CN106011829B - 一种抗菌不锈钢及其制备方法 - Google Patents

一种抗菌不锈钢及其制备方法 Download PDF

Info

Publication number
CN106011829B
CN106011829B CN201610506516.2A CN201610506516A CN106011829B CN 106011829 B CN106011829 B CN 106011829B CN 201610506516 A CN201610506516 A CN 201610506516A CN 106011829 B CN106011829 B CN 106011829B
Authority
CN
China
Prior art keywords
stainless steel
solution
preparation
bacteria stainless
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610506516.2A
Other languages
English (en)
Other versions
CN106011829A (zh
Inventor
詹玮婷
倪红卫
陈荣生
胡万培
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201610506516.2A priority Critical patent/CN106011829B/zh
Publication of CN106011829A publication Critical patent/CN106011829A/zh
Application granted granted Critical
Publication of CN106011829B publication Critical patent/CN106011829B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

本发明具体涉及一种抗菌不锈钢及其制备方法。其技术方案是:在‑5~40℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积0.1~72h,再置于含钛离子的溶液中沉积0.1~6h,然后置于含银离子的溶液中沉积0.1~6h,即得到抗菌不锈钢。其中:多巴胺溶液的浓度为0.01~1mol/L;含钛离子溶液的浓度为0.001~1mol/L;含银离子溶液的浓度为0.001~1mol/L。本发明工艺简单、环境友好和成本低廉;用该方法所制备的抗菌不锈钢的表面抗菌纳米膜层结构规整有序、与基材结合牢固、耐腐蚀性强和硬度高,有光照和无光照条件下均具有优良的抗菌性能。

Description

一种抗菌不锈钢及其制备方法
技术领域
本发明属于不锈钢材料领域。具体涉及一种抗菌不锈钢及其制备方法。
背景技术
不锈钢在日常生活中的应用十分广泛,它不仅光洁美观而且能够耐腐蚀并防锈。随着人们的健康意识和卫生防菌意识日益提高,具有防菌抗菌杀菌功能的抗菌不锈钢应运而生。从实际应用来看,抗菌不锈钢所利用的更多的是不锈钢表面的抗菌性能,而合金型抗菌不锈钢则是在不锈钢表面和内部都含有抗菌金属离子,这不仅造成一定的浪费,而且也增加了生产成本和技术要求,因此,表面抗菌不锈钢有着极大的应用前景和研究价值。然而,现有表面抗菌不锈钢技术存在如下问题:
一是抗菌效果滞后。一般需要达到12小时以上甚至24小时才开始杀菌,大大限制了不锈钢在公共卫生场所的应用。如“一种离子液体修饰的抗菌不锈钢材料的制备方法”(CN201410373147.5)专利技术,处理后的不锈钢在大肠杆菌培养液中抗菌12h后显现出比较明显的抑制效果。
二是抗菌条件有限。有些表面抗菌不锈钢需要紫外光辐照达到光催化抗菌效果,这不仅在公共场所难以满足要求,且在工业以及家用领域对人体将产生一定伤害,同时在无光条件下抗菌效果难以保持。
三是抗菌薄膜制备工艺存在缺陷。所制备的涂层过厚,与基材结合不牢固,容易剥落,同时薄膜表面结构不可控,纳米难以保持均匀,难以达到纳米尺寸效应。
发明内容
本发明旨在克服已有技术缺陷,目的是提供一种工艺简单、环境友好和成本低廉的抗菌不锈钢的制备方法;用该方法制备的抗菌不锈钢的表面抗菌纳米膜层结构规整有序、与基材结合牢固、耐腐蚀性强和硬度高,有光照和无光照条件下的抗菌性能优良。
为实现上述目的,本发明采用的技术方案是:在-5~40℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积0.1~72h,再置于含钛离子的溶液中沉积0.1~6h,然后置于含银离子的溶液中沉积0.1~6h,即得到抗菌不锈钢。
所述多巴胺溶液的浓度为0.01~1mol/L,pH值为8~10;
所述含钛离子溶液的浓度为0.001~1mol/L,pH值为1~8;
所述含银离子溶液的浓度为0.001~1mol/L,pH值为4~8。
所述含钛离子溶液为氟钛酸铵溶液、硫酸钛溶液和四氯化钛溶液中的一种。
所述含银离子溶液为硫酸银溶液、硝酸银溶液和氯化银溶液中的一种。
所述表面预处理是:先将不锈钢表面打磨至粗糙度小于Ra10μm,再先后在无水乙醇和蒸馏水中超声清洗,吹干。
由于采用上述方案,本发明与现有技术相比,具有以下优点:
1)本发明的制备过程是在常温下进行,生产过程简单,制备周期短,能耗小;所需的仪器设备投资少,所用原料价格低廉,利用率高,没有环境污染,适于批量生产。
2)本发明采用的溶液浸置法属于非线性过程,可对大面积和形状复杂的不锈钢制品进行纳米化处理。
3)本发明制备的抗菌不锈钢基本不改变不锈钢的尺寸形状,能保持原有材料的尺寸精度和表面粗糙度。
本发明制备的抗菌不锈钢:经金相显微镜观察表明,不锈钢膜层非常平滑,无凸起或凹陷区域;采用干、湿胶带实验测定不锈钢表面纳米薄膜与基体的结合性能,结果表明,膜层与不锈钢基体结合非常牢固,无脱落现象;采用电化学工作站测量不锈钢耐腐蚀性能,结果表明,具有纳米孔阵列薄膜的不锈钢表面耐腐蚀性能与制备前的不锈钢耐腐蚀性能相比没有明显改变;经显微硬度计检测,其表面硬度与制备前的不锈钢的表面硬度相比没有明显改变。
4)本发明工艺参数可精确控制,通过改变反应时间、反应温度和溶液浓度,能调整纳米抗菌涂层的形貌、组成和微观结构,重复性好。
5)本发明所得纳米膜层保持在20nm左右,表面结合能大,与基材结合力强,且附着均匀牢固,无脱落现象,耐腐蚀性强。
6)本发明所得TiO2/Ag纳米复合结构在10nm以内,在有光和无光条件下,都可以极大地提高纳米薄膜的抗菌性能,并可控调整复合结构,分布规整有序,且不锈钢耐腐蚀性强和硬度高。
7)本发明所制备的抗菌不锈钢表面细菌培养时间为15min时,在可见光辐照下的抗菌率达到99%以上,在无光条件下的抗菌率达到95%以上;本发明所制备的抗菌不锈钢表面细菌培养时间为180min时,在可见光辐照下的抗菌率达到99%以上,在无光条件下的抗菌率达到99%以上。结果表明,所制备的抗菌不锈钢在有光照和无光照条件下,对细菌均有优良的抗菌性能。
所以,本发明工艺简单、环境友好和成本低廉;用该方法所制备的抗菌不锈钢的表面抗菌纳米膜层结构规整有序、与基材结合牢固、耐腐蚀性强和硬度高,有光照和无光照条件下均具有优良的抗菌性能。
具体实施方式
下面结合具有实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的技术参数统一描述如下,实施例中不再赘述:
所述表面预处理是:先将不锈钢表面打磨至粗糙度小于Ra10μm,再先后在无水乙醇和蒸馏水中超声清洗,吹干。
所述多巴胺溶液的浓度为0.01~1mol/L,pH值为8~10。
实施例1
一种抗菌不锈钢及其制备方法。在-5~10℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积0.1~3h,再置于含钛离子的溶液中沉积0.1~1h,然后置于含银离子的溶液中沉积0.1~1h,即得到抗菌不锈钢。
所述含钛离子溶液的浓度为0.001~0.005mol/L,pH值为6~8。
所述含银离子溶液的浓度为0.001~0.005mol/L,pH值为6~8。
所述含钛离子溶液为氟钛酸铵溶液;所述含银离子溶液为硝酸银溶液。
实施例2
一种抗菌不锈钢及其制备方法。在10~25℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积3~12h,再置于含钛离子的溶液中沉积1~3h,然后置于含银离子的溶液中沉积1~3h,即得到抗菌不锈钢。
所述含钛离子溶液的浓度为0.005~0.05mol/L,pH值为4~6。
所述含银离子溶液的浓度为0.005~0.05mol/L,pH值为4~6。
所述含钛离子溶液为硫酸钛溶液;所述含银离子溶液为硫酸银溶液。
实施例3
一种抗菌不锈钢及其制备方法。在15~30℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积12~36h,再置于含钛离子的溶液中沉积3~5h,然后置于含银离子的溶液中沉积3~5h,即得到抗菌不锈钢。
所述含钛离子溶液的浓度为0.05~0.5mol/L,pH值为3~5。
所述含银离子溶液的浓度为0.05~0.5mol/L,pH值为3~5。
所述含钛离子溶液为四氯化钛溶液;所述含银离子溶液为氯化银溶液。
实施例4
一种抗菌不锈钢及其制备方法。在30~40℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积36~72h,再置于含钛离子的溶液中沉积4~6h,然后置于含银离子的溶液中沉积4~6h,即得到抗菌不锈钢。
所述含钛离子溶液的浓度为0.5~1mol/L,pH值为1~3。
所述含银离子溶液的浓度为0.5~1mol/L,pH值为1~3。
所述含钛离子溶液为四氯化钛溶液;所述含银离子溶液为硝酸银溶液。
本具体实施方式与现有技术相比,具有以下优点:
1)本具体实施方式的制备过程在常温下进行,生产过程简单,制备周期短,能耗小;所需的仪器设备投资少;所用原料价格低廉,利用率高,没有环境污染,适于批量生产。
2)本具体实施方式采用的溶液浸置法属于非线性过程,可对大面积和形状复杂的不锈钢制品进行纳米化处理。
3)本具体实施方式制备的抗菌不锈钢基本不改变不锈钢的尺寸形状,能保持原有材料的尺寸精度和表面粗糙度。
本具体实施方式制备的抗菌不锈钢:经金相显微镜观察表明,不锈钢膜层非常平滑,无凸起或凹陷区域;采用干、湿胶带实验测定不锈钢表面纳米薄膜与基体的结合性能,结果表明,膜层与不锈钢基体结合非常牢固,无脱落现象;采用电化学工作站测量不锈钢耐腐蚀性能,结果表明,具有纳米孔阵列薄膜的不锈钢表面耐腐蚀性能与制备前的不锈钢耐腐蚀性能相比没有明显改变;经显微硬度计检测,其表面硬度与制备前的不锈钢的表面硬度相比没有明显改变。
4)本具体实施方式工艺参数可精确控制,通过改变反应时间、反应温度和溶液浓度,能调整纳米抗菌涂层的形貌、组成和微观结构,重复性好。
5)本具体实施方式所得纳米膜层保持在20nm左右,表面结合能大,与基材结合力强,且附着均匀牢固,无脱落现象,耐腐蚀性强。
6)本具体实施方式所得TiO2/Ag纳米复合结构在10nm以内,在有光和无光条件下,都可以极大地提高纳米薄膜的抗菌性能,并可控调整复合结构,分布规整有序,且不锈钢耐腐蚀性强和硬度高。
7)本具体实施方式所制备的抗菌不锈钢表面细菌培养时间为15min时:在可见光辐照下的抗菌率达到99%以上,在无光条件下的抗菌率达到95%以上;本具体实施方式所制备的抗菌不锈钢表面细菌培养时间为180min时,在可见光辐照下的抗菌率达到99%以上,在无光条件下的抗菌率达到99%以上。结果表明,所制备的抗菌不锈钢在有光照和无光照条件下,对细菌均有优良的抗菌性能。
因此,本具体实施方式工艺简单、环境友好和成本低廉;用该方法所制备的抗菌不锈钢的表面抗菌纳米膜层结构规整有序、与基材结合牢固、耐腐蚀性强和硬度高,有光照和无光照条件下均具有优良的抗菌性能。

Claims (5)

1.一种抗菌不锈钢的制备方法,其特征在于所述制备方法是:在-5~40℃条件下,将表面预处理的不锈钢置于多巴胺缓冲溶液中沉积0.1~72h,再置于含钛离子的溶液中沉积0.1~6h,然后置于含银离子的溶液中沉积0.1~6h,即得到抗菌不锈钢;
所述多巴胺溶液的浓度为0.01~1mol/L,pH值为8~10;
所述含钛离子溶液的浓度为0.001~1mol/L,pH值为1~8;
所述含银离子溶液的浓度为0.001~1mol/L,pH值为4~8。
2.如权利要求1所述的抗菌不锈钢的制备方法,其特征在于所述含钛离子溶液为氟钛酸铵溶液、硫酸钛溶液和四氯化钛溶液中的一种。
3.如权利要求1所述的抗菌不锈钢的制备方法,其特征在于所述含银离子溶液为硫酸银溶液、硝酸银溶液和氯化银溶液中的一种。
4.如权利要求1所述的抗菌不锈钢的制备方法,其特征在于所述表面预处理是:先将不锈钢表面打磨至粗糙度小于Ra10μm,再先后在无水乙醇和蒸馏水中超声清洗,吹干。
5.一种抗菌不锈钢,其特征在于所述抗菌不锈钢是根据权利要求1~4项中任一项所述的抗菌不锈钢的制备方法所制备的抗菌不锈钢。
CN201610506516.2A 2016-06-30 2016-06-30 一种抗菌不锈钢及其制备方法 Expired - Fee Related CN106011829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610506516.2A CN106011829B (zh) 2016-06-30 2016-06-30 一种抗菌不锈钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610506516.2A CN106011829B (zh) 2016-06-30 2016-06-30 一种抗菌不锈钢及其制备方法

Publications (2)

Publication Number Publication Date
CN106011829A CN106011829A (zh) 2016-10-12
CN106011829B true CN106011829B (zh) 2018-09-21

Family

ID=57104839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610506516.2A Expired - Fee Related CN106011829B (zh) 2016-06-30 2016-06-30 一种抗菌不锈钢及其制备方法

Country Status (1)

Country Link
CN (1) CN106011829B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109054486B (zh) * 2018-06-29 2020-11-10 安徽同益净化科技有限公司 一种常温下制备抗菌不锈钢的方法
CN109623995A (zh) * 2019-01-09 2019-04-16 中南林业科技大学 光诱发防霉竹材产品及其制备方法
CN109732725A (zh) * 2019-01-09 2019-05-10 中南林业科技大学 一种基于聚多巴胺修饰的原位负载银/二氧化钛的生物质材料及其制备方法
CN112160001B (zh) * 2020-09-25 2021-07-27 同曦集团有限公司 一种抗菌防霉抗病毒氧化不锈钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237643A (ja) * 1997-02-26 1998-09-08 Sumitomo Osaka Cement Co Ltd 抗菌性金物およびその製造方法
CN102719824A (zh) * 2012-06-12 2012-10-10 天津大学 多巴胺-纳米银复合涂层及其制备方法
CN103832021A (zh) * 2014-01-09 2014-06-04 西南交通大学 一种钛基底上制备有机分子杂化TiO2纳米复合薄膜的方法
CN104255797A (zh) * 2014-08-25 2015-01-07 中国海洋大学 聚多巴胺界面修饰银/氧化钛纳米管防污剂及其制备方法
CN104357814A (zh) * 2014-11-24 2015-02-18 重庆大学 含抗菌涂层的钛合金及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237643A (ja) * 1997-02-26 1998-09-08 Sumitomo Osaka Cement Co Ltd 抗菌性金物およびその製造方法
CN102719824A (zh) * 2012-06-12 2012-10-10 天津大学 多巴胺-纳米银复合涂层及其制备方法
CN103832021A (zh) * 2014-01-09 2014-06-04 西南交通大学 一种钛基底上制备有机分子杂化TiO2纳米复合薄膜的方法
CN104255797A (zh) * 2014-08-25 2015-01-07 中国海洋大学 聚多巴胺界面修饰银/氧化钛纳米管防污剂及其制备方法
CN104357814A (zh) * 2014-11-24 2015-02-18 重庆大学 含抗菌涂层的钛合金及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
纳米Ag/TiO2涂层托槽的研制及其抗菌性能研究;张晟;《中国博士学位论文全文数据库 医药卫生科技辑》;20130415;第10-11、46页 *
自组装模板引导二氧化钛薄膜液相沉积及薄膜电学性质和血液相容性研究;韩斐;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140915;第12-13页,2.2.2 PDA自组装模板的制备,2.3 TiO2薄膜液相沉积 *

Also Published As

Publication number Publication date
CN106011829A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106011829B (zh) 一种抗菌不锈钢及其制备方法
Wang et al. Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect
Zhou et al. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties
Wu et al. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings
Huang et al. Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process
CN107321583B (zh) 微纳米分级结构超疏水表面的原位构建方法及应用
CN104562049B (zh) 一种基于钢基体超疏水功能表面的制备方法
Ziadi et al. Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO2 coating
Wang et al. Antibacterial properties and corrosion resistance of nitrogen-doped TiO2 coatings on stainless steel
CN107115559A (zh) 在医用金属表面制备纳米银抗菌涂层的方法
Cao et al. Formation of a hydrophobic and corrosion resistant coating on manganese surface via stearic acid and oleic acid diethanolamide
Saidi et al. Electrochemical aspects of zinc oxide electrodeposition on Ti6Al4V alloy
Zhao et al. Plasma-sprayed ZnO/TiO 2 coatings with enhanced biological performance
Tang et al. Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system
Zhao et al. Structure and apatite induction of a microarc-oxidized coating on a biomedical titanium alloy
WO2022116598A1 (zh) 一种基于微生物技术的钢材防腐方法
Fu et al. Sol–gel derived antibacterial Ag-containing ZnO films on biomedical titanium
Setare et al. The structure and corrosion barrier performance of nanocrystalline zirconia electrodeposited coating
CN101226136B (zh) 基于固体培养基的镁合金微生物腐蚀方法
Mwema et al. Thin film coatings: properties, deposition, and applications
Nakayama et al. Electrochemical prevention of marine biofouling on a novel titanium-nitride-coated plate formed by radio-frequency arc spraying
Cheng et al. Hydroxyapatite/ZnO-nanorod composite coatings with adjustable hydrophilicity and Zn release ability
Zhu et al. Improvement in the microbially induced corrosion resistance of concrete sewers using electrodeposition
CN103451631B (zh) 一种抗菌不锈钢及其制备方法
Hao et al. Dissecting anticorrosion and antimicrobial potency of an Ag nanoparticle/NbC nanocomposite coating in a marine environment containing sulfate-reducing bacteria

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180921

Termination date: 20210630