接入网络的方法及装置
技术领域
本发明涉及通信领域,具体而言,涉及接入网络的方法及装置。
背景技术
随着现代科技的不断发展,通信已经成为了人们生活中不可缺少的一部分,而通信技术又是五花八门,百花齐放。在多种多样的通信技术中,基本的通信系统结构均是由接入网络侧以及传输侧组成的。接入侧通常是指终端用户到接入侧网络设备的连接,如手机到无线基站的连接,手机、电脑到WiFi无线路由器的连接等等。传输侧,也叫回传侧,是指接入网络设备向互联网方向进行传输的部分。用户终端通过接入侧连接到通信设备,通过传输侧最终连接到互联网。
图1是根据相关技术中的通信网络的基本架构的示意图,如图1所示,无线通信由于其使用方便快捷的特点,越来越受到用户的青睐,各种类型的无线通信也越来越充斥着现代人的生活,大量的接入网络设备在不断的被生产。在通信技术发展的同时,在通信系统上需要承载的内容更是以几何级数的形式迎来了爆炸式的增长。随着各种智能设备的普及以及高带宽业务(如高清视频、游戏、视频通话等)的增加,需要通信系统能够提供更大更快的传输能力。建设更多的接入网络设备,更加密集的复用无线频率,成为了解决此类需求的一个重要方案。
第四代移动通信技术(4G),是国际标准化组织3GPP制定的,名为长期演进(LongTerm Evolution,简称为LTE/LTE-Advance)的新一代移动通信技术(为简化文字,下面以LTE代表4G、LTE、LTE-A等)。其目标在于为移动用户提供更好的数据服务,包括更高的传输速率、更低的传输时延、更加可靠的传输性能和对不同业务的服务质量(Quality ofService,简称为QoS)更好的支持。传输速率方面,LTE目标支持下行传输1Gbps,上行传输500Mbps的数据速率;时延方面,LTE支持用户面单向传输(eNB-UE)时延小于5ms,控制面从睡眠状态到激活状态迁移时延小于50ms,从驻留状态到激活状态时延小于100ms。
和之前的传统移动通信相同,LTE系统也是由用户终端(User Equipment,简称为UE),接入网设备基站(evolved Node B,简称为eNB)以及核心网(Core Network,简称为CN)组成,其中UE在本发明中特指支持LTE通信的模块、芯片而非包括LTE功能的其他产品。目前LTE终端模块多安装在用户的手机、平板电脑、数据卡或者其他需要和网络通信的设备中,通过和运营商部署的支持LTE的移动通信网络进行通信,为其设备提供数据的输入和输出。例如在视频通话中,手机将LTE终端模块从空中接口接收的视频数据信息经过解码后显示在屏幕上,而将摄像头输入的用户本地的视频数据信息经过编码后通过LTE终端模块从空中接口发送给网络。由于目前已有的LTE终端模块都是为设备提供数据的输出、输入,所以其对外仅支持通过通用串行总线(Unified Serial Bus,简称为USB)接口和设备进行数据连接。
设备到设备通信(Device to Device,简称为D2D),是3GPP对LTE在Rel-12(Release-12)中新引入的一个特性[1]。其基本思想在于UE在基站的辅助下、或者自主的,和另外一个UE进行直接的数据通信。目前3GPP对于D2D定义了四种可能的应用场景,
3GPP定义的D2D的应用场景分为以下四种:第一种场景是需要进行D2D通信的两个UE均在基站的覆盖范围之外;第二种场景是需要进行D2D通信的两个UE,其中一个在基站的覆盖之内,而另外一个在覆盖之外;第三种场景是需要进行D2D通信的两个UE均在同一个基站的覆盖之下;第四种场景是需要进行D2D通信的两个UE均在基站的覆盖之下,但是处于不同的基站覆盖。
对于第一种和第二种场景,由于至少有一个UE是在基站的覆盖之外的,基站不能对D2D通信的UE进行完全的控制,那么进行D2D通信的UE需要自主的进行相互发现、相互通信的过程;而对于第三种和第四种场景,由于UE在基站的覆盖下,就可以和基站建立连接,从而在基站的协调和调度下进行更加高效的D2D通信。
除3GPP开发的移动通信系统以外,另外一个重要的无线技术是国际电工组织IEEE开发的802.11系列的WiFi,如802.11a/g/n/ac等。WiFi主要应用于本地无线通信,通常情况下覆盖相对较小,是一种简单并且相对低价的无线通信手段。WiFi工作在免许可频段上,采用载波侦听多路访问/碰撞避免(Carrier Sense Multiple Access/CollisionAvoidance,简称为CSMA/CA)的传输机制,通过感知信道的可用时刻,从而占用信道进行数据传输。WiFi通信中,通常包括接入节点(Access Point,简称为AP)和终端,AP通过广播其服务集标识(Service Set Identifier,简称为SSID)来供终端搜索和发现,当终端发现后,需要密码验证才可以接入。
路由器,是用来连接两个以上网络的设备,其位于两个或者多个网络的交汇处,从而可以提供他们之间的分组数据传递。路由器拥有路由表作为转发数据包时的依据,可以在多种路由中选择最佳的路径进行发送。此外,路由器还具有私有IP分配的功能。路由器往往具有至少两个以太网接口,即广域网接口(Wide Area Network,简称为WAN)和局域网接口(Local Area Network,简称为LAN)。WAN口用于连接路由器和外部的互联网,而LAN口则用于连接路由器和其在内部的局域网的各种设备。目前常用的无线路由器是将路由器和WiFi的模块进行了集成,内部将WiFi模块和路由器进行连接;外部通过路由器的WAN口和有线网络进行连接,通过WiFi模块发射的无线信号和支持WiFi的其他终端进行连接,从而达到提供无线接入的目的。在所述无线路由器中,由于WiFi模块需要和路由器相连接,可以从逻辑上理解为WiFi模块和路由器的LAN口进行了连接,而WiFi模块则需要具有支持以太网接口的功能。此处所述逻辑上的理解,表示WiFi模块通过以太网的传输协议和路由器模块进行连接,包括通过有形的以太网接口和路由器进行连接,也包括通过单个芯片集成WiFi模块和路由器模块的情况,以及其他的可能情形。
免授权频段,是指不需要进行购买、许可,仅需要满足该频段上的一些法规,如对于发送功率大小的限制,带外辐射功率大小的限制,传输机制的控制(如动态频率选择,Dynamic Frequency Selection,简称为DFS)等等,即可以免费使用的频段。目前在世界范围内,应用最广的免授权频段集中于2.4GHz,5.3GHz,5.8GHz等。目前使用免授权频段的无线通信技术主要有WiFi,蓝牙(BlueTooth,简称为BT),Zigbee等等。
综上所述,目前对于有线网络连接进行无线扩展,主要是通过支持WiFi的无线路由器完成的。WiFi由于工作在免授权频段,需要和其他系统如BT,Zigbee进行共存,所以采用了先监听、后发射(Listen Before Talk,简称为LBT)的通信流程,即首先对目标信道进行检测,判断当前是否有其他设备已经占用了该信道,如果有,则WiFi需要等待一段时间后重新进行检测监听;如果没有其他设备,则WiFi可以进行无线信号的发射。
上述的LBT的通信方式,对于使用免授权频段,和其他各种无线通信协议的设备共存是必要的。然而,随着各种无线技术的不断发展,各种基于无线通信的业务、设备的不断增多,免授权频段上需要传输的数据也越来越多,从而导致了免授权频段日益拥挤、相互干扰增加等结果。尤其是目前被WiFi应用最广的2.4GHz频段上,由于其广泛的被工业、医疗行业使用,并且本身的可用频段资源也有限,WiFi在该频段上的传输速率已经受到了越来越多的限制。
此外,现有的用户终端,如手机、平板电脑等,往往同时具有移动通信模块和WiFi模块,用于可支持移动性较强的移动通信,和在无线局域网中使用的WiFi。然而,究其本质,两种技术均为无线通信技术,用户终端为了不同的场景需要支持两种不同的技术,还会导致终端成本的增加。
针对移动通信系统中移动通信终端支持通信和无线路由存在的成本高的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了接入网络的方法及装置,以至少解决移动通信系统中移动通信终端支持通信和无线路由存在的成本高的问题。
根据本发明的一个方面,提供了一种接入网络的方法,包括:第一用户设备UE通过以太网接口与预定网络建立连接;所述第一UE与第二UE建立连接;与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接将所述第二UE接入到所述预定网络。
进一步地,所述第一UE通过以太网接口与所述预定网络建立连接包括:所述第一UE通过所述以太网接口,采用有线或无线的方式与所述预定网络建立连接。
进一步地,所述第一UE与所述第二UE建立连接包括:所述第一UE与所述第二UE建立设备到设备D2D的连接。
进一步地,所述第一UE与所述第二UE建立D2D的连接包括:所述第一UE在免授权的频段与所述第二UE建立D2D的连接。
进一步地,在所述第一UE与所述第二UE建立连接之前,还包括:判断所述第一UE与所述第二UE是否处于同一基站覆盖;在判断结果为是的情况下,所述第一UE确定通过覆盖所述第一UE和所述第二UE的基站与所述第二UE建立D2D的连接;在判断结果为否的情况下,所述第一UE确定与所述第二UE建立D2D的连接。
进一步地,与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接将所述第二UE接入到所述预定网络之后,还包括:与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接为所述第二UE与所述预定网络之间进行数据交互。
进一步地,与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接为所述第二UE与所述预定网络之间进行数据交互包括:与所述第二UE建立了连接的所述第一UE将接收到的所述第二UE的数据通过与所述预定网络建立连接后确定的路由转发给所述预定网络;与所述第二UE建立了连接的所述第一UE将接收到的所述预定网络的数据通过与所述预定网络建立连接后确定的路由转发给所述第二UE。
进一步地,在与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接将所述第二UE接入到所述预定网络之后,还包括:所述第一UE对所述预定网络的可用带宽进行测量;所述第一UE根据测量的结果确定与所述第二UE之间进行设备到设备D2D通信的带宽和传输时间。
进一步地,与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接为所述第二UE与所述预定网络之间进行数据交互还包括:判断向所述预定网络传输接收到的所述第二UE的数据所需的带宽和/或传输时间是否大于预先确定的向所述预定网络传输数据的可用带宽和/或传输时间;在判断结果为是的情况下,对所述第二UE的数据进行缓存;或者,判断向所述第二UE传输接收到的所述预定网络的数据所需的带宽和/或传输时间是否大于预先确定的向所述第二UE传输数据的可用带宽和/或传输时间;在判断结果为是的情况下,对所述预定网络的数据进行缓存。
根据本发明的另一方面,提供了一种接入预定网络的方法,包括:基站确定第一用户设备UE通过以太网接口与预定网络建立了连接;所述基站依据所述第一UE与所述预定网络建立的连接将第二UE接入到所述预定网络,其中,所述第一UE与所述第二UE建立设备到设备D2D的连接。
进一步地,在所述基站依据所述第一UE与所述预定网络建立的连接将第二UE接入到所述预定网络之前,还包括:所述基站为所述第一UE与所述第二UE建立D2D连接。
进一步地,在所述基站依据所述第一U E与所述预定网络建立的连接将所述第二UE接入到所述预定网络之后,还包括:所述基站接收所述第二UE上报的缓存状态报告BSR;所述基站根据接收到的所述BSR确定为所述第二UE和所述第一UE之间传输缓存数据分配带宽。
根据本发明的另一方面,提供了一种接入网络的装置,应用于用户设备UE,包括:第一确定模块,用于通过以太网接口与预定网络建立连接;建立模块,用于与第二UE建立连接;第一接入模块,用于与所述第二UE建立了连接之后依据与所述预定网络建立的连接将所述第二UE接入到所述预定网络。
进一步地,所述建立模块包括:建立连接子模块,用于通过所述以太网接口,采用有线或无线的方式与所述预定网络建立连接。
进一步地,所述建立模块包括:建立子模块,用于与所述第二UE建立设备到设备D2D的连接。
进一步地,建立子模块包括:连接单元,用于在免授权的频段与所述第二UE建立D2D的连接。
进一步地,所述装置还包括:第一判断子模块,用于判断所述第一UE与所述第二UE是否处于同一基站覆盖;第一确定子模块,用于在判断结果为是的情况下,确定通过覆盖所述第一UE和所述第二UE的基站与所述第二UE建立D2D的连接;第二确定子模块,用于在判断结果为否的情况下,确定与所述第二UE建立D2D的连接。
进一步地,所述装置还包括:数据交互模块,用于与所述第二UE建立了连接后,依据与所述预定网络建立的连接为所述第二UE与所述预定网络之间进行数据交互。
进一步地,所述数据交互模块包括:第一转发子模块,用于与所述第二UE建立了连接后,将接收到的所述第二UE的数据通过与所述预定网络建立连接后确定的路由转发给所述预定网络;第二转发子模块,用于与所述第二UE建立了连接后,将接收到的所述预定网络的数据通过与所述预定网络建立连接后确定的路由转发给所述第二UE。
进一步地,所述装置还包括:测量子模块,用于对所述预定网络的可用带宽进行测量;第三确定子模块,用于根据测量的结果确定与所述第二UE之间进行设备到设备D2D通信的带宽和传输时间。
进一步地,所述数据交互模块还包括:第二判断子模块,用于判断向所述预定网络传输接收到的所述第二UE的数据所需的带宽和/或传输时间是否大于预先确定的向所述预定网络传输数据的可用带宽和/或传输时间;第一缓存子模块,用于在判断结果为是的情况下,对所述第二UE的数据进行缓存;或者,第三判断子模块,用于判断向所述第二UE传输接收到的所述预定网络的数据所需的带宽和/或传输时间是否大于预先确定的向所述第二UE传输数据的可用带宽和/或传输时间;第二缓存子模块,用于在判断结果为是的情况下,对所述预定网络的数据进行缓存。
根据本发明的另一方面,提供了一种用户设备,包括上述装置至少之一。
根据本发明的另一方面,提供了一种移动通信调制解调器,包括:以太网接口,其中,所述接口用于通过有线的方式与预定网络建立连接。
根据本发明的另一方面,提供了一种接入网络的装置,其特征在于,应用于基站,包括:确定模块,用于确定第一用户设备UE通过以太网接口与预定网络建立了连接;第二接入模块,用于依据所述第一UE与所述预定网络建立的连接将第二UE接入到所述预定网络,其中,所述第一UE与所述第二UE建立设备到设备D2D的连接。
进一步地,所述装置还包括:建立连接模块,用于为所述第一UE与所述第二UE建立D2D连接。
进一步地,所述装置还包括:接收模块,用于接收所述第二UE上报的缓存状态报告BSR;分配模块,用于根据接收的所述BSR确定为所述第二UE和所述第一UE之间传输缓存数据分配带宽。
通过本发明,采用第一用户设备UE通过以太网接口与预定网络建立连接;所述第一UE与第二UE建立连接;与所述第二UE建立了连接的所述第一UE依据与所述预定网络建立的连接将所述第二UE接入到所述预定网络,解决了移动通信系统中移动通信终端支持通信和无线路由存在的成本高的问题,降低了移动通信终端作为无线路由的成本。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术中的通信网络的基本架构的示意图;
图2是根据本发明实施例的接入网络的方法的流程图一;
图3是根据本发明实施例的接入网络的方法的流程图二;
图4是根据本发明实施例的接入网络的装置的框图一;
图5是根据本发明优选实施例的接入网络的装置的框图一;
图6是根据本发明优选实施例的接入网络的装置的框图二;
图7是根据本发明优选实施例的接入网络的装置的框图三;
图8是根据本发明优选实施例的接入网络的装置的框图四;
图9是根据本发明实施例的接入网络的装置的框图二;
图10是根据本发明优选实施例的接入网络的装置的框图五;
图11是根据本发明实施例的使用移动通信终端作为无线接入回传入口的示意图;
图12是根据本发明实施例的提供无线路由器功能的移动通信终端的示意图;
图13是相关技术中的UE的基本接口的示意图;
图14是根据本发明实施例的移动通信终端的基本接口的示意图;
图15是根据本发明实施例的通信协议角度上移动通信终端的示意图;
图16是根据本发明优选实施例的移动通信终端的基本接口的示意图;
图17是根据本发明优选实施例的通信协议角度上移动通信终端的示意图;
图18是根据本发明实施例的LTE系统中BSR的格式的示意图;
图19是根据本发明实施例的提供无线路由器功能的UE的操作流程图;
图20是根据本发明实施例的可提供无线路由器功能的UE操作的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种接入网络的方法,图2是根据本发明实施例的接入网络的方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,第一用户设备UE通过以太网接口与预定网络建立连接;
步骤S204,第一UE与第二UE建立连接;
步骤S206,与该第二UE建立了连接的该第一UE依据与该预定网络建立的连接将该第二UE接入到该预定网络。
通过上述步骤,第一用户设备UE通过以太网接口与预定网络建立连接;该第一UE与第二UE建立连接;与该第二UE建立了连接的该第一UE依据与该预定网络建立的连接将该第二UE接入到该预定网络。通过本发明,解决了移动通信系统中移动通信终端支持通信和无线路由存在的成本高的问题,降低了移动通信终端作为无线路由的成本。
第一UE通过以太网接口与该预定网络建立连接可以包括:该第一UE通过该以太网接口,采用有线或无线的方式与该预定网络建立连接,其中,该预定网络可以为互联网或以太网。
第一UE与该第二UE建立连接的方式有多种,在一个可选的实施例中,第一UE与该第二UE建立设备到设备D2D的连接。优选地,第一UE在免授权的频段与该第二UE建立D2D的连接。
在该第一UE与该第二UE建立连接之前,判断该第一UE与该第二UE是否处于同一基站覆盖;在判断结果为是的情况下,该第一UE确定通过覆盖该第一UE和该第二UE的基站与该第二UE建立D2D的连接,即基站辅助建立第一UE与第二UE的D2D连接;在判断结果为否的情况下,该第一UE确定与该第二UE建立D2D的连接。
与该第二UE建立了连接的该第一UE依据与该预定网络建立的连接将该第二UE接入到该预定网络之后,与该第二UE建立了连接的该第一UE依据与该预定网络建立的连接为该第二UE与该预定网络之间进行数据交互。在一个可选的实施例中,与该第二UE建立了连接的该第一UE将接收到的该第二UE的数据通过与该预定网络建立连接后确定的路由转发给该预定网络;与该第二UE建立了连接的该第一UE将接收到的该预定网络的数据通过与该预定网络建立连接后确定的路由转发给该第二UE。
在与第二UE建立了连接的该第一UE依据与该预定网络建立的连接将该第二UE接入到该预定网络之后,该第一UE对该预定网络的可用带宽进行测量;该第一UE根据测量的结果确定与该第二UE之间进行设备到设备D2D通信的带宽和传输时间。
在另一个可选的实施例中,与该第二UE建立了连接的该第一UE依据与该预定网络建立的连接为该第二UE与该预定网络之间进行数据交互还可以包括:判断向该预定网络传输接收到的该第二UE的数据所需的带宽和/或传输时间是否大于预先确定的向该预定网络传输数据的可用带宽和/或传输时间;在判断结果为是的情况下,对该第二UE的数据进行缓存;或者,判断向该第二UE传输接收到的该预定网络的数据所需的带宽和/或传输时间是否大于预先确定的向该第二UE传输数据的可用带宽和/或传输时间;在判断结果为是的情况下,对该预定网络的数据进行缓存。
本发明实施例提供了一种接入预定网络的方法,图3是根据本发明实施例的接入网络的方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,基站确定第一用户设备UE通过以太网接口与预定网络建立了连接;
步骤S304,基站依据该第一UE与该预定网络建立的连接将第二UE接入到该预定网络,其中,该第一UE与该第二UE建立设备到设备D2D的连接。
通过上述步骤,基站确定第一用户设备UE通过以太网接口与预定网络建立了连接;该基站依据该第一UE与该预定网络建立的连接将第二UE接入到该预定网络,其中,该第一UE与该第二UE建立设备到设备D2D的连接,解决了移动通信系统中移动通信终端支持通信和无线路由存在的成本高的问题,降低了移动通信终端作为无线路由的成本。
在一个可选的实施例中,在基站依据该第一UE与该预定网络建立的连接将第二UE接入到该预定网络之前,该第一UE与该第二UE在该基站覆盖的情况下,基站为该第一UE与该第二UE建立D2D连接。
在基站依据第一UE与预定网络建立的连接将该第二UE接入到该预定网络之后,基站接收该第二UE上报的缓存状态报告BSR,根据接收到的该BSR确定为该第二UE和该第一UE之间传输缓存数据分配带宽。
本发明实施例还提供了一种接入网络的装置,应用于用户设备UE,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的接入网络的装置的框图一,如图4所示,包括:第一确定模块42、建立模块44和第一接入模块46,下面对各个模块进行简要的说明。
第一确定模块42,用于通过以太网接口与预定网络建立连接;
建立模块44,用于与第二UE建立连接;
第一接入模块46,用于与该第二UE建立了连接之后依据与该预定网络建立的连接将该第二UE接入到该预定网络。
图5是根据本发明优选实施例的接入网络的装置的框图一,如图5所示,建立模块44包括:
建立连接子模块52,用于通过该以太网接口,采用有线或无线的方式与该预定网络建立连接。
图6是根据本发明优选实施例的接入网络的装置的框图二,如图6所示,该建立模块44包括:
建立子模块62,用于与该第二UE建立设备到设备D2D的连接。
上述的建立子模块62包括:连接单元,用于在免授权的频段与该第二UE建立D2D的连接。
图7是根据本发明优选实施例的接入网络的装置的框图三,如图7所示,装置还包括:
第一判断子模块72,用于判断该第一UE与该第二UE是否处于同一基站覆盖;
第一确定子模块74,用于在判断结果为是的情况下,确定通过覆盖该第一UE和该第二UE的基站与该第二UE建立D2D的连接;
第二确定子模块76,用于在判断结果为否的情况下,确定与该第二UE建立D2D的连接。
图8是根据本发明优选实施例的接入网络的装置的框图四,如图8所示,该装置还包括:
在一个可选的实施例中,数据交互模块82,用于与该第二UE建立了连接后,依据与该预定网络建立的连接为该第二UE与该预定网络之间进行数据交互。
上述的数据交互模块82还可以包括:第一转发子模块,用于与该第二UE建立了连接后,将接收到的该第二UE的数据通过与该预定网络建立连接后确定的路由转发给该预定网络;第二转发子模块,用于与该第二UE建立了连接后,将接收到的该预定网络的数据通过与该预定网络建立连接后确定的路由转发给该第二UE。
进一步地,该装置还包括:测量子模块,用于对该预定网络的可用带宽进行测量;第三确定子模块,用于根据测量的结果确定与该第二UE之间进行设备到设备D2D通信的带宽和传输时间。
在另一个可选的实施例中,数据交互模块82还包括:第二判断子模块,用于判断向该预定网络传输接收到的该第二UE的数据所需的带宽和/或传输时间是否大于预先确定的向该预定网络传输数据的可用带宽和/或传输时间;第一缓存子模块,用于在判断结果为是的情况下,对该第二UE的数据进行缓存;或者,第三判断子模块,用于判断向该第二UE传输接收到的该预定网络的数据所需的带宽和/或传输时间是否大于预先确定的向该第二UE传输数据的可用带宽和/或传输时间;第二缓存子模块,用于在判断结果为是的情况下,对该预定网络的数据进行缓存。
本发明实施例还提供了一种用户设备,包括上述装置中的至少之一。
本发明实施例还提供了一种移动通信调制解调器,包括:以太网接口,其中,该接口用于通过有线的方式与预定网络建立连接。
本发明实施例还提供了一种接入网络的装置,应用于基站,图9是根据本发明实施例的接入网络的装置的框图二,如图9所示,包括:
确定模块92,用于确定第一用户设备UE通过以太网接口与预定网络建立了连接;
第二接入模块94,用于依据该第一UE与该预定网络建立的连接将第二UE接入到该预定网络,其中,该第一UE与该第二UE建立设备到设备D2D的连接。
在一个可选的实施例中,上述的装置还包括:建立连接模块,用于为所述第一UE与所述第二UE建立D2D连接。
图10是根据本发明优选实施例的接入网络的装置的框图五,如图10所示,该装置还包括:
接收模块102,用于接收该第二UE上报的缓存状态报告BSR;
分配模块104,用于根据接收的该BSR确定为该第二UE和该第一UE之间传输缓存数据分配带宽。
下面结合可选实施例对本发明实施例进行进一步说明。
本可选实施例提供了一种新的移动通信终端UE,具有UE的功能和路由器的功能,具有和外部以太网连接的网络接口。将该移动通信终端通过有线连接和互联网相连,并且通过LTE的D2D通信协议和其他UE进行连接后,可以将该UE从其他UE接收到的数据信息通过有线连接传输到互联网,也可以将该UE从有线互联网接收到的数据通过D2D协议发送给其他UE,从而完成作为无线路由器的功能。
图11是根据本发明实施例的使用移动通信终端作为无线接入回传入口的示意图,如图11所示,使用上述的移动通信终端提供网络连接的方法,包括:移动通信终端与第一网络相连,其中,该第一网络可以是互联网,也可以是内部局域网,移动通信终端通过移动通信协议与其他移动通信终端进行设备到设备的空中接口连接,移动通信终端通过所述与第一网络的连接和与其他移动通信终端的空中接口连接,为所述其他移动通信终端提供接入所述第一网络的功能。通过上述的移动通信终端与网络建立连接,能够提供的覆盖范围更大、传输性能更佳的无线路由功能。
图12是根据本发明实施例的提供无线路由器功能的移动通信终端的示意图,如图12所示,上述的移动通信终端包括移动通信终端模块和路由器模块,其中,移动通信终端模块侧可以将其按照设备到设备的移动通信协议从空中接口接收到的数据通过路由器模块转发到该终端模块连接的第一网络,该终端模块连接的第一网络侧可以将数据通过路由器模块发送给移动通信终端模块,并通过移动通信终端模块按照设备到设备的移动通信协议从空中接口发送给其他的移动通信终端。
需要说明的是,本可选实施例中描述的移动通信技术,可以为宽带码分多址(Wideband Code Division Multiple Access,简称为WCDMA)、码分多址2000(CodeDivision Multiple Access 2000,简称为CDMA2000)、时分的同步CDMA(Time Division-Synchronous CDMA,简称为TD-SCDMA)、WiMax、LTE/LTE-A以及后续可能出现的第五代、第六代、第N代移动通信技术。
上述的移动通信终端,指可以支持陆地移动通信系统的通信协议的终端侧产品,特制通信的调制解调器模块(Wireless Modem),其可以被手机、平板电脑、数据卡等各种类型的终端形态集成从而完成通信功能。为方便描述,以下采用第四代移动通信系统LTE/LTE-ALTEE-Atong为例进行说明,其中移动通信终端表示为UE(User Equipment),接入设备表示为基站。
图13是相关技术中的UE的基本接口的示意图,如图13所示,传统的UE和基站连接后,UE通过基站作为其连接外部互联网的入口,在上行方向,将UE本身或者其连接的其他本地设备生成的数据发送给基站;而下行方向,UE从基站收到的数据将用于UE本身或者其连接的其他本地设备。基于此类特性,UE和其连接的其他内部局域网设备之间仅存在数据传输的连接而并不需要网络连接,所以UE向下仅支持串行通用总线(Universal Serial Bus,USB)的连接。
本可选实施例针对移动通信终端UE进行了改近,新的UE形态支持和基站的空口连接,以及和其他互联网设备的以太网连接;在此基础上,可以支持将从空中接口接收的数据通过以太网连接发送给连接的其他设备,并支持将从以太网连接接收到的数据通过空中接口发送给基站。
图14是根据本发明实施例的移动通信终端的基本接口的示意图,如图14所示,改进后的UE,向下将支持和其他设备的以太网连接,如图14所示的基本接口,UE的内部传输协议也需要支持将来自于空中接口的数据包格式封装为可以通过以太网进行传输的IP数据包的格式。UE对于空中接口侧的数据格式支持有物理层(Physical layer,简称为PHY),媒体接入控制层(Media Access Control,简称为MAC),无线链路控制层(Radio LinkControl,简称为RLC)以及分组数据汇聚协议层(Packet Data Convergence Protocol,简称为PDCP)。PDCP层以上则对接UE或者UE连接的其他设备的应用层数据。对于修改后的UE模块,PDCP层以上侧对接以太网连接,可以将PDCP层的数据封装成IP数据包后,直接发送到互联网或其他局域网等。图15是根据本发明实施例的通信协议角度上移动通信终端的示意图,如图15所示的其他设备,可以是手机的屏幕、摄像头、键盘或者手机可以通过数据连接的其他设备。
图16是根据本发明优选实施例的移动通信终端的基本接口的示意图,如图16所示,基于传统的UE形态,本可选实施例中的UE增加由USB连接到以太网连接的转换设备。由于UE芯片工艺复杂、技术含量高,对于数据传输协议、接口的修改可能涉及方面较多,为了降低开发者的开发成本和难度,可以在现有的UE接口结构上,增加一个转换设备,由USB连接转换到以太网的连接,从而实现和上述改进后的UE同样的功能。图17是根据本发明优选实施例的通信协议角度上移动通信终端的示意图,如图17所示的其他设备,可以是手机的屏幕、摄像头、键盘或者手机可以通过数据连接的其他设备。
作为提供无线路由器功能的移动终端,除了做上述改进外,其还需要实现如下功能:UE需要根据其需要进行D2D通信的其他UE的缓存数据量和其连接的其他网络的可用带宽,来决定或者辅助决定用于D2D通信的无线资源。
UE首先对其所连接的其他网络的可用带宽进行测量,获取可用带宽。具体方案可以采用向该网络连接灌包的方式,即生成大量无内容的数据包向该网络连接发送直到网络拥塞不能发送,统计发送的所有数据包的大小以及发送时间获取平均的传输速率,即该网络连接的可用带宽。此处如何测量可用带宽的方式不限,亦非本发明所关注的内容。
如果所述提供无线路由器功能的UE和需要进行D2D通信的其他UE均处于同一个基站的覆盖下,则提供无线路由器的UE对于基站上报的用于D2D通信的BSR的内容,可以用上述测量得到的可用带宽来表述。例如该UE在T时间内会为所述其他D2D通信的UE提供可用带宽BW-1,则上报的BSR内容可以为BSR=T*BW-1。其中,图18是根据本发明实施例的LTE系统中BSR的格式的示意图,如图18所示,BSR是指在上行传输方向,传统的UE会在通信过程中向基站上报缓存状态报告(Buffer Status Report,BSR)来通知基站该UE当前需要进行发送的数据。基站则根据UE上报的BSR决定对UE的调度,如分配多少无线资源等等。现有技术中,BSR定义为UE在PDCP和RLC层缓存的数据以及需要进行重传的数据总和,是按照各个逻辑信道组(Logic Channel Group,简称为LCG)进行上报的。在D2D通信中,会有一个特定的LCG分配给D2D通信,用来表示UE需要通过D2D方式发送的缓存数据量。当UE作为提供无线路由器功能的终端时,其需要通过D2D方式发送的数据全部来自于所连接的其他网络而非终端本身,所以可以将上述根据可用带宽和时间计算得到的BSR上报给基站用于D2D无线资源的调度分配。
如果所述提供无线路由器功能的UE和需要进行D2D通信的其他UE不处于同一个基站的覆盖下或者处于无基站覆盖的情况,类似的,所述提供无线路由器功能的UE需要通过测量其连接的其他网络的可用带宽来决定进行D2D通信的无线资源和时间长度。
逻辑信道可以理解为移动通信协议中,对每一个业务建立的,专门用于传输该类业务的信道。
提供无线路由器功能的UE还需要具有缓存装置和功能,以及通过D2D连接完成两个UE之间的直接通信,当提供无线路由器功能的UE需要通过D2D通信从其他UE处接收数据传输时,由于其他UE认为传输的数据为该提供无线路由器的UE所用,所以按照LTE的通信协议规定,会在可用的资源内对于传输数据量最大化。如果提供无线路由器功能的UE接收到的数据量超过了其所连接的所述其他网络的可用带宽容量,则该UE需要首先将数据进行缓存,按照所述其他网络的可用带宽进行数据传输。
图19是根据本发明实施例的提供无线路由器功能的UE的操作流程图,如图19所示,分别从其他UE需要下载、上传两个角度示出了可以提供无线路由器功能的UE通过和其他UE的D2D连接从而为所述其他UE提供互联网接入或者其他网络接入的流程包括以下步骤:
步骤S1902,UE接收到其他UE的D2D通信请求,当其他具有D2D功能的UE有下载需求时,其可以通过基站,或者自主的和可以提供无线路由器功能的UE进行D2D连接。
步骤S1904,UE获取其连接的其他网络的可用带宽。
步骤S1906,判断UE和D2D目标UE是否均处于同一基站覆盖,在判断结果为是的情况下,执行步骤S908,在判断结果为否的情况下,执行步骤S910;提供无线路由器功能的UE判断其自身和当前需要进行D2D通信的UE是否均在同一基站的覆盖下,如果在同一基站覆盖下,则提供无线路由器功能的UE根据其可用带宽生成D2D的BSR,以供基站进行D2D无线资源的调度;如果不在同一个基站覆盖下,或者没有基站覆盖,则提供无线路由器的UE参考其可用带宽信息决定D2D的无线资源。
步骤S1908,根据可用带宽生成用于D2D的BSR上报给基站,之后执行步骤S1912。
步骤S1910,参考可用带宽决定用于D2D通信的无线资源,之后执行步骤S1914。
步骤S1912,在基站的调度下进行D2D通信,将其他网络的数据通过D2D发送给目标UE。
步骤S1914,在自主建立的D2D连接下进行D2D通信,将其他网络的数据通过D2D发送给目标UE。
图20是根据本发明实施例的可提供无线路由器功能的UE操作的流程图,如图20所示,该流程包括以下步骤:
步骤S2002,UE接收到其他UE的D2D通信请求,当其他具有D2D功能的UE有上传需求时,其可以通过基站,或者自主的和可以提供无线路由器功能的UE进行D2D连接。
步骤S2004,UE和其他UE通过基站或者自主建立D2D连接并传输数据,所述其他UE将数据发送给提供无线路由器功能的UE。
步骤S2006,UE将接收到的数据缓存,并转发到其连接的其他网络,提供无线路由器功能的UE缓存接收到的数据,并转发给其连接的其他网络。
需要说明的是,上述的上传、下载是可以同时进行的操作。当上传、下载同时存在时,如果是基站控制的情况,则由基站根据收到的两个UE的BSR信息决定无线资源,如果是非基站控制的情况,则由两个UE自主决定。
进一步地,为了降低使用LTE通信的成本,在本发明中提到的空中接口的D2D连接,也可以在免授权的频段进行。免授权频段相比于授权频段,在满足一定的无线发射条件下即可以免费使用,而不需要任何的官方许可,是对于授权频段的有效的、低成本的补充。
通过上述可选实施例,在有基站覆盖的情况下,可以通过基站的调度、资源协调达到比WiFi传输更高的效率。在没有基站覆盖的情况下,也可以达到不差于WiFi传输的性能,可以充分利用现有的成熟芯片、产品,开发难度相对较低。提供了使用授权频段进行小范围、短距离无线路由的功能,增加了传输的可靠性。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。