measures the above-mentioned several parameters of the perovskite solar cell.
将对比例制备得到的钙钛矿太阳能电池器件置于标准太阳光模拟器下,用3M测试夹将透明电极和金属电极连接测试仪,进行测试,测试结构示意图如图2所示。The perovskite solar cell device prepared in the comparative example was placed under a standard solar simulator, and the transparent electrode and the metal electrode were connected to the tester with a 3M test clip for testing. The schematic diagram of the test structure is shown in Figure 2.
在室温空气中,采用100mW/cm2太阳光模拟器(Newport)AM1.5G光照下,使用电流-电压测试仪(Keithley2400)测得电流-电压值,测量结果如图3所示。读出开路电压VOC、短路电流密度JSC值,并计算出填充因子FF、光电转换效率PCE以及串联电阻RS、并联电阻RSH,如表1所示。In air at room temperature, under the light of 100mW/cm 2 solar simulator (Newport) AM1.5G, the current-voltage value was measured using a current-voltage tester (Keithley2400). The measurement results are shown in Figure 3. Read out the open circuit voltage V OC and short circuit current density J SC , and calculate the fill factor FF, photoelectric conversion efficiency PCE, series resistance R S , and parallel resistance R SH , as shown in Table 1.
对对比例制备的钙钛矿太阳能电池进行PL光谱测试,结果如图4所示。The PL spectrum test was carried out on the perovskite solar cell prepared in the comparative example, and the results are shown in Fig. 4 .
实施例1:Example 1:
1.向0.46mol/L的异丙醇钛溶液中逐滴加入等体积2mol/L的HCl溶液,在800rpm速率下磁力搅拌10h,得到摩尔浓度为0.23mol/L的TiO2前驱体溶液;1. Add an equal volume of 2mol/L HCl solution dropwise to a 0.46mol/L titanium isopropoxide solution, and stir magnetically for 10 hours at a rate of 800rpm to obtain a TiO precursor solution with a molar concentration of 0.23mol/L;
2.按照PbCl2:CH3NH3I:DMF=1.2mmol:3mmol:1mL的比例混合,50℃下在800rpm速率下磁力搅拌12h,制得质量浓度为45wt%的钙钛矿前驱体溶液;2. Mix according to the ratio of PbCl 2 :CH 3 NH 3 I:DMF=1.2mmol:3mmol:1mL, and magnetically stir at 800rpm at 50°C for 12h to prepare a perovskite precursor solution with a mass concentration of 45wt%.
3.按72.3g Spiro-OMeTAD,28.8uL4-叔丁基吡啶(TBP),17.5uL锂盐(Li-TFSI),溶于1mL氯苯溶剂的比例混合,在800rpm速率下磁力搅拌10h,得到摩尔浓度为0.17mol/L的空穴传输层前驱体溶液;3. According to the ratio of 72.3g Spiro-OMeTAD, 28.8uL 4-tert-butylpyridine (TBP), 17.5uL lithium salt (Li-TFSI), dissolved in 1mL chlorobenzene solvent, mix them magnetically at a rate of 800rpm for 10h to obtain mole A hole transport layer precursor solution with a concentration of 0.17mol/L;
4.采用表面方块电阻为7Ω/sq,透光率大于85%,刻蚀面积为总面积的1/3的FTO导电玻璃作为衬底及透明电极1,如图1所示;4. Use FTO conductive glass with a surface sheet resistance of 7Ω/sq, a light transmittance greater than 85%, and an etching area of 1/3 of the total area as the substrate and transparent electrode 1, as shown in Figure 1;
5.采用强度为26mW/cm2的UV紫外光处理衬底表面20min后,使用转速为6500rpm旋涂TiO2前驱体溶液,在空气中150℃先加热10min,随即以10℃/min速率升温至450℃下加热2h,之后对其氧等离子体处理表面5min,制得薄膜厚度为30nm的TiO2致密层作为电子传输层2;5. After treating the surface of the substrate with UV light with an intensity of 26mW/ cm2 for 20min, spin-coat the TiO2 precursor solution at a speed of 6500rpm, heat it in the air at 150°C for 10min, and then raise the temperature at a rate of 10°C/min to Heating at 450° C. for 2 hours, and then treating the surface with oxygen plasma for 5 minutes to prepare a TiO 2 dense layer with a film thickness of 30 nm as the electron transport layer 2;
6.采用旋涂法在电子传输层2上面旋涂浓度为45wt%的钙钛矿前驱体溶液,转速为2500rpm,旋转时间45s,110℃下退火50min,得到层厚为400nm的钙钛矿薄膜作为吸光层,此过程需在惰性气体氛围中进行;6. Spin-coat a perovskite precursor solution with a concentration of 45wt% on the electron transport layer 2 with a spin-coating method at 2500rpm, spin for 45s, and anneal at 110°C for 50min to obtain a perovskite film with a layer thickness of 400nm As a light-absorbing layer, this process needs to be carried out in an inert gas atmosphere;
7.采用旋涂法在吸光层3上面旋涂浓度0.17mol/L的空穴传输层前驱体溶液,转速为4000rpm,旋转时间45s,得到薄膜厚度为100nm的空穴传输层,此过程需在惰性气体氛围中进行;7. Use the spin coating method to spin coat the hole transport layer precursor solution with a concentration of 0.17mol/L on the light-absorbing layer 3, the rotation speed is 4000rpm, and the rotation time is 45s to obtain a hole transport layer with a film thickness of 100nm. in an inert gas atmosphere;
8.在常压下,用流速3L/min,相对湿度为48%的25℃空气气流稳定垂直吹向沉积有空穴传输层后的样品器件10h(为ART实施组);8. Under normal pressure, use a flow rate of 3L/min and a relative humidity of 48% at 25°C to blow stably and vertically at the sample device deposited with the hole transport layer for 10h (for the ART implementation group);
9.采用真空热蒸镀方法,在真空度为3.7×10-4Pa下,分别以和的蒸发速率制得8nm MoO3以及100nm Ag的光阴极层。9. Using the vacuum thermal evaporation method, under the vacuum degree of 3.7×10 -4 Pa, the and The evaporation rate of 8nm MoO 3 and 100nm Ag photocathode layer.
采用与对比例相同的方法对本实施例制备得到的钙钛矿太阳能电池进行测试,测试结果分别如图3、图4和表1所示。The perovskite solar cell prepared in this example was tested by the same method as the comparative example, and the test results are shown in Fig. 3, Fig. 4 and Table 1 respectively.
实施例2:Example 2:
采用与实施例1相同的方法,将步骤8替换为:在常压下,用流速3L/min,相对湿度为48%的45℃空气气流稳定垂直吹向沉积有空穴传输层后的样品器件10h(为Air T45实施组)。Using the same method as in Example 1, replace step 8 with: under normal pressure, with a flow rate of 3L/min, a relative humidity of 48% air flow at 45°C is stably blown vertically to the sample device after the hole transport layer is deposited 10h (implementation group for Air T45).
采用与实施例1相同的方法对本实施例制备得到的钙钛矿太阳能电池进行测试,测试结果分别如图3、图4和表1所示。The perovskite solar cell prepared in this example was tested by the same method as in Example 1, and the test results are shown in Fig. 3, Fig. 4 and Table 1 respectively.
实施例3:Embodiment 3:
采用与实施例1相同的方法,将步骤8替换为:在常压下,用流速3L/min,相对湿度为48%的65℃空气气流稳定垂直吹向沉积有空穴传输层后的样品器件10h(为Air T65实施组)。Using the same method as in Example 1, replace step 8 with: under normal pressure, with a flow rate of 3 L/min, a relative humidity of 48% of the 65 ° C air stream is stably blown vertically to the sample device after the hole transport layer is deposited 10h (implementation group for Air T65).
采用与实施例1相同的方法对本实施例制备得到的钙钛矿太阳能电池进行测试,测试结果分别如图3、图4和表1所示。The perovskite solar cell prepared in this example was tested by the same method as in Example 1, and the test results are shown in Fig. 3, Fig. 4 and Table 1 respectively.
表1钙钛矿太阳能电池的伏安性能参数Table 1 Volt-ampere performance parameters of perovskite solar cells
由以上实施例可以看出,按照本发明提供的制备方法制备的钙钛矿太阳能电池的PCE最高可达10.42%,填充因子可达0.7以上,开路电压VOC和短路电流JSC分别可达0.95V和15.24mA/cm2。As can be seen from the above examples, the PCE of the perovskite solar cell prepared according to the preparation method provided by the present invention can reach up to 10.42%, the fill factor can reach more than 0.7, and the open circuit voltage V OC and short circuit current J SC can reach 0.95 respectively. V and 15.24 mA/cm 2 .
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. It should be pointed out that those skilled in the art can make some improvements and modifications without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610446345.9A CN106025074B (en) | 2016-06-16 | 2016-06-16 | A kind of perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610446345.9A CN106025074B (en) | 2016-06-16 | 2016-06-16 | A kind of perovskite solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106025074A true CN106025074A (en) | 2016-10-12 |
CN106025074B CN106025074B (en) | 2018-03-16 |
Family
ID=57086976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610446345.9A Active CN106025074B (en) | 2016-06-16 | 2016-06-16 | A kind of perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106025074B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107994118A (en) * | 2017-11-13 | 2018-05-04 | 华中科技大学鄂州工业技术研究院 | Perovskite solar cell, double-level-metal electrode and preparation method thereof |
CN109524554A (en) * | 2018-11-26 | 2019-03-26 | 西安交通大学 | Perovskite/silicon lamination solar cell component deoxygenation packaging method of drying |
CN109753678A (en) * | 2018-11-17 | 2019-05-14 | 华中科技大学 | A method for calibrating the volt-ampere characteristic curve of solar cells |
CN110190193A (en) * | 2019-06-06 | 2019-08-30 | 中节能万润股份有限公司 | A kind of perovskite solar cell containing protective layer and preparation method thereof |
CN111490168A (en) * | 2020-04-01 | 2020-08-04 | 中南大学 | A preparation method of inorganic perovskite solar cells based on atmosphere regulation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4593680B1 (en) * | 2010-02-10 | 2010-12-08 | 昭和電工株式会社 | Reprocessing method for metal working tools |
CN104576930B (en) * | 2015-01-06 | 2017-05-03 | 宁波大学 | Perovskite solar cell and manufacturing method of perovskite solar cell |
-
2016
- 2016-06-16 CN CN201610446345.9A patent/CN106025074B/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107994118A (en) * | 2017-11-13 | 2018-05-04 | 华中科技大学鄂州工业技术研究院 | Perovskite solar cell, double-level-metal electrode and preparation method thereof |
CN109753678A (en) * | 2018-11-17 | 2019-05-14 | 华中科技大学 | A method for calibrating the volt-ampere characteristic curve of solar cells |
CN109524554A (en) * | 2018-11-26 | 2019-03-26 | 西安交通大学 | Perovskite/silicon lamination solar cell component deoxygenation packaging method of drying |
CN109524554B (en) * | 2018-11-26 | 2020-07-28 | 西安交通大学 | Dehumidification and oxygen removal packaging method for perovskite/silicon laminated solar cell module |
CN110190193A (en) * | 2019-06-06 | 2019-08-30 | 中节能万润股份有限公司 | A kind of perovskite solar cell containing protective layer and preparation method thereof |
CN110190193B (en) * | 2019-06-06 | 2022-11-15 | 中节能万润股份有限公司 | Perovskite solar cell containing protective layer and preparation method thereof |
CN111490168A (en) * | 2020-04-01 | 2020-08-04 | 中南大学 | A preparation method of inorganic perovskite solar cells based on atmosphere regulation |
Also Published As
Publication number | Publication date |
---|---|
CN106025074B (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification | |
CN106025074B (en) | A kind of perovskite solar cell and preparation method thereof | |
CN105609641B (en) | Perovskite type solar cell and preparation method thereof | |
CN103474575B (en) | A kind of be electron transfer layer hybrid solar cell and the preparation thereof of sulphur zinc oxide | |
CN104218109B (en) | A kind of high efficiency perovskite thin film solar cell and preparation method thereof | |
CN112018100A (en) | Silicon/perovskite laminated solar cell | |
CN104091889A (en) | Semiconductor perovskite solar cell and preparation method thereof | |
CN103474574A (en) | Hybrid solar cell with aluminum-doped zinc oxide nanorod as electron transfer layer | |
WO2022077981A1 (en) | Application of mxene and perovskite solar cell containing mxene | |
CN108389967A (en) | The extinction layer material of solar cell, broad-band gap perovskite solar cell and preparation method thereof | |
CN111129315A (en) | Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof | |
CN107359248B (en) | A kind of stabilization is without efficient organic solar batteries device of light bath and preparation method thereof | |
CN109802041B (en) | Non-fullerene perovskite planar heterojunction solar cell and preparation method thereof | |
CN107123693A (en) | A kind of efficient CdTe nanometer crystalline solar cell with high transparency window layer material processed based on solwution method and preparation method thereof | |
CN107369764A (en) | A kind of perovskite solar cell and preparation method for adulterating lead acetate trihydrate | |
CN104022224A (en) | Plane heterojunction perovskite solar cell capable of being processed through solutions and manufacturing method thereof | |
CN105977386A (en) | Perovskite solar cell of nano metal oxide hole transport layer and preparation method thereof | |
CN114695671A (en) | Perovskite solar cell, preparation method thereof and photovoltaic system | |
CN111081883A (en) | A high-efficiency and stable planar heterojunction perovskite solar cell and preparation method | |
CN108922968B (en) | Perovskite solar cell based on inorganic quantum dot copper indium selenium and preparation method thereof | |
CN108649124A (en) | A kind of inorganic perovskite solar cell of high efficiency and preparation method thereof | |
CN109851571B (en) | Conjugated organic small molecule interface modification material, preparation method and organic solar cell formed by conjugated organic small molecule interface modification material | |
CN110061137A (en) | A kind of perovskite battery and preparation method thereof preparing tin oxide electron transfer layer based on room temperature film-forming | |
CN110808333A (en) | A kind of perovskite solar cell based on copper-zinc-tin-sulfur-selenium hole transport layer and preparation method thereof | |
CN111063806B (en) | Perovskite solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |