CN106022510A - 一种基于多粒子群协同演化的人车混合疏散仿真优化方法 - Google Patents
一种基于多粒子群协同演化的人车混合疏散仿真优化方法 Download PDFInfo
- Publication number
- CN106022510A CN106022510A CN201610306666.9A CN201610306666A CN106022510A CN 106022510 A CN106022510 A CN 106022510A CN 201610306666 A CN201610306666 A CN 201610306666A CN 106022510 A CN106022510 A CN 106022510A
- Authority
- CN
- China
- Prior art keywords
- particle
- evacuation
- particle swarm
- particles
- swarm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000005457 optimization Methods 0.000 title claims abstract description 46
- 239000002245 particle Substances 0.000 claims abstract description 340
- 239000003016 pheromone Substances 0.000 claims abstract description 84
- 230000008569 process Effects 0.000 claims abstract description 31
- 238000004088 simulation Methods 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 claims abstract description 15
- 230000003993 interaction Effects 0.000 claims abstract description 10
- 239000013598 vector Substances 0.000 claims description 27
- 238000012804 iterative process Methods 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000011273 social behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Software Systems (AREA)
- Development Economics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Catching Or Destruction (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610306666.9A CN106022510B (zh) | 2016-05-11 | 2016-05-11 | 一种基于多粒子群协同演化的人车混合疏散仿真优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610306666.9A CN106022510B (zh) | 2016-05-11 | 2016-05-11 | 一种基于多粒子群协同演化的人车混合疏散仿真优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106022510A true CN106022510A (zh) | 2016-10-12 |
CN106022510B CN106022510B (zh) | 2019-04-05 |
Family
ID=57099819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610306666.9A Expired - Fee Related CN106022510B (zh) | 2016-05-11 | 2016-05-11 | 一种基于多粒子群协同演化的人车混合疏散仿真优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106022510B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107358333A (zh) * | 2017-05-24 | 2017-11-17 | 湖北工业大学 | 基于熵的多蚁群人车竞争‑协作疏散优化方法 |
CN108229078A (zh) * | 2018-03-19 | 2018-06-29 | 北京工业大学 | 一种城市交通场景中基于规则的群体运动模拟方法 |
CN109974690A (zh) * | 2019-03-18 | 2019-07-05 | 北京摩拜科技有限公司 | 车辆定位方法、设备及系统 |
CN114897289A (zh) * | 2022-03-22 | 2022-08-12 | 合肥工业大学 | 基于竞争粒子群算法的应急任务观测规划方法和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472828A (zh) * | 2013-09-13 | 2013-12-25 | 桂林电子科技大学 | 基于改进蚁群粒子群算法的移动机器人路径规划方法 |
CN104361178A (zh) * | 2014-11-20 | 2015-02-18 | 湖北工业大学 | 一种基于势能驱动元胞蚁群算法的室内疏散仿真优化方法 |
CN104715281A (zh) * | 2013-12-16 | 2015-06-17 | 湖北工业大学 | 一种基于多蚁群系统的混合交通流疏散路径规划方法 |
-
2016
- 2016-05-11 CN CN201610306666.9A patent/CN106022510B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472828A (zh) * | 2013-09-13 | 2013-12-25 | 桂林电子科技大学 | 基于改进蚁群粒子群算法的移动机器人路径规划方法 |
CN104715281A (zh) * | 2013-12-16 | 2015-06-17 | 湖北工业大学 | 一种基于多蚁群系统的混合交通流疏散路径规划方法 |
CN104361178A (zh) * | 2014-11-20 | 2015-02-18 | 湖北工业大学 | 一种基于势能驱动元胞蚁群算法的室内疏散仿真优化方法 |
Non-Patent Citations (2)
Title |
---|
宗欣露 等: "基于蚁群算法的人车混合疏散优化及混合比例分析", 《系统工程理论与实践》 * |
宗欣露 等: "多目标人车混合时空疏散模型研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107358333A (zh) * | 2017-05-24 | 2017-11-17 | 湖北工业大学 | 基于熵的多蚁群人车竞争‑协作疏散优化方法 |
CN107358333B (zh) * | 2017-05-24 | 2019-09-03 | 湖北工业大学 | 基于熵的多蚁群人车竞争-协作疏散优化方法 |
CN108229078A (zh) * | 2018-03-19 | 2018-06-29 | 北京工业大学 | 一种城市交通场景中基于规则的群体运动模拟方法 |
CN108229078B (zh) * | 2018-03-19 | 2021-11-05 | 北京工业大学 | 一种城市交通场景中基于规则的群体运动模拟方法 |
CN109974690A (zh) * | 2019-03-18 | 2019-07-05 | 北京摩拜科技有限公司 | 车辆定位方法、设备及系统 |
CN109974690B (zh) * | 2019-03-18 | 2021-07-09 | 汉海信息技术(上海)有限公司 | 车辆定位方法、设备及系统 |
CN114897289A (zh) * | 2022-03-22 | 2022-08-12 | 合肥工业大学 | 基于竞争粒子群算法的应急任务观测规划方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106022510B (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104361178B (zh) | 一种基于势能驱动元胞蚁群算法的室内疏散仿真优化方法 | |
CN110794842A (zh) | 基于势场的强化学习路径规划算法 | |
CN104573812B (zh) | 一种基于粒子萤火虫群优化算法的无人机航路路径确定方法 | |
CN113223305B (zh) | 基于强化学习的多路口交通灯控制方法、系统及存储介质 | |
CN109670270A (zh) | 基于多智能体深度强化学习的人群疏散仿真方法及系统 | |
CN112327923A (zh) | 一种多无人机协同路径规划方法 | |
CN110147099A (zh) | 一种基于改进鸽群优化的多无人机协同搜索方法 | |
CN105023426B (zh) | 一种城市公交路线选择方法 | |
CN103971160B (zh) | 基于复杂网络的粒子群优化方法 | |
CN107293115A (zh) | 一种用于微观仿真的交通流量预测方法 | |
CN103472828A (zh) | 基于改进蚁群粒子群算法的移动机器人路径规划方法 | |
CN109035767A (zh) | 一种考虑交通控制与诱导协同的潮汐车道优化方法 | |
CN110795833B (zh) | 基于猫群算法的人群疏散仿真方法、系统、介质及设备 | |
CN106295886A (zh) | 基于混沌理论的改进模糊神经网络公交车智能调度方法 | |
CN106022510A (zh) | 一种基于多粒子群协同演化的人车混合疏散仿真优化方法 | |
CN109357678A (zh) | 一种基于异质化鸽群优化算法的多无人机路径规划方法 | |
CN117313931B (zh) | 一种基于火灾场景下地铁站台乘客疏散时间的预测方法 | |
CN108536986A (zh) | 一种基于人工鱼群算法的层次化疏散仿真优化方法 | |
CN109346177A (zh) | 一种基于改进ga-bp算法的疾病症状数量预测方法 | |
CN112486185B (zh) | 在未知环境下基于蚁群和vo算法的路径规划方法 | |
CN107024220B (zh) | 基于强化学习蟑螂算法的机器人路径规划方法 | |
CN107358333B (zh) | 基于熵的多蚁群人车竞争-协作疏散优化方法 | |
Zong et al. | Pedestrian-vehicle mixed evacuation model based on multi-particle swarm optimization | |
Zeng et al. | Real-time traffic signal control with dynamic evolutionary computation | |
CN115762128B (zh) | 一种基于自注意力机制的深度强化学习交通信号控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zong Xinlu Inventor after: Fang Ce Inventor after: Wang Chunzhi Inventor after: Ye Zhiwei Inventor after: Liu Wei Inventor after: Xu Hui Inventor after: Chen Hongwei Inventor after: Jiang Yingli Inventor before: Zong Xinlu Inventor before: Wang Chunzhi Inventor before: Ye Zhiwei Inventor before: Liu Wei Inventor before: Xu Hui Inventor before: Chen Hongwei Inventor before: Jiang Yingli |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190405 Termination date: 20200511 |