CN106006753A - 一种锌铁氧体纳米晶组装体的制备方法 - Google Patents

一种锌铁氧体纳米晶组装体的制备方法 Download PDF

Info

Publication number
CN106006753A
CN106006753A CN201610334956.4A CN201610334956A CN106006753A CN 106006753 A CN106006753 A CN 106006753A CN 201610334956 A CN201610334956 A CN 201610334956A CN 106006753 A CN106006753 A CN 106006753A
Authority
CN
China
Prior art keywords
preparation
ferrite
cna2
nanometer crystal
cna1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610334956.4A
Other languages
English (en)
Other versions
CN106006753B (zh
Inventor
郭培志
吕蒙
桑玉涛
赵修松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610334956.4A priority Critical patent/CN106006753B/zh
Publication of CN106006753A publication Critical patent/CN106006753A/zh
Application granted granted Critical
Publication of CN106006753B publication Critical patent/CN106006753B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0063Mixed oxides or hydroxides containing zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明属于铁氧体材料制备领域,涉及一种锌铁氧体纳米晶组装体的制备方法,先将FeCl3·6H2O和ZnCl2溶解于乙二醇和乙醇的混合溶剂中,再加入CH3COONa水溶液搅拌均匀,转入反应釜中密封放入烘箱反应后,自然冷却并收集产物离心分离,洗涤干燥后得到锌铁氧体纳米晶组装体,设置混合溶剂中乙二醇和乙醇的溶剂体积比小于等于1:4时,制得的产物命名为CNA1,设置溶剂体积比大于1:4时,制得的产物命名为CNA2,其制备工艺简单,原理可靠,成本低,应用广泛,使用环境友好,具有良好的经济效益和开发应用前景。

Description

一种锌铁氧体纳米晶组装体的制备方法
技术领域:
本发明属于无机非金属铁氧体材料制备技术领域,涉及一种利用溶剂热法制备空心球状或实心球状两种不同形貌的锌铁氧体纳米晶组装体的方法。
背景技术:
铁氧体属于磁性材料,不仅是电子工业的一种基础材料,还广泛用于制造日常生活用品,其良好的电磁性能可用于制造雷达吸波材料、磁记录材料等高科技产品。铁氧体的形貌可分为针状、棒状、片状、多孔状和球状五类,其中,球状铁氧体又可分为空心球状和实心球状。因空心球状与其他形貌相比有更大的表面积,磁性能更加优良,且空心球状铁氧体比一般铁氧体密度小,所以已被研究人员高度重视。不同方法制得的铁氧体的性能与形貌也各有不同,除了纯度、颗粒尺寸和形貌对其性能有重要的影响外,制备方法对铁氧体的性能也产生较大影响。现有技术的铁氧体的制备方法很多,常见的有溶胶-凝胶法、共沉淀法、水热法、喷雾热分解法、高能球磨法、乳化液法、自蔓延燃烧法和化学自组装法等,也有将上述方法进行组合应用的新技术,如:溶胶-凝胶法和自燃烧法相结合、溶胶-凝胶法与共沉淀法并用,但这些方法都各有其优缺点。例如,溶胶-凝胶法虽易获得组成和结构均匀、颗粒细小的粉体,但有机溶剂有毒,水热法不需高温煅烧预处理,避免了此过程中晶粒长大、缺陷形成和杂质引入且具有较高的烧结活性,但其不可视性又为制备过程中的控制带来困难。因此,对现有技术方法的优化,对其制备工艺的创新或对两种及以上技术方法相结合将成为研究热点。
目前,铁氧体空心球的制备大多采用聚苯乙烯微球为模板,通过模板与铁氧体前驱物之间的相互作用,用沉积法、表面反应法和逐层组装法等来制备核壳复合粒子,再通过煅烧或有机溶剂溶解的方法除去模板得到铁氧体空心微球,采用共沉淀火焰喷雾工艺合成的铁氧体空心微球,饱和磁化强度随着热处理温度的升高而增大,晶体结构也越完整,但其矫顽力却降低,用聚乙烯酸溶液和铁氧体前驱体共混,利用无核成球法制得铁氧体空心微球,虽颗粒较大,但纯度欠佳,总之,现有的制备工艺尚未达到“工艺简单易行,产物性能优良”的原则。因此,寻求设计一种工艺简单、实用性强、具备工业化生产可能性的锌铁氧体制备方法仍具有重要的意义。
发明内容:
本发明的目的在于克服现有技术存在的缺点,提出一种利用溶剂热法制备锌铁氧体纳米晶组装体的方法,通过改变混合溶剂的体积比,制备空心球状或实心球状两种不同形貌的锌铁氧体纳米晶组装体,解决无机非金属铁氧体材料制备工艺复杂且纯度欠佳的问题。
为了实现上述目的,本发明由六水合氯化铁(FeCl3·6H2O)和氯化锌(ZnCl2)作为前驱体,无水乙酸钠(CH3COONa)为表面活性剂和稳定剂,用不同体积比的乙醇和乙二醇作为溶剂制备锌铁氧体纳米晶组装体,其具体工艺过程包括以下步骤:
先将2mmol的FeCl3·6H2O和1mmol的ZnCl2溶解于30mL的乙二醇和乙醇的混合溶剂中,磁力搅拌为均匀混合液后,加入5mmol的CH3COONa继续搅拌至均匀,然后将混合液转入40mL的高温反应釜的特氟龙内胆中,密封好反应釜,放入烘箱中,设置加热温度为200℃,反应时间为12小时,反应完成后自然冷却并收集固体产物离心分离,再用去离子水和乙醇洗涤3-10次后,设置干燥温度为60℃,干燥时间为6小时,干燥后得到棕褐色的锌铁氧体纳米晶组装体,设置混合溶剂中乙二醇和乙醇的溶剂体积比小于等于1:4得到空心球状的锌铁氧体纳米晶组装体,命名为CNA1,设置混合溶剂中乙二醇和乙醇的溶剂体积比大于1:4时,得到的实心球状的锌铁氧体纳米晶组装体,命名为CNA2。
本发明制备的锌铁氧体纳米晶组装体具有亚铁磁性,能迅速吸附偶氮染料并易于分离,并能用于对磷酸缓释液中的尿酸和多巴胺进行检测。
本发明与现有技术相比,其制备工艺简单,原理可靠,成本低,纯度高,电磁学性能好,应用广泛,使用环境友好,具有良好的经济效益和开发应用前景。
附图说明:
图1为本发明制备的CNA1(A)和CNA2(B)的扫描电子显微镜图。
图2为本发明制备的CNA1(A)和CNA2(B)的透射电子显微镜图。
图3为本发明制备的CNA1(A)和CNA2(B)的X射线衍射图。
图4为本发明制备的CNA1(A)和CNA2(B)的氮气等温吸脱附曲线,内置图分别为CNA1(A)和CNA2(B)的孔容分布曲线。
图5为本发明制备的CNA1和CNA2的磁滞回线图(A),(B)为图(A)的局部放大图。
图6为本发明制备的CNA1/GCE和CNA2/GCE在黑暗处对刚果红的紫外可见吸收光谱图,其中,(a)为0分钟,(b)为2分钟,(c)为5分钟,(d)为10分钟,(e)为20分钟,(f)为40分钟,(g)为60分钟,(h)为80分钟,(i)为120分钟,(j)为150分钟,(k)为180分钟,(l)为210分钟,(m)为240分钟。
图7为本发明制备的CNA1/GCE和CNA2/GCE在黑暗处对刚果红的吸附速率曲线,Co(mg L-1)是刚果红的初始浓度,C(mg L-1)是不同吸附时间的浓度。
图8为本发明制备的CNA1/GCE和CNA2/GCE在含有多巴胺DA(1mmol/L)和尿酸UA(1mmol/L)的磷酸缓释液中的循环伏安曲线(A)和差分脉冲伏安曲线(B)。
图9为本发明制备的CNA1/GCE在尿酸UA(0.2mmol/L)浓度不变,改变多巴胺DA浓度时在电解液中的差分脉冲伏安曲线图,其中,(a)为0mmol/L,(b)为0.01mmol/L,(c)为0.03mmol/L,(d)为0.05mmol/L,(e)为0.10mmol/L,(f)为0.20mmol/L,(g)为0.30mmol/L,(h)为0.40mmol/L,(i)为0.50mmol/L,(j)为0.60mmol/L,(k)为0.70mmol/L,(l)为0.80mmol/L,(m)为0.90mmol/L,CNA2/GCE在多巴胺DA(0.1mmol/L)浓度不变,改变尿酸UA浓度时在电解液中的差分脉冲伏安曲线图:其中,(a)为0mmol/L,(b)为0.01mmol/L,(c)为0.03mmol/L,(d)为0.05mmol/L,(e)为0.10mmol/L,(f)为0.20mmol/L,(g)为0.30mmol/L,(h)为0.40mmol/L,(i)为0.50mmol/L,(j)为0.60mmol/L,(k)为0.70mmol/L,(l)为0.80mmol/L,(m)为0.90mmol/L。
具体实施方式:
下面通过实施例并结合附图对本发明做进一步说明。
实施例1:
本实施例涉及的锌铁氧体纳米晶组装体的制备工艺为:先将2mmol的FeCl3·6H2O和1mmol的ZnCl2溶解于30mL的乙二醇和乙醇的混合溶剂中,磁力搅拌为均匀混合液后,加入5mmol的CH3COONa继续搅拌至均匀,然后将混合液转入40mL的高温反应釜的特氟龙内胆中,密封好反应釜,放入烘箱中,设置加热温度为200℃,反应时间为12小时,反应完成后自然冷却并收集固体产物离心分离,再用去离子水和乙醇洗涤3-10次后,设置干燥温度为60℃,干燥时间为6小时,干燥后得到棕褐色的锌铁氧体纳米晶组装体,设置混合溶剂中乙二醇和乙醇的溶剂体积比小于等于1:4得到空心球状的锌铁氧体纳米晶组装体,命名为CNA1,设置混合溶剂中乙二醇和乙醇的溶剂体积比为1:2、1:1或2:1时,得到的实心球状的锌铁氧体纳米晶组装体,命名为CNA2。
本实施例制备的CNA1(A)和CNA2(B)的扫描电子显微镜图(如图1所示),制备的CNA1(A)和CNA2(B)的透射电子显微镜图(如图2所示),由图1可见,CNA1(A)和CNA2(B)均为球状结构,尺寸在100-300nm之间,其中,图1和图2中所示,CNA1(A)的球形边缘不平滑,平均尺寸为120±30nm,且CNA2(B)相对于CNA2(A)粒径分布较窄,平均尺寸为150±25nm。
本实施例制备的CNA1(A)和CNA2(B)的X射线衍射图(如图3所示),经过与粉末衍射标准JCPDS卡片对比之后,确定CNA1(A)和CNA2(B)的所有衍射峰都与粉末衍射标准JCPDS,NO.77-0011晶体的衍射峰完全一致,它们的2θ角度分别为30.2、35.5、42.9、53.3、56.8和62.3,分别与锌铁氧体尖晶石的(220)、(311)、(400)、(422)、(511)和(440)晶面相对应,确定CNA1(A)和CNA2(B)均为锌铁氧体尖晶石且没有任何杂质,由图3可见,CNA2(B)的衍射峰比CNA1(A)的衍射峰更加尖锐和狭窄,表明CNA2(B)的晶粒尺寸比CNA1(A)晶粒尺寸更大,根据谢勒公式,基于(311)衍射峰的半峰宽,可得CNA1(A)和CNA2(B)中锌铁氧体纳米晶组装体的晶体尺寸分别为20.4nm和25.3nm,由此表明,锌铁氧体纳米晶组装体由晶体颗粒通过有序的自组装形成。
本实施例制备的CNA1(A)和CNA2(B)的氮气等温吸脱附曲线如图4所示,属于I型等温线,H1型回滞圈,当P/P0=1时,还没有形成平台,吸附还没有达到饱和,多层吸附的厚度可以无限制地增加,表明锌铁氧体纳米晶组装体为多层次结构。内置图分别为CNA1(A)和CNA2(B)的孔容分布曲线,计算可得CNA1(A)和CNA2(B)的比表面积分别为37.6m2/g和22.7m2/g,表明CNA1(A)比表面积和空容量相对于CNA2(B)较大,这与扫描电子显微镜观察到的结论相吻合。
实施例2:
本实施例涉及对所制备的锌铁氧体纳米晶组装体进行磁学性能进行测定:利用LDJ9500型振动样品磁强计在室温磁场强度为1.4×104Oe下对产物的磁性质进行表征,如图5中CNA1(A)和CNA2(B)的室温磁滞回线所示,锌铁氧体纳米晶组装体均表现为亚铁磁性,CNA1(A)和CNA2(B)的饱和磁化强度分别为60.4emu/g和43.2emu/g,CNA1(A)表现出较大的剩磁和矫顽力,数值分别是1.31emu/g和22.0Oe,CNA2(B)的剩磁和矫顽力分别为0.87emu/g和20.2Oe。
实施例3:
本实施例涉及锌铁氧体纳米晶组装体的修饰电极的制备:将所制得的锌铁氧体纳米晶组装体用二次蒸馏水配置浓度为1.5mg/mL的悬浊液,均匀分散后取10μL溶液滴加到玻碳电极上,室温下干燥,分别命名为CNA1/GCE和CNA2/GCE。
实施例4:
本实施例涉及对制备的锌铁氧体纳米晶组装体的修饰电极的电催化性能进行测定:锌铁氧体纳米晶组装体的电催化性能测定采用三电极体系,经锌铁氧体纳米晶组装体修饰的直径为3mm的玻碳电极为工作电极,饱和甘汞电极为参比电极,铂片电极为对电极,利用循环伏安法和差分脉冲伏安法对锌铁氧体纳米晶组装体的电催化性能进行表征。
本实施例制备的CNA1/GCE和CNA2/GCE在含有多巴胺DA(1mmol/L)和尿酸UA(1mmol/L)的磷酸缓释液中的循环伏安曲线(A)和差分脉冲伏安曲线(B)如图8所示,多巴胺DA和尿酸UA的氧化峰比较明显,而抗坏血酸AA的氧化峰较宽且催化电流也较低,CNA1/GCE相比于CNA2/GCE有稍好的催化活性,图9为CNA1/GCE和CNA2/GCE在尿酸UA(0.2mmol/L)浓度不变,改变多巴胺DA浓度时所得到的差分脉冲伏安曲线和在多巴胺DA(0.1mmol/L)浓度不变,改变尿酸UA浓度时所得到的差分脉冲伏安曲线,从图9中的内置图可见,锌铁氧体纳米晶组装体的修饰电极的催化峰电流值随着多巴胺DA浓度或UA浓度的增加成线性增加,线性相关系数分别为r=0.993和r=0.992,且尿酸UA和多巴胺DA的存在不会互相影响另一种物质的检测,锌铁氧体纳米晶组装体的修饰电极能有效且灵敏地检测出多巴胺DA和尿酸UA,结果表明,锌铁氧体纳米晶组装体的修饰电极的在磷酸缓释液中对尿酸、多巴胺有检测作用,能同时有效且灵敏地检测出尿酸和多巴胺的含量。
实施例5:
本实施例涉及对制备的锌铁氧体纳米晶组装体的修饰电极对刚果红吸附性能进行测定:以刚果红为吸附质,采用TU-1901型紫外可见分光度计测定制备的锌铁氧体纳米晶组装体的修饰电极的吸光度,检验锌铁氧体纳米晶组装体的吸附性能,分别把20mg的CNA1/GCE和CNA2/GCE加入70ml浓度为15mg/L的刚果红水溶液中,在黑暗条件下超声,测定240分钟内一定时间段的紫外可见光谱图,CNA1/GCE和CNA2/GCE在黑暗处对刚果红的紫外可见吸收光谱如图6所示,CNA1/GCE和CNA2/GCE在0-2分钟时吸收峰迅速下降,表明CNA1/GCE和CNA2/GCE对刚果红均有明显的吸附作用,CNA1/GCE和CNA2/GCE吸附率在0分钟和2分钟时分别为56.5%和28.9%,刚果红浓度在快速降低后,吸附速率变得缓慢,CNA1/GCE和CNA2/GCE在2分钟和240分钟时吸附率分别为29.9%和1.7%,CNA1/GCE从2分钟到240分钟有一个持续下降的过程,而CNA2/GCE从2分钟开始并无明显变化,CNA2/GCE的吸收峰强在30分钟以后就基本不再下降,但是CNA1/GCE直到210分钟都有一个稳步的下降过程,依据图6的吸附实验结果所描绘的吸附效率随吸附时间的变化曲线如图7所示,表明锌铁氧体纳米晶组装体可以在2分钟内迅速去除水中的偶氮染料并且容易分离。

Claims (2)

1.一种锌铁氧体纳米晶组装体的制备方法,其特征在于:由六水合氯化铁和氯化锌作为前驱体,无水乙酸钠为表面活性剂和稳定剂,用不同体积比的乙醇和乙二醇作为溶剂制备锌铁氧体纳米晶组装体,其具体工艺过程包括以下步骤:先将2mmol的FeCl3·6H2O和1mmol的ZnCl2溶解于30mL的乙二醇和乙醇的混合溶剂中,磁力搅拌至均匀后,加入5mmol的CH3COONa继续搅拌至均匀,然后将混合液转入40mL的高温反应釜的特氟龙内胆中,密封好反应釜,放入烘箱中,设置加热温度为200℃,反应时间为12小时,反应完成后自然冷却并收集固体产物离心分离,再用去离子水和乙醇洗3-10次后,设置干燥温度为60℃,干燥时间为6小时,干燥后得到棕褐色的锌铁氧体纳米晶组装体,设置混合溶剂中乙二醇和乙醇的溶剂体积比小于等于1:4时,得到空心球状的锌铁氧体纳米晶组装体,命名为CNA1,设置混合溶剂中乙二醇和乙醇的溶剂体积比大于1:4时,得到的实心球状的锌铁氧体纳米晶组装体,命名为CNA2。
2.依据权利要求1所述的锌铁氧体纳米晶组装体的制备方法,其特征在于:制备的锌铁氧体纳米晶组装体具有亚铁磁性,能迅速吸附偶氮染料并易于分离,并能用于对磷酸缓释液中的尿酸和多巴胺进行检测。
CN201610334956.4A 2016-05-19 2016-05-19 一种锌铁氧体纳米晶组装体的制备方法 Expired - Fee Related CN106006753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610334956.4A CN106006753B (zh) 2016-05-19 2016-05-19 一种锌铁氧体纳米晶组装体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610334956.4A CN106006753B (zh) 2016-05-19 2016-05-19 一种锌铁氧体纳米晶组装体的制备方法

Publications (2)

Publication Number Publication Date
CN106006753A true CN106006753A (zh) 2016-10-12
CN106006753B CN106006753B (zh) 2017-11-14

Family

ID=57096377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610334956.4A Expired - Fee Related CN106006753B (zh) 2016-05-19 2016-05-19 一种锌铁氧体纳米晶组装体的制备方法

Country Status (1)

Country Link
CN (1) CN106006753B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140695A (zh) * 2017-05-23 2017-09-08 青岛大学 一种溶剂热法制备铁氧体纳米晶组装体的方法
CN113607787A (zh) * 2021-06-17 2021-11-05 湖北文理学院 一种检测多巴胺的电化学传感器及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208637A (zh) * 2010-11-09 2011-10-05 广州市香港科大霍英东研究院 空心球结构ZnFe2O4/C复合负极材料及其一步法制备
CN104393244A (zh) * 2014-11-28 2015-03-04 东北林业大学 锂离子电池中空ZnFe2O4纳米负极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208637A (zh) * 2010-11-09 2011-10-05 广州市香港科大霍英东研究院 空心球结构ZnFe2O4/C复合负极材料及其一步法制备
CN104393244A (zh) * 2014-11-28 2015-03-04 东北林业大学 锂离子电池中空ZnFe2O4纳米负极材料的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MAIYONG ZHU,ET AL.: "Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors", 《RSC ADVANCES》 *
PEIZHI GUO, ET AL.: "Facile Synthesis of ZnFe2O4 Nanoparticles with Tunable Magnetic and Sensing Properties", 《LANGMUIR》 *
PENCHAL REDDY MATLI, ET AL.: "Fabrication, characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres", 《INT NANO LETT》 *
QUANGUO HE, ET AL.: "Hollow Magnetic Ferrites MFe2O4(M=Fe,Mn,Co,Zn) Fabrication and Comparison by Using Double Ammonium Salts Orientation", 《NANOSCIENCE AND NANOTECHNOLOGY LETTERS》 *
WANQUAN JIANG, ET AL.: "A simple route to synthesize ZnFe2O4 hollow spheres and their magnetorheological characteristics", 《SMART MATERIALS AND STRUCTURES》 *
ZHEN LI, ET AL.: "Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties", 《NEW JOURNAL OF CHEMISTRY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140695A (zh) * 2017-05-23 2017-09-08 青岛大学 一种溶剂热法制备铁氧体纳米晶组装体的方法
CN107140695B (zh) * 2017-05-23 2019-02-12 青岛大学 一种溶剂热法制备铁氧体纳米晶组装体的方法
CN113607787A (zh) * 2021-06-17 2021-11-05 湖北文理学院 一种检测多巴胺的电化学传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN106006753B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
Shi et al. N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells
Zhang et al. A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH
Du et al. Missing-linker engineering of Eu (III)-doped UiO-MOF for enhanced detection of heavy metal ions
Li et al. Lanthanide metal–organic framework nanoprobes for the in vitro detection of cardiac disease markers
CN108546551B (zh) 一种识别水体中铁离子的荧光探针及其制备方法和应用
CN103337327B (zh) 非均相Fe3O4/Co金属有机骨架材料及其制备方法和应用
Cao et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC
CN108774519B (zh) 一种抗坏血酸的检测方法
Li et al. Anion-exchangeable modulated fluorescence strategy for sensitive ascorbic acid detection with luminescent Eu hydroxy double salts nanosunflowers derived from MOFs
Yu et al. Dual-lanthanide urea metal-organic framework based fluorescent traffic light microsensor for solvent decoding and visual trace water assay
Xue et al. Covalent organic frameworks decorated by rare earth ions
CN107987282B (zh) 一种对水稳定的镧系金属-有机框架材料及制备和应用
Huo et al. Multistimuli-responsive pyrene-based lanthanide (III)-MOF construction and applied as dual-function fluorescent chemosensors for trace water and vitamins molecules
CN107720831B (zh) 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用
CN106006753A (zh) 一种锌铁氧体纳米晶组装体的制备方法
Deng et al. Chiral recognition of tryptophan enantiomers with UV–Vis spectrophotometry approach by using L-cysteine modified ZnFe2O4 nanoparticles in the presence of Cu2+
An et al. Convenient ultrasonic preparation of a water stable cluster-based Cadmium (II) coordination material and highly sensitive fluorescent sensing for biomarkers DPA and 5-HT
Zhao et al. Europium-based metal-organic framework with acid-base buffer structure as electrochemiluminescence luminophore for hyperstatic trenbolone trace monitoring under wide pH range
Yang et al. Two fluorescent cerium metal-organic frameworks for the “turn-on” sensing of AA with high sensitivity as well as biological and electrochemical properties
Fang et al. Synchronous enhancement of electromagnetic and chemical effects-induced quantitative adsorptive detection of quercetin based on flexible polymer-silver-ZIF-67 SERS substrate
Yu et al. One-pot synthesis of two novel Ce-MOFs for the detection of tetracyclic antibiotics and Fe3+
Wu et al. A novel acylhydrazone-based self-assembled supramolecular gel for ultrasensitive alternating fluorescence detection of Fe 3+ and H 2 PO 4−
Xu et al. Excellent quantum yield enhancement in luminescent metal-organic layer for sensitive detection of antibiotics in aqueous medium
CN102464358A (zh) 一种超声辅助水热合成水溶性方形铁酸盐磁性纳米材料的方法
Dai et al. Highly efficient N-doped carbon quantum dots for detection of Hg2+ and Cd2+ ions in dendrobium huoshanense

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171114

Termination date: 20190519

CF01 Termination of patent right due to non-payment of annual fee