CN106021796A - 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法 - Google Patents

一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法 Download PDF

Info

Publication number
CN106021796A
CN106021796A CN201610389334.1A CN201610389334A CN106021796A CN 106021796 A CN106021796 A CN 106021796A CN 201610389334 A CN201610389334 A CN 201610389334A CN 106021796 A CN106021796 A CN 106021796A
Authority
CN
China
Prior art keywords
life
rose cutter
cutter
span
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610389334.1A
Other languages
English (en)
Other versions
CN106021796B (zh
Inventor
孟漪
陈明
刘公雨
王呈栋
明伟伟
安庆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI TOOL FACTORY CO Ltd
Shanghai Jiaotong University
Original Assignee
SHANGHAI TOOL FACTORY CO Ltd
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI TOOL FACTORY CO Ltd, Shanghai Jiaotong University filed Critical SHANGHAI TOOL FACTORY CO Ltd
Priority to CN201610389334.1A priority Critical patent/CN106021796B/zh
Publication of CN106021796A publication Critical patent/CN106021796A/zh
Application granted granted Critical
Publication of CN106021796B publication Critical patent/CN106021796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Abstract

一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,首先通过实验测量方式获得一系列所述球头铣刀的后刀面磨损带平均宽度及其对应的已加工寿命数据,根据实测数据建立该球头铣刀的剩余寿命预测关系式和全寿命函数关系式,再在使用球头铣刀对铬钢叶片型面进行实际加工的过程中,结合所述球头铣刀的剩余寿命预测关系式和全寿命函数关系式实现对所述球头铣刀的剩余加工寿命的预测;包括步骤:采用球头铣刀铣削铬钢叶片试样的型面,其外法线与球头铣刀中心线偏转角为10°;每间隔一定加工时间测量并记录后刀面磨损带平均宽度和已加工寿命,根据实测数据建立球头铣刀的剩余寿命预测关系式和全寿命函数关系式,进而进行球头铣刀剩余加工寿命的预测。本发明操作简单有效,预测精确高,充分挖掘了刀具使用寿命。

Description

一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法
技术领域
本发明涉及金属切削加工刀具,具体涉及一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,属于机械切削加工技术领域。
背景技术
随着我国制造业数控加工技术的迅猛发展,数控机床在自动化生产中的应用越来越普遍。刀具作为制造系统中的核心部件之一,成本在整个制造系统中所占的比例高达7%,但其寿命却是最为薄弱的环节。数控加工刀具容易出现磨损和破损,既会影响工件质量,还有可能带来安全隐患,因此对于达到磨钝标准的刀具应停止使用,立即修磨。然而,受刀具材料和刃形精度的限制,其修磨次数是十分有限的。在实际生产中,采取合理措施提高刀具的使用寿命将有利于降低生产成本,提高资源利用率和生产效率,达到节能环保效果,进而提升制造型企业的核心竞争力。
近年来,我国对如何提高刀具的使用寿命开展了广泛研究。公开号为CN102218551A的中国发明专利提出了一种提高数控机床刀具的使用寿命的方法,针对不同的待加工材料选用不同的刀具,并在加工过程中设定好工艺参数,添加切削液,从而提高刀具的加工寿命。公开号为CN103419071A的中国发明专利提出了一种能够提高刀具切削寿命的方法,通过对比原始分形维数与实时分形维数并相应改变切削刀具的切削参数,从而实现对刀具的磨损情况进行实时监控,延长切削刀具的使用寿命。公开号为CN104850736A的中国发明专利提出了一种基于状态空间模型的高速数控铣床刀具寿命预测方法,利用贝叶斯方法实现刀具退化状态的实时迭代更新,并根据刀具状态失效阈值获得刀具的剩余寿命概率密度函数,实现了刀具的在线剩余寿命预测。公开号为CN103793762A的中国发明专利提出了一种基于小样本多类型参数的刀具寿命预测方法,根据获取的小样本刀具寿命试验数据,通过不断调整预测模型的迭代方向得到最终的刀具寿命预测模型,其特点是考虑了刀具的设计、制造和使用参数对刀具寿命的影响。公开号为CN104002195A的中国发明专利提出了一种基于能量的刀具寿命预测系统,通过对刀具切削过程中电流、电压信号的实时监测,进而得到刀具消耗能量的实时变化,从而预测刀具的剩余寿命。然而,上述专利有的只是通过调整加工工艺参数来延长刀具的使用寿命,并没有对刀具的剩余寿命进行预测进而充分挖掘刀具的剩余使用潜力;有的虽然给出了刀具剩余寿命的预测方法,但或者数学模型形式复杂,实际应用不便,或者搭建了高精度的测试设备,造价昂贵;有的单纯借助传统的理论公式和加工经验对刀具寿命加以预测的手段,计算难以全面且效率低下。
本发明通过对加工作业过程中的刀具使用状态进行实时跟踪,探索出一种既快速准确又简单易行的刀具寿命预测方法,进而实现刀具寿命的在线预测与管理,具有重要的现实意义。
发明内容
针对传统的刀具剩余寿命预测方法的不足,本发明提供一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,能够快速准确地对铣刀的寿命进行在线预测,使刀具使用寿命得到充分挖掘,从而提高产品质量、生产效率和资源利用率,降低生产成本。
为解决其技术问题,本发明所采取的技术方案如下:
一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:首先通过实验测量方式获得一系列所述球头铣刀的后刀面磨损带平均宽度及其对应的已加工寿命数据,根据实测数据建立该球头铣刀的剩余寿命预测关系式和全寿命函数关系式,再在使用球头铣刀对铬钢叶片型面进行实际加工的过程中,结合所述球头铣刀的剩余寿命预测关系式和全寿命函数关系式实现对所述球头铣刀的剩余加工寿命的预测。
进一步地,所述剩余寿命预测方法包括以下步骤:
1)安装第一把球头铣刀并进行数控机床开机前检查;
2)将铬钢叶片固定置放在机床工作台上,保持型面朝上且该型面的外法线与所述球头铣刀的中心线形成10°的偏转角;
3)开启机床,使用球头铣刀以主轴转速N1铣削所述铬钢叶片的型面,经历加工时间T后,停机并拆下球头铣刀,测量该球头铣刀的后刀面磨损带平均宽度VB,并按照公式X=N1×T计算该球头铣刀的已加工寿命X,记录该后刀面磨损带平均宽度VB及与其对应的已加工寿命X,之后将球头铣刀装回数控机床主轴上的原位置;
4)不断重复步骤3),获得并记录后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn],直至测得的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim,同时记录下当时的主轴转速N1与相应的极限加工寿命T1
5)应用高次多项式对步骤4)所得到的后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn]进行拟合,获得球头铣刀的剩余寿命预测关系式:
VB=a0+a1X+a2X2+…+anXn
6)选用规格参数与第一把球头铣刀相同的第二把球头铣刀,以主轴转速N2并保持其它铣削工艺参数不变,重复步骤1)至4),记录下主轴转速N2与相应的极限加工寿命T2
7)参照标准ISO-8688并引入刀具直径修正系数KR和加工进给修正系数Kf,建立球头铣刀全寿命函数关系式:
T=KR·Kf·f2(N)
其中,T为球头铣刀的极限加工寿命,N为主轴转速;
8)结合球头铣刀的剩余寿命预测关系式和全寿命函数关系式,预测所述球头铣刀的剩余加工寿命;
所述球头铣刀的已加工寿命X是指已完成的切削长度;
所述的后刀面磨损带平均宽度阈值VBlim是指球头铣刀发生磨损失效时最大的后刀面磨损带平均宽度;
所述的极限加工寿命T是指球头铣刀的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim时,该球头铣刀已完成的切削长度;
所述的剩余加工寿命是指进行预测的当时至发生磨损失效时,球头铣刀对铬钢叶片的可切削长度。
进一步地,所述的步骤3)中,所述拆下球头铣刀是将球头铣刀与刀柄整体拆下,将球头铣刀装回数控机床主轴上的原位置时只需将刀柄固装回主轴,以保证所述球头铣刀在整个加工过程中的坐标原点不变。
进一步地,所述的步骤8)中,结合球头铣刀的剩余寿命预测关系式和全寿命函数关系式,预测所述球头铣刀的剩余加工寿命的方法为:
测量加工中球头铣刀的后刀面磨损带平均宽度VBpresent,根据剩余寿命预测关系式反求出唯一实根,即实际已加工寿命Xreal,根据加工时数控机床的主轴转速N以及全寿命函数关系式,求出该球头铣刀的极限加工寿命Treal,则该球头铣刀的剩余加工寿命为Treal-Xreal
进一步地,所述的步骤4)中,所述后刀面磨损带平均宽度阈值VBlim取0.2~0.3mm。
进一步地,所述的步骤5)的剩余寿命预测关系式中,n=5。
本发明的有益效果是:
对比背景技术本发明具有如下优点:
(1)操作简单有效,预测精确高;
(2)能够快速准确地对球头铣刀的剩余寿命进行在线预测,达到了充分挖掘刀具使用寿命潜力的效果;
(3)提高了产品质量和生产效率,降低了生产成本。
附图说明
图1为本发明的加工状态示意图。
图2为实施例中球头铣刀后刀面磨损带平均宽度与已加工寿命之间的关系曲线图。
具体实施方式
本发明所述铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,首先通过实验测量方式获得一系列所述球头铣刀的后刀面磨损带平均宽度及其对应的已加工寿命数据,根据实测数据建立该球头铣刀的剩余寿命预测关系式和全寿命函数关系式,再在使用球头铣刀对铬钢叶片型面进行实际加工的过程中,结合所述球头铣刀的剩余寿命预测关系式和全寿命函数关系式实现对所述球头铣刀的剩余加工寿命的预测。
所述剩余寿命预测方法包括以下步骤:
1)安装第一把球头铣刀并进行数控机床开机前检查。
2)将铬钢叶片试样固定置放在机床工作台上,保持型面朝上且该型面的外法线与所述球头铣刀的旋转中心线形成10°的偏转角。
3)开启数控机床,使用球头铣刀以主轴转速N1、进给量F和切削深度Ap对所述铬钢叶片试样的型面进行粗铣,经历加工时间T后,停机并将球头铣刀与刀柄整体拆下,测量该球头铣刀的后刀面磨损带平均宽度VB,并按照公式X=N1×T计算该球头铣刀的已加工寿命(已切削长度)X,记录该后刀面磨损带平均宽度VB及与其对应的已加工寿命X,之后将球头铣刀装回数控机床主轴上的原位置,将球头铣刀装回主轴原位置时只需将刀柄安装部固装回主轴,保证球头铣刀在整个加工过程中的坐标原点不变。
4)不断重复步骤3),获得并记录后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn],直至测得的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim,一般取0.2~0.3mm,同时记录下当时的主轴转速N1与相应的极限加工寿命T1(极限切削长度)。
5)应用高次多项式对步骤4)所得到的后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn]进行拟合,获得球头铣刀的剩余寿命预测关系式:
VB=a0+a1X+a2X2+…+anXn
其中,a0,a1,a2,…an为多项式的系数,n一般取5。
6)选用规格参数与第一把球头铣刀相同的第二把球头铣刀,改变主轴转速为N2,并保持其它铣削工艺参数不变,重复步骤1)至4),记录下主轴转速N2与相应的极限加工寿命T2
7)参照标准ISO-8688并引入刀具直径修正系数KR和加工进给修正系数Kf,建立球头铣刀全寿命函数关系式:
T=KR·Kf·f2(N)
其中,T为球头铣刀的极限加工寿命,N为主轴转速。
具体方法为:
①在双对数坐标系lg N-lg T中,求出过已知两点(lg N1,lg T1)和(lg N2,lg T2)的直线方程lg T=f3(lg N);
②变换上述直线方程得到T=f2(N);
③引入刀具直径修正系数KR和加工进给修正系数Kf,进而得到球头铣刀全寿命公式。
8)结合球头铣刀的剩余寿命预测关系式和全寿命函数关系式,预测所述球头铣刀的剩余加工寿命(剩余可切削长度),其具体方法为:
①测量加工现场中球头铣刀的后刀面磨损带平均宽度VBpresent,根据剩余寿命预测关系式反求出唯一实根,即实际已加工寿命Xreal
②根据加工时数控机床的主轴转速N、进给量、刀具直径以及全寿命函数关系式,求出该球头铣刀的极限加工寿命Treal
③则该球头铣刀的剩余加工寿命为Treal-Xreal
上述步骤中,所述球头铣刀的已加工寿命X是指已完成的切削长度;所述的后刀面磨损带平均宽度阈值VBlim是指球头铣刀发生磨损失效时最大的后刀面磨损带平均宽度;所述的极限加工寿命T是指球头铣刀的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim时,该球头铣刀已完成的切削长度;所述的剩余加工寿命是指进行预测的当时至发生磨损失效时,球头铣刀对铬钢叶片的可切削长度。
下面结合附图和实施例对本发明作详细说明,但本发明的保护范围不限于下述的实施例。
实施例
试验刀具为国产R5球头铣刀,4刃,具体参数为R5×4°×D16×120L。加工用的数控机床为美国赫克公司生产的VMX42型五轴联动数控加工中心,加工试样为铬钢叶片。
应用本发明对铬钢叶片型面加工球头铣刀的剩余寿命进行预测的方法,具体步骤如下:
(1)安装球头铣刀1,如图1所示,并进行数控机床开机前检查;
(2)将铬钢叶片试样2通过专用夹具固定于工作台上,保持型面朝上且其外法线与球头铣刀中心线偏转成10°角;
(3)开启机床,在主轴转速N1为3800rpm、进给量F为1520mm/min和切削深度Ap为0.8mm的条件下,用所述R5球头铣刀1对叶片2的型面进行粗铣,经历加工时间T后,停机并将球头铣刀1与刀柄整体拆下,通过超景深三维显微镜测量其后刀面磨损带平均宽度为0.072mm,同时按照公式X=N1×T计算其已加工寿命(已切削长度)为629m,之后将球头铣刀1的刀柄安装部固装回主轴,从而将球头铣刀1装回主轴原位置,保证了球头铣刀1在整个加工过程中的坐标原点不变。
(4)重复步骤(3)直至后刀面磨损带平均宽度达到其阈值0.2mm,获得球头铣刀后刀面磨损带平均宽度数据依次为0,0.072,0.103,0.121,0.137,0.146,0.171,0.234;对应的后刀面磨损带平均宽度序列为[0,0.072,0.103,0.121,0.137,0.146,0.171,0.234]。球头铣刀已加工寿命数据依次为0,629,1167,1788,2578,3239,3980,4367;对应的已加工寿命序列为[0,629,1167,1788,2578,3239,3980,4367];同时记录下主轴转速3800rpm与相应的极限加工寿命(极限切削长度)4228m。
(5)应用五次多项式对步骤(4)中的后刀面磨损带平均宽度序列和已加工寿命序列进行拟合,如图2所示,获得球头铣刀1的剩余寿命预测关系式为:
VB=-1.19×10-4+1.85×10-4X-1.52×10-7X2+7.87×10-11X3-2.06×10-14X4+2.05×10-18X5 (A)
(6)选择另一规格参数相同的球头铣刀,改变主轴转速为5400rpm,保持铣削工艺参数不变,重复步骤(1)~(4),记录相应的极限加工寿命4026m。
(7)参照标准ISO-8688并引入修正系数KR和Kf,建立球头铣刀全寿命函数关系式为:
T=KR·Kf·104.12483·N-0.13937 (B)。
该全寿命函数关系式的具体建立方法为:
①在双对数坐标系lg N-lg T中,求出过已知两点(lg 3800,lg 4228)和(lg 5400,lg 4026)的直线方程lg T=-0.13937lg N+4.12483;
②变换上述直线方程得到T=104.12483·N-0.13937
③引入刀具直径修正系数KR和加工进给修正系数Kf,进而得到球头铣刀全寿命函数关系式。
以本实施例中的R5球头铣刀为参考基准,设定其刀具直径修正系数KR=1,加工进给修正系数Kf=1。
(8)结合球头铣刀剩余寿命预测公式和全寿命公式,预测球头铣刀的剩余加工寿命(剩余可切削长度)。
以下结合一具体案例对应用球头铣刀剩余寿命预测关系式和全寿命函数关系式预测其剩余加工寿命的过程作详细说明:
假设加工现场采用刀具为一R3球头铣刀,铣削工艺参数为:主轴转速6400rpm,进给量250mm/min,切削深度0.3mm。球头铣刀工作一段时间后,测得其后刀面磨损带平均宽度为0.12;试估计该球头铣刀的剩余加工寿命。
对于上述问题,求解过程如下:
①考虑刀具直径对球头铣刀极限加工寿命的影响,对于R3球头铣刀,取KR=0.9;
②考虑进给量对球头铣刀极限加工寿命的影响,由于进给量250mm/min小于实施例中R5球头铣刀的进给量1520mm/min,取Kf=1.4;
③将已知量代入式(B),求得该球头铣刀的极限加工寿命Treal=4951m;
④将已知量代入式(A),通过MATLAB软件求得其唯一实根Xreal=1740m;
⑤该R3球头铣刀的剩余加工寿命即为Treal-Xreal=3211m。

Claims (6)

1.一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:首先通过实验测量方式获得一系列所述球头铣刀的后刀面磨损带平均宽度及其对应的已加工寿命数据,根据实测数据建立该球头铣刀的剩余寿命预测关系式和全寿命函数关系式,再在使用球头铣刀对铬钢叶片型面进行实际加工的过程中,结合所述球头铣刀的剩余寿命预测关系式和全寿命函数关系式实现对所述球头铣刀的剩余加工寿命的预测。
2.根据权利要求1所述的铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:所述剩余寿命预测方法包括以下步骤:
1)安装第一把球头铣刀并进行数控机床开机前检查;
2)将铬钢叶片固定置放在机床工作台上,保持型面朝上且该型面的外法线与所述球头铣刀的中心线形成10°的偏转角;
3)开启机床,使用球头铣刀以主轴转速N1铣削所述铬钢叶片的型面,经历加工时间T后,停机并拆下球头铣刀,测量该球头铣刀的后刀面磨损带平均宽度VB,并按照公式X=N1×T计算该球头铣刀的已加工寿命X,记录该后刀面磨损带平均宽度VB及与其对应的已加工寿命X,之后将球头铣刀装回数控机床主轴上的原位置;
4)不断重复步骤3),获得并记录后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn],直至测得的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim,同时记录下当时的主轴转速N1与相应的极限加工寿命T1
5)应用高次多项式对步骤4)所得到的后刀面磨损带平均宽度的测量值序列[VB1,VB2,…,VBn]和相应的已加工寿命值序列[X1,X2,…,Xn]进行拟合,获得球头铣刀的剩余寿命预测关系式:
VB=a0+a1X+a2X2+…+anXn
6)选用规格参数与第一把球头铣刀相同的第二把球头铣刀,以主轴转速N2并保持其它铣削工艺参数不变,重复步骤1)至4),记录下主轴转速N2与相应的极限加工寿命T2
7)参照标准ISO-8688并引入刀具直径修正系数KR和加工进给修正系数Kf,建立球头铣刀全寿命函数关系式:
T=KR·Kf·f2(N)
其中,T为球头铣刀的极限加工寿命,N为主轴转速;
8)结合球头铣刀的剩余寿命预测关系式和全寿命函数关系式,预测所述球头铣刀的剩余加工寿命;
所述球头铣刀的已加工寿命X是指已完成的切削长度;
所述的后刀面磨损带平均宽度阈值VBlim是指球头铣刀发生磨损失效时最大的后刀面磨损带平均宽度;
所述的极限加工寿命T是指球头铣刀的后刀面磨损带平均宽度VB达到预设的后刀面磨损带平均宽度阈值VBlim时,该球头铣刀已完成的切削长度;
所述的剩余加工寿命是指进行预测的当时至发生磨损失效时,球头铣刀对铬钢叶片的可切削长度。
3.根据权利要求2所述的铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:所述的步骤3)中,所述拆下球头铣刀是将球头铣刀与刀柄整体拆下,将球头铣刀装回数控机床主轴上的原位置时只需将刀柄固装回主轴,以保证所述球头铣刀在整个加工过程中的坐标原点不变。
4.根据权利要求2所述的铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:所述的步骤8)中,结合球头铣刀的剩余寿命预测关系式和全寿命函数关系式,预测所述球头铣刀的剩余加工寿命的方法为:
测量加工中球头铣刀的后刀面磨损带平均宽度VBpresent,根据剩余寿命预测关系式反求出唯一实根,即实际已加工寿命Xreal,根据加工时数控机床的主轴转速N以及全寿命函数关系式,求出该球头铣刀的极限加工寿命Treal,则该球头铣刀的剩余加工寿命为Treal-Xreal
5.根据权利要求2所述的铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:所述的步骤4)中,所述后刀面磨损带平均宽度阈值VBlim取0.2~0.3mm。
6.根据权利要求2所述的铬钢叶片型面加工用球头铣刀的剩余寿命预测方法,其特征在于:所述的步骤5)的剩余寿命预测关系式中,n=5。
CN201610389334.1A 2016-06-03 2016-06-03 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法 Active CN106021796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610389334.1A CN106021796B (zh) 2016-06-03 2016-06-03 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610389334.1A CN106021796B (zh) 2016-06-03 2016-06-03 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法

Publications (2)

Publication Number Publication Date
CN106021796A true CN106021796A (zh) 2016-10-12
CN106021796B CN106021796B (zh) 2018-12-21

Family

ID=57090598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610389334.1A Active CN106021796B (zh) 2016-06-03 2016-06-03 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法

Country Status (1)

Country Link
CN (1) CN106021796B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106650119A (zh) * 2016-12-27 2017-05-10 沈阳航空航天大学 Cfrp与钛合金叠层结构钻孔刀具寿命的预测方法
CN108132646A (zh) * 2016-12-01 2018-06-08 财团法人资讯工业策进会 加工参数调整系统及加工参数调整方法
CN108536938A (zh) * 2018-03-29 2018-09-14 上海交通大学 一种机床刀具寿命预测系统及预测方法
CN108637794A (zh) * 2018-05-14 2018-10-12 苏州苏相机器人智能装备有限公司 一种铣刀寿命控制方法
CN108684150A (zh) * 2018-08-31 2018-10-19 广州兴森快捷电路科技有限公司 印制电路板钻孔的孔限计算方法及系统
CN114536104A (zh) * 2022-03-25 2022-05-27 成都飞机工业(集团)有限责任公司 一种刀具寿命动态预测方法
CN116011263A (zh) * 2023-03-27 2023-04-25 南昌新宝路航空科技有限公司 刀具使用寿命的预测方法及数控刀具的调度方法和系统
CN117592976A (zh) * 2024-01-19 2024-02-23 山东豪泉软件技术有限公司 一种刀具剩余寿命预测方法、装置、设备及介质
CN117592976B (zh) * 2024-01-19 2024-04-26 山东豪泉软件技术有限公司 一种刀具剩余寿命预测方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278961A (zh) * 2011-03-21 2011-12-14 天津大学 掘进机盘形滚刀磨损量预估计算方法
CN103419071A (zh) * 2013-08-08 2013-12-04 洛阳理工学院 一种能够提高刀具切削寿命的方法
EP2696251A2 (de) * 2012-08-07 2014-02-12 Prüftechnik Dieter Busch AG Verfahren zum Überwachen von rotierenden Maschinen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278961A (zh) * 2011-03-21 2011-12-14 天津大学 掘进机盘形滚刀磨损量预估计算方法
EP2696251A2 (de) * 2012-08-07 2014-02-12 Prüftechnik Dieter Busch AG Verfahren zum Überwachen von rotierenden Maschinen
CN103419071A (zh) * 2013-08-08 2013-12-04 洛阳理工学院 一种能够提高刀具切削寿命的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘锐 等: "铣刀磨损量监测和剩余寿命预测方法研究", 《现代制造工程》 *
谢萍 等: "立铣刀寿命试验", 《GB/T 16460-1996》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132646A (zh) * 2016-12-01 2018-06-08 财团法人资讯工业策进会 加工参数调整系统及加工参数调整方法
CN106650119A (zh) * 2016-12-27 2017-05-10 沈阳航空航天大学 Cfrp与钛合金叠层结构钻孔刀具寿命的预测方法
CN108536938A (zh) * 2018-03-29 2018-09-14 上海交通大学 一种机床刀具寿命预测系统及预测方法
CN108637794A (zh) * 2018-05-14 2018-10-12 苏州苏相机器人智能装备有限公司 一种铣刀寿命控制方法
CN108637794B (zh) * 2018-05-14 2019-07-16 苏州苏相机器人智能装备有限公司 一种铣刀寿命控制方法
CN108684150A (zh) * 2018-08-31 2018-10-19 广州兴森快捷电路科技有限公司 印制电路板钻孔的孔限计算方法及系统
CN108684150B (zh) * 2018-08-31 2019-12-24 广州兴森快捷电路科技有限公司 印制电路板钻孔的孔限计算方法及系统
CN114536104A (zh) * 2022-03-25 2022-05-27 成都飞机工业(集团)有限责任公司 一种刀具寿命动态预测方法
CN116011263A (zh) * 2023-03-27 2023-04-25 南昌新宝路航空科技有限公司 刀具使用寿命的预测方法及数控刀具的调度方法和系统
CN117592976A (zh) * 2024-01-19 2024-02-23 山东豪泉软件技术有限公司 一种刀具剩余寿命预测方法、装置、设备及介质
CN117592976B (zh) * 2024-01-19 2024-04-26 山东豪泉软件技术有限公司 一种刀具剩余寿命预测方法、装置、设备及介质

Also Published As

Publication number Publication date
CN106021796B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN106021796A (zh) 一种铬钢叶片型面加工用球头铣刀的剩余寿命预测方法
CN103009007B (zh) 核电站核主泵叶轮的加工工艺
CN103753353B (zh) 一种快速测定铣刀偏心的非接触式激光测量方法
CN101590614B (zh) 基于形状复制的数控铣削加工刀具磨损测量方法
CN105205221B (zh) 一种重型数控机床精度可靠性分析方法
CN103433807B (zh) 一种铣削力模型工艺参数的优化方法
CN108549320A (zh) 一种基于粗糙度的钛合金铣削参数和刀具磨损控制方法
CN103419071B (zh) 一种能够提高刀具切削寿命的方法
CN105269402A (zh) 一种基于铣削加工的钛合金材料表面粗糙度预测方法
CN110262397A (zh) 车铣加工空间螺旋次摆线运动轨迹及瞬时切削力预测模型
Liu et al. Study on the effect of cutting parameters on bamboo surface quality using response surface methodology
Fomin Microgeometry of surfaces after profile milling with the use of automatic cutting control system
CN109877650B (zh) 一种棒料剪切刀具寿命预测方法
CN108637794A (zh) 一种铣刀寿命控制方法
Denkena et al. Simulation-based surface roughness modelling in end milling
CN103878447A (zh) 精密大型分装式复合渐开线内齿轮拉刀及其刃磨方法
CN107283219A (zh) 一种切削加工方法及装置
CN104551560A (zh) 一种叶根量具的加工及检验方法
CN206848793U (zh) 超大薄壁零件五轴数控加工系统
CN112720062B (zh) 一种测量微钻各部分载荷分布的方法
CN108890389B (zh) 一种利用尺度效应规划进给速度的方法
CN112059228A (zh) 一种推移杆连接座的加工方法
Hong et al. Characterising energy efficiency in maching processes: A milling case
Guo et al. Dynamic reliability analysis of cutting tool for milling difficult to machine materials Ti-6Al-4V
Sui et al. Modeling and compensation analysis of ball-end milling cutter wear

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant