CN106009010A - 一种高溶解性蜡质玉米淀粉膜的制备方法 - Google Patents

一种高溶解性蜡质玉米淀粉膜的制备方法 Download PDF

Info

Publication number
CN106009010A
CN106009010A CN201610343279.2A CN201610343279A CN106009010A CN 106009010 A CN106009010 A CN 106009010A CN 201610343279 A CN201610343279 A CN 201610343279A CN 106009010 A CN106009010 A CN 106009010A
Authority
CN
China
Prior art keywords
starch
film
preparation
dwms
described step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610343279.2A
Other languages
English (en)
Other versions
CN106009010B (zh
Inventor
周星
金征宇
孟令儒
叶小嘉
徐学明
王韧
赵建伟
王金鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201610343279.2A priority Critical patent/CN106009010B/zh
Publication of CN106009010A publication Critical patent/CN106009010A/zh
Application granted granted Critical
Publication of CN106009010B publication Critical patent/CN106009010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Grain Derivatives (AREA)

Abstract

本发明公开了一种高溶解性蜡质玉米淀粉膜的制备方法:将蜡质玉米淀粉分散于水中,先进行预糊化然后使淀粉完全糊化后冷却,再加入异淀粉酶完全脱支,浓缩、冷冻干燥后得到脱支蜡质玉米淀粉(DWMS);将DWMS与蜡质玉米淀粉混合,在一定湿度下干燥成膜,制备出一种机械强度和溶解度高、热封性和阻隔性好的淀粉膜,可同时解决蜡质玉米淀粉膜机械性能较弱、直链淀粉含量高的淀粉膜溶解性差的问题。此外,在制作过程中,使用到的所有试剂均为食品级,可作为良好的可食用食品包装膜,用于包封方便面调料或方便咖啡等速溶性食品。

Description

一种高溶解性蜡质玉米淀粉膜的制备方法
技术领域
本发明涉及食品包装膜技术领域,尤其是涉及采用添加脱支蜡质玉米淀粉(DWMS)来提高蜡质玉米淀粉膜的性能,以及制备该高溶解性蜡质玉米淀粉膜的方法。
背景技术
随着当今社会的环境问题日益突出以及人们的环保意识逐步增强,以天然高分子等可再生资源为原料的可降解材料的研究已经引起越来越多的关注。淀粉来源广泛、价格低廉、可再生,糊化后的淀粉稀溶液经干燥可制成淀粉膜;而淀粉膜透气性低,阻油性好,已成为可降解膜中发展前景最好的一类,有很高的应用潜力。
淀粉分为直链淀粉和支链淀粉,其中直链淀粉呈线性结构,分子间容易相互作用,易成膜,所成膜结晶度大,拉伸强度高,但溶解性差;支链淀粉高度分支,空间位阻较大,不易成膜,只可在低温下缓慢干燥成膜,所成膜为无定型结构,断裂伸长率大,溶解性好,但拉伸强度低且成膜时间较长。基于上述两种淀粉的相关特性,在制备淀粉膜时,人们往往首先考虑的是选择直链淀粉含量较高的淀粉,然而,此种淀粉一般价格昂贵,使得生产成本大大提高;或者是采取一些提高原料中直链淀粉含量的办法,但直链淀粉链长较长、直链淀粉比例较高时会严重影响淀粉膜的溶解度,限制了淀粉膜的应用。
综上可知,如何研发获得机械性能优良、同时溶解性和透明度高的淀粉膜已成为本领域急需解决的技术难题。
发明内容
针对现有技术存在的上述问题,发明人经过研究改进,提出一种添加脱支蜡质玉米淀粉即DWMS,从而改善蜡质玉米淀粉膜的方法。本发明提供了一种新型的高溶解性蜡质玉米淀粉膜的制备方法,能够有效提高蜡质玉米淀粉膜的机械性质和应用加工性能,而且能够保持蜡质玉米淀粉膜的溶解性能。
本发明的技术方案如下:
一种高溶解性蜡质玉米淀粉膜的制备方法,具体步骤如下:
(1)将蜡质玉米淀粉均匀分散于冷水中,制得0.1%~1%(w/w)的悬浊液,即在99.9ml水中添加0.1g的蜡质玉米淀粉制得浓度为0.1%的悬浊液,在99ml水中添加1g的蜡质玉米淀粉制得浓度为1%的悬浊液,在水浴锅中搅拌预糊化,再于110~130℃高压蒸煮锅中蒸煮10~30min至完全糊化后冷却;
(2)加入异淀粉酶进行脱支,所述异淀粉酶的添加量为1~10U/g淀粉,反应温度为30~60℃,反应时间为12~24h;完全脱支后灭酶,离心,将上清液在60-80℃旋转蒸发浓缩,快速置于-70℃超低温冰箱,冷冻干燥后得到无定形态的DWMS粉末;
(3)将DWMS与蜡质玉米淀粉混合,其中DWMS占混合物的比例为8%~25%,用冷水配制成3%~5%淀粉悬浊液,在水浴锅中搅拌预糊化,再于110~130℃高压蒸煮锅中蒸煮10~30min至完全糊化,冷却至95℃后加入甘油,甘油添加量为0.3~0.4g/g淀粉;摇匀后超声脱气;将淀粉液倾倒于平板玻璃盒或平板塑料盒中,其中倾倒量以淀粉干基重计为0.008~0.01g/cm2
(4)将平板玻璃盒或平板塑料盒置于20-30℃,相对湿度为50%~85%的恒温恒湿箱中干燥3~6d,在相对湿度为50%条件下平衡2d,揭膜;
(5)将步骤(4)中获得的淀粉膜进行热封,热封温度为110~170℃,热封压力为0.2~0.5MPa。
上述步骤(1)中蜡质玉米淀粉悬浊液的浓度为1%,悬浊液在搅拌预糊化中的搅拌速率为300rpm,水浴锅预糊化升温速率为2℃/min,升温至沸水后持续时间为30min,高压蒸煮的温度为121℃,时间为20min;
上述步骤(2)中异淀粉酶添加量为7.5U/g淀粉,反应温度为40℃,反应时间为12h,旋转蒸发温度为80℃;
上述步骤(3)中淀粉悬浊液的浓度为3%,甘油添加量为0.4g/g淀粉,倾倒量以淀粉干基重计为0.009g/cm2
上述步骤(4)中恒温恒湿箱相对湿度为85%,干燥时间为3d;
上述步骤(5)中热封温度为150℃,热封压力为0.4MPa。
本发明有益的技术效果在于:
1、现有技术中,制备高性能的淀粉膜一般选用直链淀粉含量高的淀粉,此种淀粉一般价格昂贵,使得生产成本大大增加;而本发明的淀粉膜以蜡质玉米淀粉为原料,来源广泛,价格低廉。
2、由于蜡质玉米淀粉的侧链链长聚合度为6~80葡萄糖残基,经异淀粉酶完全脱支后得到的DWMS是蜡质玉米淀粉酶法水解α-1,6糖苷键之后的产物,是只含有α-1,4糖苷键的与蜡质玉米淀粉的侧链链长一致的线性葡聚糖,其分子量小、溶解性好,与未脱支的蜡质玉米淀粉侧链有更好的相容性,在提高淀粉膜机械性能的同时不影响基质淀粉膜的溶解性和透明度。
3、步骤(2)中旋转蒸发温度为60-80℃,优选为80℃,可提高蒸发速率并避免DWMS形成沉淀结晶,增加DWMS与蜡质玉米淀粉的相容性,从而进一步提高所制淀粉膜的透明度和溶解性。
4、现有技术中,流延法成膜干燥条件通常为烘箱快速干燥,这种快速干燥方法使淀粉膜链间无法充分移动,减少了淀粉链间氢键作用,使淀粉膜机械性能、阻隔性能较差;而本发明的干燥方法可使淀粉链间充分发生相互作用,提高淀粉膜的机械性能。
5、现有技术中,对淀粉膜进行热封时常加入粘合剂,而本发明中所得淀粉膜无需使用粘合剂即具有很好的热封效果。
附图说明
图1为实施例1制备得到的DWMS的HPSEC图;
图2为实施例1制备得到的在85%湿度下干膜所得淀粉膜的结晶情况;
图3为实施例1制备得到的不同湿度下添加不同比例DWMS淀粉膜拉伸强度情况;
图4为实施例1制备得到的不同湿度下添加不同比例DWMS淀粉膜透油率情况;
图5为实施例1制备干膜湿度为85%、DWMS添加比例为15%得到的淀粉膜热封强度结果;
图6为实施例1制备干膜湿度为85%、DWMS添加比例为15%得到的淀粉膜包封产品实例。
具体实施方式
实施例1
本发明提供了一种高溶解性蜡质玉米淀粉膜的制备方法,具体步骤如下:
(1)将1.00g蜡质玉米淀粉均匀分散于99mL蒸馏水中,在沸水浴中搅拌预糊化,再于121℃蒸煮20min至完全糊化后冷却至室温。
(2)向糊化后的蜡质玉米淀粉内加入7.5U/g淀粉的异淀粉酶进行脱支,反应温度为40℃,反应时间为12h;完全脱支后,将完成水解反应的溶液于沸水浴中煮沸10min灭酶,5000rpm下离心10min除去酶,80℃旋转蒸发后,冷冻干燥呈无定形粉末,即得DWMS。
(3)将DWMS与蜡质玉米淀粉混合,混合比例分别为0:100、8:92、15:85、25:75,配制成3%浓度的悬浊液,在沸水浴中预糊化,再置于121℃下蒸煮20min完全糊化,冷却至95℃后加入淀粉干基重的40%甘油,摇匀,超声脱气;脱气后将淀粉液倾倒于平板玻璃盒或平板塑料盒中,其中倾倒量为0.009g/cm2(淀粉干基重)。
(4)将盛有淀粉液的平板玻璃盒或平板塑料盒置于恒温恒湿箱中,恒温恒湿箱温度为23℃,湿度分别为50%、70%、85%,干燥3d后将恒温恒湿箱相对湿度调节至50%平衡2d,揭膜。
(5)将上述制备得到的淀粉膜进行热封性试验,热封温度为110~170℃,热封压力为0.2~0.5MPa。
将步骤(2)中得到的DWMS制成0.1%(w/v)的溶液,使用Shodex OHpakSB-804/SB-802.5凝胶柱,柱温50℃,流动相为超纯水,流速为1mL/min分析DWMS聚合度,得到如图1所示HPSEC图。从图中可以看出,蜡质玉米淀粉完全脱支,得到的DWMS分子量较小。
将步骤(4)中得到的淀粉膜研磨成粉后进行X-射线衍射测试,扫描速度为2°/min,扫描区域为5°~30°,采样步宽0.02°,得到图2所示的X-射线衍射图谱。从图中可以看出,蜡质玉米淀粉膜呈无定型,添加DWMS的淀粉膜在17°处具有明显的B型结晶,故DWMS可促进蜡质玉米淀粉结晶,且DWMS添加比例为15%时,淀粉膜结晶度最高。
将步骤(4)中所得淀粉膜进行拉伸强度测试,将膜裁成3cm×6cm大小的膜,使用TA.XT 2i物性仪,A/TG夹具进行测量,可以得到拉伸强度和断裂伸长率。实验测量过程使用Button模式,初始夹具间距离为40mm,拉伸距离为40mm,测量时拉伸速度为2.00mm/s,测后返回速度为10.00mm/s,返回距离为40mm。拉伸强度指膜在拉伸力作用下,破裂前所能承受的最大拉力与膜断裂面的横截面积的比值,计算得到拉伸强度,结果如图3。
将步骤(4)中所得淀粉膜进行阻油性测试,量取2mL大豆油于称量瓶中,取一张待测膜密封于称量瓶口处,倒扣在已知重量的吸油纸上,置于相对湿度为54%的干燥器中,放置2d,称量吸油纸质量变化,计算得到淀粉膜透油率,结果如图4。
将步骤(5)中所得热封后淀粉膜裁成15mm大小的宽度,进行热封强度试验,使用TA XT 2i物性仪,A/TG夹具进行测量,可以得到热封强度(N/15mm)。实验测量过程使用Button模式,初始夹具间距离为40mm,拉伸距离为20mm,测量时拉伸速度为2.00mm/s,测后返回速度为10.00mm/s,返回距离为40mm,热封强度随热封温度和热封压力变化结果如图5。
将步骤(4)中干膜湿度为85%、DWMS添加比例为15%的淀粉膜在150℃、0.4MPa下进行包封方便面调料和速溶咖啡试验,所得产品及其沸水溶解5min后状态结果如图6,其中a为方便面调料包,b为方便面油包,c为速溶咖啡。
上述实施例中异淀粉酶的规格为1000U/mL,生产厂家是爱尔兰Megazyme公司,购买厂家是国内经销商上海超研生物科技有限公司。

Claims (10)

1.一种高溶解性蜡质玉米淀粉膜的制备方法,其特征在于具体步骤如下:
(1)将蜡质玉米淀粉均匀分散于冷水中制得浓度为0.1%~1%的悬浊液,在水浴锅中搅拌预糊化,再于110~130℃高压蒸煮锅中蒸煮10~30min至完全糊化后冷却;
(2)加入异淀粉酶进行脱支,所述异淀粉酶的添加量为1~10U/g淀粉,反应温度为30~60℃,反应时间为12~24h;完全脱支后灭酶,离心,将上清液在60-80℃旋转蒸发浓缩,快速置于-70℃超低温冰箱,冷冻干燥后得到无定形态的脱支蜡质玉米淀粉(DWMS);
(3)将DWMS与蜡质玉米淀粉混合,其中DWMS占混合物的比例为8%~25%,用冷水配制成3%~5%淀粉悬浊液,在水浴锅中搅拌预糊化,再于110~130℃高压蒸煮锅中蒸煮10~30min至完全糊化,冷却至95℃后加入甘油,甘油添加量为0.3~0.4g/g淀粉;摇匀后超声脱气;将淀粉液倾倒于平板玻璃盒或平板塑料盒中,其中倾倒量以淀粉干基重计为0.008~0.01g/cm2
(4)将平板玻璃盒或平板塑料盒置于20-30℃,相对湿度为50%~85%的恒温恒湿箱中干燥3~6d,在相对湿度为50%条件下平衡2d,揭膜;
(5)将步骤(4)中获得的淀粉膜进行热封,热封温度为110~170℃,热封压力为0.2~0.5MPa。
2.根据权利要求1所述的制备方法,其特征在于所述步骤(1)中蜡质玉米淀粉悬浊液的浓度为1%。
3.根据权利要求1所述的制备方法,其特征在于所述步骤(1)中的悬浊液在搅拌预糊化中的搅拌速率为300rpm;水浴锅预糊化升温速率为2℃/min,升温至沸水后持续时间为30min。
4.根据权利要求1所述的制备方法,其特征在于所述步骤(1)中高压蒸煮的温度为121℃,时间为20min。
5.根据权利要求1所述的制备方法,其特征在于所述步骤(2)中异淀粉酶添加量为7.5U/g淀粉,反应温度为40℃,反应时间为12h。
6.根据权利要求1所述的制备方法,其特征在于所述步骤(2)中旋转蒸发温度为80℃。
7.根据权利要求1所述的制备方法,其特征在于所述步骤(3)中DWMS占混合物的比例为15%,淀粉悬浊液的浓度为3%。
8.根据权利要求1所述的制备方法,其特征在于所述步骤(3)中甘油添加量为0.4g/g淀粉,倾倒量以淀粉干基重计为0.009g/cm2
9.根据权利要求1所述的制备方法,其特征在于所述步骤(4)中恒温恒湿箱相对湿度为85%,干燥时间为3d。
10.根据权利要求1所述的制备方法,其特征在于所述步骤(5)中热封温度为150℃,热封压力为0.4MPa。
CN201610343279.2A 2016-05-23 2016-05-23 一种高溶解性蜡质玉米淀粉膜的制备方法 Active CN106009010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610343279.2A CN106009010B (zh) 2016-05-23 2016-05-23 一种高溶解性蜡质玉米淀粉膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610343279.2A CN106009010B (zh) 2016-05-23 2016-05-23 一种高溶解性蜡质玉米淀粉膜的制备方法

Publications (2)

Publication Number Publication Date
CN106009010A true CN106009010A (zh) 2016-10-12
CN106009010B CN106009010B (zh) 2018-10-02

Family

ID=57096073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610343279.2A Active CN106009010B (zh) 2016-05-23 2016-05-23 一种高溶解性蜡质玉米淀粉膜的制备方法

Country Status (1)

Country Link
CN (1) CN106009010B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293999A (zh) * 2018-09-10 2019-02-01 齐鲁工业大学 一种能够完全生物降解的淀粉纳米抗菌复合薄膜的制备方法及所得产品和应用
CN112852906A (zh) * 2021-01-13 2021-05-28 江南大学 一种利用两种淀粉分支酶协同制备慢消化麦芽糊精的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739883A (zh) * 2014-01-24 2014-04-23 福建农林大学 一种紫薯淀粉可食用膜及其制备方法
CN104059248A (zh) * 2014-06-27 2014-09-24 江南大学 一种通过添加亲水胶体改善淀粉基可食用包装膜性能的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739883A (zh) * 2014-01-24 2014-04-23 福建农林大学 一种紫薯淀粉可食用膜及其制备方法
CN104059248A (zh) * 2014-06-27 2014-09-24 江南大学 一种通过添加亲水胶体改善淀粉基可食用包装膜性能的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293999A (zh) * 2018-09-10 2019-02-01 齐鲁工业大学 一种能够完全生物降解的淀粉纳米抗菌复合薄膜的制备方法及所得产品和应用
CN112852906A (zh) * 2021-01-13 2021-05-28 江南大学 一种利用两种淀粉分支酶协同制备慢消化麦芽糊精的方法

Also Published As

Publication number Publication date
CN106009010B (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Dai et al. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films
Ren et al. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties
Chandanasree et al. Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch
Woggum et al. Characteristics and properties of hydroxypropylated rice starch based biodegradable films
Thakhiew et al. Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films
Sothornvit et al. Oxygen permeability and mechanical properties of banana films
Zeng et al. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch
RU2584162C2 (ru) Гелевая композиция
Qin et al. Functional properties of glutinous rice flour by dry-heat treatment
Chuenkamol et al. Characterization of low-substituted hydroxypropylated canna starch
CN102303747B (zh) 可食可溶复合膜包装材料的制配方法
CN102702579A (zh) 一种马铃薯淀粉基可食性复合食品包装膜及其制备方法
CN102178179A (zh) 一种保鲜米粉的制备方法
CN106009010A (zh) 一种高溶解性蜡质玉米淀粉膜的制备方法
Cui et al. Effects of different sources of β-glucan on pasting, gelation, and digestive properties of pea starch
CN105885113B (zh) 一种双层可食性薄膜及其制备方法和应用
Sun et al. Effect of sugar alcohol on physicochemical properties of wheat starch
RU2525926C1 (ru) Водорастворимая биодеградируемая съедобная упаковочная пленка
CN108498478A (zh) 一种淀粉基硬胶囊的制备方法
Huang et al. Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries
EP4077400A1 (en) Converted starch and food comprising said converted starch
Zhou et al. Application of Maillard reaction product of xylose–pea protein enzymatic hydrolysate in 3D printing
Zhang et al. Effects of different modified starches and gums on the physicochemical, functional, and microstructural properties of tapioca pearls
Salman et al. Optimization of raw material properties of natural starch by food glue based on dry heat method
CN105054185A (zh) 绿豆酶解粉及其饮料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant