CN105997940A - 炎症微环境响应性纳米药物、其制备方法及应用 - Google Patents

炎症微环境响应性纳米药物、其制备方法及应用 Download PDF

Info

Publication number
CN105997940A
CN105997940A CN201610311946.9A CN201610311946A CN105997940A CN 105997940 A CN105997940 A CN 105997940A CN 201610311946 A CN201610311946 A CN 201610311946A CN 105997940 A CN105997940 A CN 105997940A
Authority
CN
China
Prior art keywords
medicine
cyclodextrin
dspe
inflammatory microenvironment
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610311946.9A
Other languages
English (en)
Inventor
张建祥
胡厚源
窦寅
冯世斌
李晓辉
张相军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Military Medical University TMMU
Original Assignee
Third Military Medical University TMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Military Medical University TMMU filed Critical Third Military Medical University TMMU
Priority to CN201610311946.9A priority Critical patent/CN105997940A/zh
Publication of CN105997940A publication Critical patent/CN105997940A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明请求保护一种炎症微环境响应性纳米药物、其制备方法及应用,由心血管疾病防治药物、炎症微环境响应性载体材料、磷脂和聚乙二醇‑二硬脂酰磷脂酰乙醇胺组成,其中所述聚乙二醇‑二硬脂酰磷脂酰乙醇胺与心血管疾病防治药物的质量比为0.1:1到10:1之间,聚乙二醇‑二硬脂酰磷脂酰乙醇胺与炎症微环境响应性载体材料的质量比为0.02:1到2:1之间,聚乙二醇‑二硬脂酰磷脂酰乙醇胺与磷脂为0.01:1到1:0.01之间,所述纳米药物的粒径在20到900nm之间。可以应用于制备动脉粥样硬化相关疾病、血管支架内再狭窄和腹主动脉瘤的预防和治疗药物中。本纳米药物对动脉粥样硬化相关疾病、血管支架内再狭窄和腹主动脉瘤有明显的防治作用。

Description

炎症微环境响应性纳米药物、其制备方法及应用
技术领域
本发明涉及靶向炎症微环境的纳米药物,具体是一类通过响应于病灶局部炎症微环境实现心血管疾病防治的靶向纳米药物的组成、制备方法及其在防治心血管疾病的应用。
背景技术
心血管疾病的发病率和死亡率居所有疾病首位,严重威胁人类健康,且其发病率和死亡率仍逐年攀升。我国目前心血管病患者已经超过2.7亿人,每年死于心脑血管疾病的近300万人。而到2030年,我国心血管病患者将增加2130万,死亡人数将增加770万。动脉粥样硬化(AS)是心肌梗死、中风、脑卒中等严重致命性心血管疾病的共同病理改变,因此它也是导致全球范围内心脑血管疾病发病率和死亡率不断上升的最常见因素;若能有效防治AS势必会显著降低心血管疾病的发病率和死亡率,造福人类健康。AS是一种进展缓慢的炎症性疾病,其特征是脂质和纤维性成分在动脉壁内沉积引起管腔狭窄,甚至斑块破裂导致血管阻塞。炎症反应在AS发生发展的不同阶段中均有重要作用。据统计,76%的致命性冠状动脉病(比如急性心肌梗塞和冠状动脉性猝死)以及缺血性中风与AS斑块破裂相关。因此,不稳定斑块的早期诊断和治疗一直是防治AS相关心血管疾病的研究焦点。根据AS发生发展不同阶段的病理特征及其分子与细胞作用机制,通过药物治疗减小动脉粥样硬化斑块面积或提高其稳定性是防治此类疾病的重要手段之一。
然而,目前AS防治药物口服或动脉内直接给药后,其血浆半衰期短,迅速从靶部位消除,导致AS斑块部位药物难以维持最低有效治疗浓度,故治疗效果十分有限;若采用频繁给药或提高给药剂量的方法则会引起毒副作用的显著增加。此外,由于AS是慢性炎症疾病,其发病历程甚至长达几十年,在此过程中,AS病灶微环境动态改变,AS形成部位血管及AS斑块内部的分子、细胞种类及其数量不断发生变化。因此,基于AS发病历程中局部炎症微环境设计高效而安全的新型防治系统对于此类疾病的治疗意义巨大。
基于纳米技术和医学交叉研究的纳米医学近年来迅猛发展,为重大疾病的诊疗提供了新的机遇。研究表明纳米微粒在血管性疾病的早期诊断、预防、治疗及治疗效果评价等方面也具有突出优势。主要体现在:1)提高药物在血液循环中的稳定性,延长药物半衰期;2)通过特异性生物分子实现血管病灶部位特异性靶向,维持正常血流环境下的稳定结合(比如保持与内皮细胞、血小板或内皮下不同基质蛋白的稳定结合),实现血管性疾病发生、发展相关细胞(比如单核细胞和巨噬细胞)的特异性胞内递送;3)提高病灶部位药物浓度,减少药物在正常组织器官的分布,从而降低或避免了药物全身毒副作用或对正常器官的副作用;4)降低给药剂量,降低临床治疗费用;5)以可控或刺激响应方式实现诊断试剂、影像分子或治疗药物的病灶选择性传输。为此,美国、欧洲等心血管疾病高发病率国家近年来相继组织建立了多学科交叉研究团队以推进纳米系统在心血管疾病诊断、预防与治疗中的应用研究;其成效显著,个别诊断试剂已进入临床试验。可以预期,基于纳米技术的治疗性纳米微粒将会为心血管疾病的治疗带来新希望。
与实体瘤局部存在高渗漏性血管等病理特征相似,AS发生部位常伴随有血管通透性的增加。内皮损伤是AS发生的关键病理生理因素,它会导致血管内皮对大分子和纳米微粒的通透性显著增加;微脉管的渗透性和缺血诱导新生血管(或滋养管)的渗漏性进一步加强了局部通透性。且AS慢性炎症的病理特点使病变血管局部通透性较正常血管的显著增加在其发生、发展的整个过程持续存在。这些病理特征是纳米微粒系统被动靶向AS斑块部位的前提和基础。此外,静脉注射后纳米微粒还可以被循环单核细胞及中性粒细胞等摄取或与之结合,这些细胞之后迁移至AS炎症部位,从另一途径实现被动靶向。另一方面,AS发生部位趋化分子、粘附分子表达水平明显增高,这些分子为纳米微粒的主动靶向提供了重要靶标。通过将抗体、蛋白、多肽或其他配体分子结合于纳米粒表面,可以实现其主动靶向。近年来研究表明,各种理化性能不同的纳米粒在AS的诊断与治疗中潜力巨大。量子点、金纳米粒、硅纳米粒和磁性氧化铁纳米粒(Iron oxide NP)等广泛用于AS的非侵袭性造影中,涉及光学成像、核磁共振造影、正电子发射断层显像、单光子发射计算机断层成像术、计算机断层扫描技术以及超声造影等现代医学成像技术。部分初步研究尚表明,载药治疗性纳米粒可以通过被动或主动方式靶向AS斑块部位,减小斑块面积或提高斑块稳定性,从而有望降低AS相关并发症的发病率;其中研究的纳米系统包括脂质体、纳米乳液、聚合物纳米粒、聚合物胶束等,涉及高密度脂蛋白和低密度脂蛋白水平调节、抗炎、抗再狭窄、抗血管新生、抗凝等治疗策略。
毫无疑问,这些纳米诊疗系统的临床转化将会为心血管疾病的个体化治疗提供极其重要的新工具和新手段。不过,尽管靶向纳米系统在AS等心血管疾病的诊断与治疗中的应用前景极其美好,并有望推进个体化治疗策略的快速发展,但该领域的研究在国内外均处于初步阶段。尤其是在靶向治疗AS方面,目前仍然缺乏同时具备良好生物相容性、可调降解周期、可控药物释放和病灶微环境靶向性等诸多生物理化特性的纳米药物。
发明内容
有鉴于此,本发明的目的是提供一种炎症微环境响应性纳米药物的组成及其制备方法;另一目的是以动脉粥样硬化和颈动脉损失后再狭窄为模型,验证其在防治心血管疾病中的作用。
为了实现上述目的本发明采用的技术方案如下:炎症微环境响应性纳米药物由心血管疾病防治药物、炎症微环境响应性载体材料、磷脂和聚乙二醇-二硬脂酰磷脂酰乙醇胺组成,其中所述聚乙二醇-二硬脂酰磷脂酰乙醇胺与心血管疾病防治药物的质量比为0.1:1到10:1之间,聚乙二醇-二硬脂酰磷脂酰乙醇胺与炎症微环境响应性载体材料的质量比为0.02:1到2:1之间,聚乙二醇-二硬脂酰磷脂酰乙醇胺与磷脂为0.01:1到1:0.01之间,所述纳米药物的粒径在20到900nm之间。
上述心血管疾病防治药物选自雷帕霉素、坦罗莫司、依维莫司、地磷莫司、佐他莫司、紫杉醇、多西紫杉醇、阿霉素、洛伐他汀、辛伐他汀、普伐他汀、美伐他汀、氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀或匹伐他汀。
上述炎症微环境响应性载体材料缩醛化α-环糊精衍生物、缩醛化β-环糊精衍生物、缩醛化γ-环糊精衍生物、缩醛化环糊精聚合物、缩醛化葡聚糖、4-羟甲基苯硼酸频哪醇酯修饰的α-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的γ-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的葡聚糖或4-羟甲基苯硼酸频哪醇酯修饰的环糊精聚合物。具体地,缩醛化环糊精聚合物和4-羟甲基苯硼酸频哪醇酯修饰的环糊精聚合物中的环糊精聚合物选自α-环糊精聚合物、β-环糊精聚合物或γ-环糊精聚合物。
上述述磷脂选自卵磷脂、二硬脂酰磷脂酰乙醇胺、二肉豆蔻酰磷脂酰胆碱、1,2-二油酰基磷脂酰胆碱或二硬脂酰磷脂酰胆碱。
一种炎症微环境响应性纳米药物的制备方法,包括以下步骤:首先将磷脂和聚乙二醇-二硬脂酰基磷脂酰乙醇胺溶于水中得到水相,将炎症微环境响应性载体材料与心血管疾病防治药物溶于有机溶剂中得到有机相;然后将有机相缓慢滴加于预加热后的水相中,滴加完成后,在20-80℃下磁力搅拌1-24h以挥发除去有机溶剂,通过离心分离,用去离子水洗涤,冷冻干燥后即可得到纳米药物。
在以上制备方法中,所述聚乙二醇-二硬脂酰磷脂酰乙醇胺中聚乙二醇的分子量为1000Da、2000Da、5000Da或10000Da。
在以上制备方法中,所述有机溶剂选自甲醇、乙醇、乙腈、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮或其任意两两混合的溶剂。
在以上制备方法中,所述聚乙二醇-二硬脂酰磷脂酰乙醇胺在水相中的浓度为0.01-100mg/mL;所述水相和有机相的体积比为10:1到1:10之间。
实现本发明的另一目是以动脉粥样硬化和颈动脉损失后再狭窄为模型,验证本发明的药物在防治心血管疾病中的作用。具体可以是炎症微环境响应性纳米药物在制备预防或治疗动脉粥样硬化相关疾病的药物、预防或治疗动血管支架内再狭窄的药物和预防或治疗腹主动脉瘤的药物中的应用。其中所述纳米药物的给药方式包括口服、静脉注射、皮下注射、肌肉注射,及以上方式之任意组合。
本发明所具有的有益技术效果如下:
(1)本发明所使用的炎症微环境响应性载体材料的合成工艺相对简单、易于规模化制备、且成本较低;合成所需的原材料和溶剂均有市售产品,其价格相对低廉,故易于实现所述纳米药物的产业化。
(2)本发明所选用的响应性载体材料、磷脂和聚乙二醇-二硬脂酰基磷脂酰乙醇胺均有较好的体内外生物相容性,且其水解或代谢产物基本无毒,因此保证了最终纳米药物的体内安全性。
(3)本发明采用的纳米沉淀/自组装法简单易行、易于放大,且使用的水溶性溶剂容易去除,保证了最终纳米药物应用的安全性。
(4)本发明所制备的纳米药物的大小可以通过制备工艺参数来调控。
(5)本发明所采用的纳米药物的制备方法能够实现心血管疾病防治药物的有效负载。
(6)本发明所制备的纳米药物能够响应于炎症性病灶局部的微酸性和高活性氧微环境而释放其中的小分子药物。
(7)本发明所制备的纳米药物局部或静脉注射给药后,易于在炎症性病灶部位靶向富集。
(8)本发明所制备的纳米药物对动脉粥样硬化和颈动脉再狭窄的治疗效果明显优于游离药物和对照的非响应性纳米药物。
附图说明
图1为不同纳米药物的透射电镜图;图中:A,紫杉醇/缩醛化β-CD纳米药物;B,多西紫杉醇/缩醛化β-CD纳米药物;C,雷帕霉素/缩醛化β-CD纳米药物;D,雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物;E,多西紫杉醇/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物。
图2为不同纳米药物的响应性释放行为;图中:A,雷帕霉素/缩醛化β-CD纳米药物(RAP/Ac-bCD NPs)的pH响应性释放曲线;B,雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物(RAP/Ox-bCD NPs)的活性氧响应性释放曲线。
图3为缩醛化β-CD纳米靶向富集于小鼠动脉粥样硬化斑块部位。
图4为负载雷帕霉素(RAP)的微酸性pH响应性纳米药物(RAP/Ac-bCDNPs)与活性氧响应性纳米药物(RAP/Ox-bCD NPs)有效抑制小鼠动脉粥样硬化斑块的形成与发展,其效果优于对照的非响应性纳米药物(RAP/PLGA NPs)。
图5为基于缩醛化β-环糊精的微酸性pH敏感性纳米粒(Ac-bCD)靶向富集于大鼠颈动脉球囊损失部位。
图6为负载雷帕霉素(RAP)的微酸性pH响应性纳米药物(RAP/Ac-bCD NP)与活性氧响应性纳米药物(RAP/Ox-bCD NP)有效抑制大鼠颈动脉球囊损失后的再狭窄,其效果优于对照游离药物(Free RAP)和对照非响应性纳米药物(RAP/PLGA NP)。
具体实施方式
下面结合具体实施方式对本发明的发明内容作进一步的详细描述。应理解,本发明的实施例只用于说明本发明而非限制本发明,在不脱离本发明技术思想的情况下,根据本领域普通技术知识和惯用手段,做出的各种替换和变更,均应包括在本发明的范围内。
下面结合非限定性的实施例对本发明做详细说明。本发明可控制纳米药物的粒径在20nm到900nm之间。
实施例1
首先将0.5mg卵磷脂和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于5mL双蒸水中。将50mg的缩醛化α-环糊精衍生物和10mg的雷帕霉素溶于1mL甲醇中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌1h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在20-100nm之间。
实施例2
首先将1mg二硬脂酰磷脂酰乙醇胺和15mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为1000Da)在60℃恒温磁力搅拌条件下溶解于5mL双蒸水中。将40mg的缩醛化β-环糊精衍生物和10mg的坦罗莫司溶于1mL乙醇中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,40℃继续搅拌3h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在150-250nm之间。
实施例3
首先将1mg二肉豆蔻酰磷脂酰胆碱和20mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为5000Da)在60℃恒温磁力搅拌条件下溶解于5mL双蒸水中。将10mg的缩醛化γ-环糊精衍生物和2mg的依维莫司溶于0.5mL乙腈中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,70℃继续搅拌2h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在160-300nm之间。
实施例4
首先将2mg 1,2-二油酰基磷脂酰胆碱和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为10000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将100mg的缩醛化α-环糊精聚合物和10mg的地磷莫司溶于10mL四氢呋喃中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌8h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在100-300nm之间。
实施例5
首先将5mg二硬脂酰磷脂酰胆碱和20mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为5000Da)在60℃恒温磁力搅拌条件下溶解于10mL双蒸水中。将200mg的缩醛化β-环糊精聚合物和10mg的佐他莫司溶于5mL二甲基甲酰胺中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,20℃继续搅拌10h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在150-300nm之间。
实施例6
首先将2mg二硬脂酰磷脂酰乙醇胺和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于5mL双蒸水中。将40mg的缩醛化γ-环糊精聚合物和8mg的紫杉醇溶于5mL二甲基乙酰胺中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,50℃继续搅拌16h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在120-300nm之间。
实施例7
首先将1mg卵磷脂和50mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于5mL双蒸水中。将200mg的缩醛化葡聚糖和20mg的多西紫杉醇溶于5mL二甲基亚砜中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌15h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在200-400nm之间。
实施例8
首先将1mg卵磷脂和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将50mg的缩醛化α-环糊精和10mg的阿霉素溶于3mL N-甲基吡咯烷酮中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,50℃继续搅拌20h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在100-300nm之间。
实施例9
首先将2mg卵磷脂和15mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于1.5mL双蒸水中。将50mg的4-羟甲基苯硼酸频哪醇酯修饰的α-环糊精衍生物和5mg的洛伐他汀溶于3mL甲醇/N-甲基吡咯烷酮混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,30℃继续搅拌24h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在400-600nm之间。
实施例10
首先将2mg卵磷脂和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于1.5mL双蒸水中。将50mg的4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物和5mg的辛伐他汀溶于4mL甲醇/二甲基亚砜混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,50℃继续搅拌5h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在400-900nm之间。
实施例11
首先将1mg二硬脂酰磷脂酰乙醇胺和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于1mL双蒸水中。将30mg的4-羟甲基苯硼酸频哪醇酯修饰的γ-环糊精衍生物和3mg的普伐他汀溶于3mL甲醇/二甲基甲酰胺混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌8h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在50-200nm之间。
实施例12
首先将2mg二硬脂酰磷脂酰乙醇胺和12mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将60mg的4-羟甲基苯硼酸频哪醇酯修饰的α-环糊精聚合物和5mg的美伐他汀溶于5mL甲醇/二甲基乙酰胺混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,65℃继续搅拌10h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在100-300nm之间。
实施例13
首先将2mg卵磷脂和15mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将50mg的4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精聚合物和5mg的氟伐他汀溶于4mL甲醇/乙醇混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,40℃继续搅拌8h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在100-300nm之间。
实施例14
首先将1mg卵磷脂和5mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将30mg的4-羟甲基苯硼酸频哪醇酯修饰的γ-环糊精聚合物和3mg的阿托伐他汀溶于3mL甲醇/乙腈混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,50℃继续搅拌4h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在100-280nm之间。
实施例15
首先将0.5mg卵磷脂和5mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将100mg的4-羟甲基苯硼酸频哪醇酯修饰的葡聚糖和10mg的罗伐他汀溶于5mL甲醇/四氢呋喃混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,65℃继续搅拌3h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在100-290nm之间。
实施例16
首先将1mg卵磷脂和8mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将50mg的4-羟甲基苯硼酸频哪醇酯修饰的α-环糊精衍生物和10mg的匹伐他汀溶于4mL甲醇/二甲基亚砜混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌8h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在100-310nm之间。
实施例16
首先将1mg卵磷脂和10mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于2mL双蒸水中。将50mg的4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物和10mg的雷帕霉素溶于4mL甲醇/二甲基亚砜混合溶剂中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,80℃继续搅拌3h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的活性氧响应性纳米药物。纳米药物的粒径在60-200nm之间。
实施例17
首先将1mg卵磷脂和100mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于1mL双蒸水中。将50mg的缩醛化β-环糊精衍生物和10mg的西立伐他汀溶于10mL甲醇中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,65℃继续搅拌8h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在100-300nm之间。
实施例18
首先将100mg二硬脂酰磷脂酰胆碱和1mg聚乙二醇-二硬脂酰磷脂酰乙醇胺(其中聚乙二醇的分子量为2000Da)在60℃恒温磁力搅拌条件下溶解于100mL双蒸水中。将50mg的缩醛化β-环糊精衍生物和10mg的紫杉醇溶于10mL乙腈中。然后在搅拌下,将有机相缓慢滴加于水相之中(1mL/min)。滴加完成后,60℃继续搅拌5h以挥发去除有机溶剂。通过离心分离,用去离子水洗涤,冷冻干燥后即可得到本发明所述的微酸性pH响应性纳米药物。纳米药物的粒径在100-350nm之间。
以上制备的纳米药物,通过图1到图6进行了验证实验。
图1为采用上述方法制备的不同纳米药物的透射电镜图。A为紫杉醇/缩醛化β-环糊精纳米药物。B,多西紫杉醇/缩醛化β-环糊精纳米药物。C,雷帕霉素/缩醛化β-环糊精纳米药物。D,雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物。E,多西紫杉醇/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物。
图2为不同纳米药物的炎症微环境响应性体外释放行为。A为雷帕霉素/缩醛化β-环糊精纳米药物(RAP/Ac-bCD NPs)在不同pH的介质中的释放曲线。B为雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物(RAP/Ox-bCD NPs)在含有不同过氧化氢的介质中的释放曲线。该结果表明所制备的纳米药物具有炎症微环境响应性。
图3为离体荧光成像结果,表明缩醛化β-环糊精纳米粒可靶向富集于载脂蛋白E缺陷小鼠动脉粥样硬化斑块部位,证明缩醛化β-环糊精纳米粒具有动脉粥样硬化斑块靶向性。
图4为油红O染色的载脂蛋白E缺陷小鼠主动脉组织的图片,结果表明负载雷帕霉素(RAP)的微酸性pH响应性纳米药物(RAP/Ac-bCD NPs,即雷帕霉素/缩醛化β-环糊精纳米药物)与活性氧响应性纳米药物(RAP/Ox-bCD NPs,即雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物)可以有效抑制小鼠动脉粥样硬化斑块的形成与发展,其效果优于对照的非响应性纳米药物(RAP/PLGA NPs)。
图5为大鼠颈动脉组织的离体荧光成像结果,表明基于缩醛化β-环糊精的微酸性pH敏感性纳米粒(Ac-bCD)可靶向富集于大鼠颈动脉球囊损失部位,故基于缩醛化β-环糊精的微酸性pH敏感性的纳米粒具有主动脉血管损伤组织靶向性。
图6为大鼠颈动脉损伤组织的H&E染色病理切片图,结果表明负载雷帕霉素(RAP)的微酸性pH响应性纳米药物(RAP/Ac-bCD NP,即雷帕霉素/缩醛化β-环糊精纳米药物)与活性氧响应性纳米药物(RAP/Ox-bCD NP,即雷帕霉素/4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物纳米药物)能够有效抑制大鼠颈动脉球囊损失后的再狭窄,其效果优于对照游离雷帕霉素(Free RAP)和对照非响应性纳米药物(RAP/PLGA NP,即雷帕霉素/聚(丙交酯-共-乙交酯)纳米药物)。
本发明所述的心血管疾病防治药物是对心血管疾病发挥治疗作用的一大类活性物质。在上述实施例中,所采用的药物为雷帕霉素、坦罗莫司、依维莫司、地磷莫司、佐他莫司、紫杉醇、多西紫杉醇、阿霉素、洛伐他汀、辛伐他汀、普伐他汀、美伐他汀、氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、匹伐他汀。但是这些药物并不限制本发明的保护范围,本领域普通技术人员可选择合适的心血管疾病防治药物。
主要参考文献
[1]J.Sanz,Z.A.Fayad,Imaging of atherosclerotic cardiovascular disease,Nature,451(2008)953-957.
[2]W.H.Organization,World Health Statistics 2008[EB/OL].[2008-05-20].
http://www.who.int/whosis/whostat/EN_WHS08_Full.pdf,(2008).
[3]E.Falk,Pathogenesis of atherosclerosis,J.Am.Coll.Cardiol.,47(2006)C7-12.
[4]C.K.Glass,J.L.Witztum,Atherosclerosis:the road ahead,Cell,104(2001)503-516.
[5]R.W.Moreadith,D.Collen,Clinical development of PEGylated recombinant staphylokinase(PEG-Sak)for bolus thrombolytic treatment of patients with acute myocardial infarction,Adv.DrugDeliv.Rev.,55(2003)1337-1345.
[6]J.D.Pandian,V.Padma,P.Vijaya,et al.,Stroke and thrombolysis in developing countries,Int.J.Stroke,2(2007)17-26.
[7]P.Libby,P.M.Ridker,G.K.Hansson,Progress and challenges in translating the biology ofatherosclerosis,Nature,473(2011)317-325.
[8]I.F.Charo,R.Taub,Anti-inflammatory therapeutics for the treatment of atherosclerosis,Nat.Rev.Drug Discov.,10(2011)365-376.
[9]B.Y.S.Kim,J.T.Rutka,W.C.W.Chan,Current concepts nanomedicine,N.Engl.J.Med.,363(2010)2434-2443.
[10]Z.L.Cheng,A.A.Zaki,J.Z.Hui,et al.,Multifunctional nanoparticles:cost versus benefit ofadding targeting and imaging capabilities,Science,338(2012)903-910.
[11]M.E.Davis,Z.Chen,D.M.Shin,Nanoparticle therapeutics:an emerging treatment modalityfor cancer,Nat.Rev.Drug Discov.,7(2008)771-782.
[12]G.S.van Bochove,L.E.Paulis,D.Segers,et al.,Contrast enhancement by differently sizedparamagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque,ContrastMedia Mol.Imaging,6(2011)35-45.
[13]U.Z.Ding,H.Hardung,et al.,In vivo monitoring of inflammation after cardiac andcerebral ischemia by fluorine magnetic resonance imaging,Circulation,118(2008)140-148.
[14]M.E.Lobatto,V.Fuster,Z.A.Fayad,et al.,Perspectives and opportunities for nanomedicine inthe management of atherosclerosis,Nat.Rev.Drug Discov.,10(2011)835-852.
[15]K.Douma,L.Prinzen,D.W.Slaaf,et al.,Nanoparticles for optical molecular imaging ofatherosclerosis,Small,5(2009)544-557.
[16]A.S.Gupta,Nanomedicine approaches in vascular disease:a review,Nanomedicine:NBM,7(2011)763-779.
[17]M.E.Lobatto,Z.A.Fayad,S.Silvera,et al.,Multimodal clinical imaging to longitudinallyassess a nanomedical anti-inflammatory treatment in experimental atherosclerosis,Mol.Pharmaceutics,7(2010)2020-2029.
[18]N.M.Iverson,N.M.Plourde,S.M.Sparks,et al.,Dual use of amphiphilic macromolecules ascholesterol efflux triggers and inhibitors of macrophage athero-inflammation,Biomaterials,32(2011)8319-8327.
[19]G.Y.Lee,J.H.Kim,G.T.Oh,et al.,Molecular targeting of atherosclerotic plaques by astabilin-2-specific peptide ligand,J.Control.Release,155(2011)211-217.
[20]E.R.Tavares,F.R.Freitas,J.D.Diament,et al.,Reduction of atherosclerotic lesions in rabbitstreated with etoposide associated with cholesterol-rich nanoemulsions,Int.J.Nanomedicine,6(2011)2297-2304.
[21]J.M.Chan,L.F.Zhang,R.Tong,et al.,Spatiotemporal controlled delivery of nanoparticles toinjured vasculature,PNAS,107(2010)2213-2218.
[22]S.Katsuki,T.Matoba,S.Nakashiro,et al.,Nanoparticle-mediated delivery of pitavastatininhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment ofinflammatory monocytes,Circulation,129(2014)896-906.
[23]F.K.Swirski,M.Nahrendorf,Leukocyte behavior in atherosclerosis,myocardial infarction,and heart failure,Science,339(2013)161-166.
[24]D.E.Bloom,E.T.Cafiero,E.Jané-Llopis,et al.,The global economic burden ofnoncommunicable diseases,geneva,2011,pp.World Economic Forum.
[25]M.Naghavi,P.Libby,E.Falk,et al.,From vulnerable plaque to vulnerable patient-a call fornew definitions and risk assessment strategies:part I,Circulation,108(2003)1664-1672.
[26]M.Naghavi,P.Libby,E.Falk,et al.,From vulnerable plaque to vulnerable patient-a call fornew definitions and risk assessment strategies:part II,Circulation,108(2003)1772-1778.
[27]P.Dutta,G.Courties,Y.Wei,et al.,Myocardial infarction accelerates atherosclerosis,Nature,487(2013)325-329.
[28]A.J.Sinusas,F.Bengel,M.Nahrendorf,et al.,Multimodality cardiovascular molecularimaging,part I,Circ.Cardiovasc.Imaging,1(2008)244-256.
[29]R.P.Choudhury,V.Fuster,Z.A.Fayad,Molecular,cellular and functional imaging ofatherothrombosis,Nat.Rev.Drug Discov.,3(2004)913-925.
[30]D.R.J.Owen,A.C.Lindsay,R.P.Choudhury,et al.,Imaging of atherosclerosis,Annu.Rev.Med.,62(2011)25-40.
[31]R.P.Choudhury,E.A.Fisher,Molecular imaging in atherosclerosis,thrombosis,and vascularinflammation,Arterioscler.Thromb.Vasc.Biol.,29(2009)983-991.
[32]J.R.McCarthy,R.Weissleder,Multifunctional magnetic nanoparticles for targeted imaging andtherapy,Adv.Drug Deliv.Rev.,60(2008)1241-1251.
[33]S.A.Wickline,A.M.Neubauer,P.M.Winter,et al.,Molecular imaging and therapy ofatherosclerosis with targeted nanoparticles,J.Magn.Reson.Imaging,25(2007)667-680.
[34]G.M.Lanza,X.Yu,P.M.Winter,et al.,Targeted antiproliferative drug delivery to vascularsmooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent implicationsfor rational therapy of restenosis,Circulation,106(2002)2842-2847.
[35]D.Peters,M.Kastantin,V.R.Kotamraju,et al.,Targeting atherosclerosis by using modular,multifunctional micelles,PNAS,106(2009)9815-9819.
[36]D.R.Lewis,K.Kamisoglu,A.W.York,et al.,Polymer-based therapeutics:nanoassemblies andnanoparticles for management of atherosclerosis,WIREs Nanomed.Nanobiotechnol.,3(2011)400-420.
[37]J.R.McCarthy,E.Korngold,R.Weissleder,et al.,A Light-activated theranostic nanoagent fortargeted macrophage ablation in inflammatory atherosclerosis,Small,6(2010)2041-2049.
[38]J.M.Chan,L.F.Zhang,R.Tong,et al.,Spatiotemporal controlled delivery of nanoparticles toinjured vasculature,PNAS,107(2010)2213-2218.
[39]D.B.Buxton,Nanotechnology research support at the National Heart,Lung,and BloodInstitute,Circ.Res.,109(2011)250-254.

Claims (10)

1.炎症微环境响应性纳米药物,其特征在于:由心血管疾病防治药物、炎症微环境响应性载体材料、磷脂和聚乙二醇-二硬脂酰磷脂酰乙醇胺组成,其中所述聚乙二醇-二硬脂酰磷脂酰乙醇胺与心血管疾病防治药物的质量比为0.1:1到10:1之间,聚乙二醇-二硬脂酰磷脂酰乙醇胺与炎症微环境响应性载体材料的质量比为0.02:1到2:1之间,聚乙二醇-二硬脂酰磷脂酰乙醇胺与磷脂为0.01:1到1:0.01之间,所述纳米药物的粒径在20到900nm之间。
2.根据权利要求1所述炎症微环境响应性纳米药物,其特征在于:所述心血管疾病防治药物选自雷帕霉素、坦罗莫司、依维莫司、地磷莫司、佐他莫司、紫杉醇、多西紫杉醇、阿霉素、洛伐他汀、辛伐他汀、普伐他汀、美伐他汀、氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀或匹伐他汀。
3.根据权利要求1所述炎症微环境响应性纳米药物,其特征在于:所述炎症微环境响应性载体材料选自缩醛化α-环糊精衍生物、缩醛化β-环糊精衍生物、缩醛化γ-环糊精衍生物、缩醛化环糊精聚合物、缩醛化葡聚糖、4-羟甲基苯硼酸频哪醇酯修饰的α-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的β-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的γ-环糊精衍生物、4-羟甲基苯硼酸频哪醇酯修饰的葡聚糖或4-羟甲基苯硼酸频哪醇酯修饰的环糊精聚合物。
4.根据权利要求3所述炎症微环境响应性纳米药物,其特征在于:所述缩醛化环糊精聚合物和4-羟甲基苯硼酸频哪醇酯修饰的环糊精聚合物中的环糊精聚合物选自α-环糊精聚合物、β-环糊精聚合物或γ-环糊精聚合物。
5.根据权利要求1所述炎症微环境响应性纳米药物,其特征在于:所述磷脂选自卵磷脂、二硬脂酰磷脂酰乙醇胺、二肉豆蔻酰磷脂酰胆碱、1,2-二油酰基磷脂酰胆碱或二硬脂酰磷脂酰胆碱。
6.一种权利要求1到5所述炎症微环境响应性纳米药物的制备方法,其特征是包括以下步骤:首先将磷脂和聚乙二醇-二硬脂酰基磷脂酰乙醇胺溶于水中得到水相,将炎症微环境响应性载体材料与心血管疾病防治药物溶于有机溶剂中得到有机相;然后将有机相缓慢滴加于预加热后的水相中,滴加完成后,在20-80℃下磁力搅拌1-24h以挥发除去有机溶剂,通过离心分离,用去离子水洗涤,冷冻干燥后即可得到纳米药物。
7.根据权利要求6所述炎症微环境响应性纳米药物的制备方法,其特征在于:所述聚乙二醇-二硬脂酰磷脂酰乙醇胺中聚乙二醇的分子量为1000Da、2000Da、5000Da或10000Da。
8.根据权利要求6所述炎症微环境响应性纳米药物的制备方法,其特征在于:所述有机溶剂选自甲醇、乙醇、乙腈、四氢呋喃、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮或其任意两两混合的溶剂。
9.根据权利要求6所述炎症微环境响应性纳米药物的制备方法,其特征在于:所述聚乙二醇-二硬脂酰磷脂酰乙醇胺在水相中的浓度为0.01-100mg/mL;所述水相和有机相的体积比为10:1到1:10之间。
10.权利要求1到5所述炎症微环境响应性纳米药物,应用于制备预防或治疗动脉粥样硬化相关疾病的药物、预防或治疗动血管支架内再狭窄的药物和预防或治疗腹主动脉瘤的药物中的应用。
CN201610311946.9A 2016-05-11 2016-05-11 炎症微环境响应性纳米药物、其制备方法及应用 Pending CN105997940A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610311946.9A CN105997940A (zh) 2016-05-11 2016-05-11 炎症微环境响应性纳米药物、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610311946.9A CN105997940A (zh) 2016-05-11 2016-05-11 炎症微环境响应性纳米药物、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN105997940A true CN105997940A (zh) 2016-10-12

Family

ID=57099556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610311946.9A Pending CN105997940A (zh) 2016-05-11 2016-05-11 炎症微环境响应性纳米药物、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN105997940A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109010311A (zh) * 2018-09-28 2018-12-18 中国人民解放军陆军军医大学 一种活性氧响应性莫西沙星纳米制剂及其制备方法
CN109289057A (zh) * 2018-11-27 2019-02-01 中国人民解放军陆军军医大学 一种靶向治疗类风湿性关节炎的地塞米松纳米制剂及其制备方法
CN110302176A (zh) * 2019-06-25 2019-10-08 中国人民解放军陆军军医大学 一种抗炎多肽纳米药物及制备方法
CN108794656B (zh) * 2018-05-11 2020-11-10 中国人民解放军陆军军医大学 一种广谱活性氧簇清除性材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1436076A (zh) * 2000-06-16 2003-08-13 惠氏公司 治疗心血管疾病的方法
CN105327353A (zh) * 2015-12-03 2016-02-17 中国人民解放军第三军医大学 一种模拟超氧化物歧化酶/过氧化氢酶的纳米药物、制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1436076A (zh) * 2000-06-16 2003-08-13 惠氏公司 治疗心血管疾病的方法
CN105327353A (zh) * 2015-12-03 2016-02-17 中国人民解放军第三军医大学 一种模拟超氧化物歧化酶/过氧化氢酶的纳米药物、制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DINGLIN ZHANG,等: "Biocompatible Reactive Oxygen Species (ROS)-Responsive Nanoparticles as Superior Drug Delivery Vehicles", 《ADV. HEALTHCARE MATER.》 *
EUN SEOK PARK,等: "Inhibitory Effects of Docetaxel on Platelet-Derived Growth Factor (PDGF)-BB–Induced Proliferation of Vascular Smooth Muscle Cells Through Blocking PDGF-Receptor β Phosphorylation", 《J PHARMACOL SCI》 *
HONGMEI HE,等: "Cyclodextrin-derived pH-responsive nanoparticle s for delivery of paclitaxel", 《BIOMATERIALS》 *
何红梅: "均聚多肽纳米组装体与pH响应性纳米微粒新型靶向释药系统研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
冯莉萍,等: "紫杉醇对大鼠动脉粥样硬化斑块的影响", 《心肺血管病杂志》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108794656B (zh) * 2018-05-11 2020-11-10 中国人民解放军陆军军医大学 一种广谱活性氧簇清除性材料及其制备方法和应用
CN109010311A (zh) * 2018-09-28 2018-12-18 中国人民解放军陆军军医大学 一种活性氧响应性莫西沙星纳米制剂及其制备方法
CN109289057A (zh) * 2018-11-27 2019-02-01 中国人民解放军陆军军医大学 一种靶向治疗类风湿性关节炎的地塞米松纳米制剂及其制备方法
CN109289057B (zh) * 2018-11-27 2022-02-15 中国人民解放军陆军军医大学 一种靶向治疗类风湿性关节炎的地塞米松纳米制剂及其制备方法
CN110302176A (zh) * 2019-06-25 2019-10-08 中国人民解放军陆军军医大学 一种抗炎多肽纳米药物及制备方法

Similar Documents

Publication Publication Date Title
Matoba et al. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease
CN110545799B (zh) 用于靶向活化cd44分子的重组仿生纳米载体递送系统、其制备方法和用途
Aktaş et al. Development and brain delivery of chitosan− PEG nanoparticles functionalized with the monoclonal antibody OX26
Haeri et al. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies
Assanhou et al. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment
Zhang et al. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy
Su et al. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy
Winter et al. Endothelial ανβ3 integrin–targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis
Kwon et al. Analysis on the current status of targeted drug delivery to tumors
Wu et al. Delivery luteolin with folacin-modified nanoparticle for glioma therapy
Yu et al. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer
Yang et al. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer
Gao et al. Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy
Jadon et al. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics
Ismail et al. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma
Dalela et al. pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly (styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice
He et al. Nanomedicines for dysfunctional macrophage-associated diseases
Stigliano et al. Methotraxate‐Loaded Hybrid Nanoconstructs Target Vascular Lesions and Inhibit Atherosclerosis Progression in ApoE−/− Mice
Zhang et al. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment
CN105997940A (zh) 炎症微环境响应性纳米药物、其制备方法及应用
Huang et al. Antiangiogenic activity of sterically stabilized liposomes containing paclitaxel (SSL-PTX): in vitro and in vivo
Huang et al. Effective triple-negative breast cancer targeted treatment using iRGD-modified RBC membrane-camouflaged nanoparticles
Hossaini Nasr et al. Nanotechnology for targeted therapy of atherosclerosis
Di et al. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential
Xue et al. Cellular vehicles based on neutrophils enable targeting of atherosclerosis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012

RJ01 Rejection of invention patent application after publication