CN105990853A - 一种基于模糊控制的并网逆变器控制方法 - Google Patents
一种基于模糊控制的并网逆变器控制方法 Download PDFInfo
- Publication number
- CN105990853A CN105990853A CN201510942821.1A CN201510942821A CN105990853A CN 105990853 A CN105990853 A CN 105990853A CN 201510942821 A CN201510942821 A CN 201510942821A CN 105990853 A CN105990853 A CN 105990853A
- Authority
- CN
- China
- Prior art keywords
- grid
- fuzzy
- control
- controller
- error signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000008859 change Effects 0.000 claims abstract description 28
- 230000004048 modification Effects 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 9
- 230000033228 biological regulation Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H02J3/383—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开一种基于模糊控制的并网逆变器控制方法,包括:将误差信号和误差变化率输入辅助模糊控制器的输入端;辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子;所述主模糊控制器将所述误差信号和比例因子的改变量输入PI控制器;通过所述PI控制器得到并网逆变器的输出电压指令值。本发明基于模糊控制的并网逆变器控制方法,可以明显的提高并网逆变器系统并网电流的稳定性和抗扰动能力,提高并网逆变器系统的性能。
Description
技术领域
本发明涉及电力电子装置控制技术领域,特别是涉及一种基于模糊控制的并网逆变器控制方法。
背景技术
逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。电流源逆变器是指在其直流侧串联一大电感,以提供稳定的直流电流输入。但是,由于采用大电感的系统动态响应差,大部分的并网逆变器均采用电压源逆变器。从电压、电流的控制方式来说,逆变器电压控制相当于将逆变器等效为一个电压源,控制其输出电压的相位、频率、幅值达到系统要求。电流控制逆变器是将逆变器等效为一个电流源,对其输出的电流进行幅值、频率、相位的控制。
目前,电压控制方式主要应用于独立运行的逆变器,以满足负载端的需要。尤其是很多负载对加在上面的电压有较高的要求,因此在这种情况下多采用电压作为控制量进行闭环控制。而电流控制方式主要应用于并网逆变器,直接控制其输出电流达到并网要求。直接控制并网电流跟踪给定电流的并网逆变器控制方式应用更加广泛。其控制方法简单易于设计,只要变换不同控制器,就可以采用不同方式进行并网控制。具体方式只需要控制逆变器的输出电流以跟踪市电电压,同时设定输出电流的大小,即可达到并网运行的目的。由于其控制方法相对简单,效果也比较好,因此使用广泛。
双闭环控制采用单闭环反馈控制的并网逆变器系统往往动态性能较差,因此在单环反馈的基础上加入电流内环控制,提高系统的响应速度,构成双环控制。这种方法多基于小信号线性化状态空间模型,采用数字控制技术和对整个系统进行闭环极点配置,兼顾系统的动态和稳态性能进行系统的优化控制。如采用电容电流反馈或电压反馈内环实现系统稳定控制和消除振荡,或电压电流双闭环控制。
并网逆变器是将直流侧电能以正弦波电流的方式馈入电网的装置,它是逆变器应用的一种形式。大规模并网发电的场合都需要逆变器并网运行,将系统内的电能回馈至电网中。然而,为了避免质量不好的并网电流对电网造成污染,并网电流的波形质量有严格的要求,电流为与电压同频反相的正弦波,且满足国际电工委员会标准。国际上对并网逆变器馈入电网的电流规定如下:波形为正弦,总谐波畸变率THD小于5%,各次谐波小于3%。
根据不同的工作场合选择相应的滤波器结构与合适的并网控制方法是决定并网逆变器馈入电网的电流质量的关键。并网逆变器的性能直接关系到并入电网中电能的质量,以及分布式发电系统的能源转换效率。并网逆变器的作用是将分布式发电单元和储能电压的直流形式的能量转换为交流形式的能量,从而与外部电网进行连接和能量交换。此时,逆变器的控制目标一般是输出有功功率和输出无功功率。
一般来说,利用电力电子器件构成的逆变器会产生大量的电流谐波,因此,要使用无源器件组成的滤波器来滤掉这些谐波。并网逆变器采用的滤波器通常有两种:电感(L)滤波器和电感-电容-电感(LCL)滤波器。在电感值相同,成本相当的情况下,LCL滤波器具有更好的滤波效果。然而,LCL滤波器作为一个三阶系统,容易产生谐振,造成系统的不稳定。
通常,抑制谐振有两种方式:一种是无源阻尼法,另一种是有源阻尼法。所谓无源阻尼法,一般是在逆变器电路中增加电阻以直接增加LCL滤波器的阻尼,但是无论是串联还是并联电阻,都会增加系统的额外损耗。所谓有源阻尼法,通常采取对逆变器电压电流的控制来实现抑制谐振的目的,常用的高阶极点配置的双环PI控制方法,加权电流平均值反馈PI控制方法,以及并网电流、电容电压和电感电流的三环PI控制方法等。
但是,在以上方法中,尽管PI控制器能够使并网逆变器系统具有较好的性能,当系统受到外部扰动较大时,其动态性能还需要进一步提高以满足并网对电流波形与总谐波畸变率的要求。可以采用其他控制器与PI控制结合的方式提高系统鲁棒性。但并网逆变器是一个复杂的非线性系统,对其建立精确的数学模型往往非常困难。而在控制器的设计过程中,常常需要根据系统的数学模型来进行设计。
目前对于并网逆变器只能得到近似的模型而无法做到精确建模。如果在并网逆变器的看过那只系统中引入模糊控制,则模糊控制的特点可以部分补偿系统模型的不精确性。与传统控制方式相比,模块控制把控制对象作为“黑箱”,它不依赖于系统的数学模型,而是依赖于由操作经验、表述只是转换成的模糊规则,是智能控制的一种。
加入模块控制的系统往往鲁棒性高、动态性能好。将模糊控制与其他控制方法相结合,是目前比较多用的并网逆变器控制方式,发展潜力较大。但是传统模糊控制方式的控制参数是固定的,不能随着系统的工作情况进行在线调整。PI控制器的比例和积分系数是恒定的,这导致在系统结构变化或者参数波动(如外部电网结构发生故障或者内侧直流母线电压剧烈升高)等情况下,逆变器无法快速精确的跟踪控制指令,不能及时调节输入输出的有功和无功功率。降低了网逆变器的稳定性和抗干扰能力。
并网逆变器的控制方式分为电压控制和电流控制两种。电压控制相当于将逆变器等效为一个电压源,通过控制使其输出电压相位、频率完全等同于电网电压、幅值跟踪电网电压的幅值,本质相当于将两个电压源并联。但是由于市电电压很可能在运行的过程中产生畸变或较大谐波,会造成逆变器输出无法准确跟踪电网电压,使得控制难度增加。另外,这种通过控制逆变器输出电压来间接控制并网电流的控制方式也不能使并网电流达到较好的质量。
并网逆变器直接电流控制方式主要分为滞环控制和三角波控制。其中,滞环控制采用滞环比较器,将参考电流和实际并网电流的偏差作为其输入,滞环比较器产生PWM信号,通过控制逆变电路开关功率器件的通断来控制并网电流。如果设定滞环比较器环宽为2h,九可以将并网电流控制在+h和-h的范围之内,即并网电流呈锯齿状的跟踪参考电流。对于这种控制方法,h的设置对系统影响较大,环宽较宽时,开关动作的频率降低,但误差增大,谐波很大,环宽较窄时,误差减小,谐波降低,但开关动作频率过高,开关损耗增大。针对滞环比较器的上述缺点,一种解决方法是采用同步开关法,即定时控制的瞬时值比较方式。
滞环比较器由于其开关频率与精度之间的矛盾,及告辞谐波较多,电磁干扰较大,在实际应用中作用有限。目前应用较广泛的控制方式是三角控制方式。三角控制方式可以采用不同的控制器完成对系统的控制,如PI控制,重复控制,无差拍控制等。电流误差经控制器调节后得出的波形与三角波进行比较,生成SPWM波,控制功率开关器件的通断。三角波控制方式功率开关频率等于载波频率,噪声低,抑郁设计滤波器,可采取多种方式进行控制,降低误差。
发明内容
本发明正是基于以上一个或多个问题,提供一种基于模糊控制的并网逆变器控制方法,用以解决现有技术中并网逆变器系统抗干扰性能低下的问题。
其中,所述基于模糊控制的并网逆变器控制方法,包括:
将当前并网电流的输出电流信号反馈至并网输入端与期望输出参考电流信号比较,得到误差信号;
将所述误差信号和误差变化率输入辅助模糊控制器的输入端;
辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子;
所述主模糊控制器将所述误差信号和比例因子的改变量输入PI控制器;
通过所述PI控制器得到并网逆变器的输出电压指令值;
根据并网逆变器系统的输出电压指令值产生用于控制并网逆变器开关管通断的控制信号,从而在并网逆变器的功率输出端产生预期的输出电压。
进一步的,所述误差信号是所述当前并网电流的输出电流信号与所述期望输出参考电流信号的差值。
进一步的,所述辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子,包括:
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相同时,增大主模糊控制器的比例因子;
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相反时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,且所述误差信号小于第二预设值时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,所述误差信号小于第二预设值,且所述误差变化率大于所述第一预设值时,增大主模糊控制器的比例因子;
其中,所述第一预设值大于所述第二预设值。
进一步的,所述辅助模糊控制器的控制规则如下表所示:
进一步的,所述主模糊控制器的控制规则如下表所示:
本发明提供的基于模糊控制的并网逆变器控制方法,通过辅助模糊控制器对主模糊控制器比例因子的调节,实现并网逆变器比例因子自适应调节,可以明显的提高并网逆变器系统并网电流的稳定性和抗扰动能力,提高并网逆变器系统的性能。
附图说明
图1是本发明实施例一的基于模糊控制的并网逆变器控制方法的流程图;
图2是本发明实施例二中比例因子自调整的模糊控制器控制框图;
图3是本发明实施例二中并网逆变器系统的结构图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。
实施例一
本发明实施例一提供一种基于模糊控制的并网逆变器控制方法,如图1所示,该方法包括:
101、将当前并网电流的输出电流信号反馈至并网输入端与期望输出参考电流信号比较,得到误差信号;
其中,所述误差信号是所述当前并网电流的输出电流信号与所述期望输出参考电流信号的差值。
102、将所述误差信号和误差变化率输入辅助模糊控制器的输入端;
103、辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子;
该步骤中,辅助模糊控制器可根据如下控制规则调整主模糊控制器的比例因子:
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相同时,增大主模糊控制器的比例因子;
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相反时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,且所述误差信号小于第二预设值时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,所述误差信号小于第二预设值,且所述误差变化率大于所述第一预设值时,增大主模糊控制器的比例因子;
其中,所述第一预设值大于所述第二预设值。
104、所述主模糊控制器将所述误差信号和比例因子的改变量输入PI控制器;
105、通过所述PI控制器得到并网逆变器的输出电压指令值;
106、根据并网逆变器系统的输出电压指令值产生用于控制并网逆变器开关管通断的控制信号,从而在并网逆变器的功率输出端产生预期的输出电压。
本发明提供的基于模糊控制的并网逆变器控制方法,通过辅助模糊控制器对主模糊控制器比例因子的调节,实现并网逆变器比例因子自适应调节,可以明显的提高并网逆变器系统并网电流的稳定性和抗扰动能力,提高并网逆变器系统的性能。
实施例二
本发明实施例二提供的一种基于模糊控制的并网逆变器控制方法,通过建立比例因子自调整的模糊控制器,使模糊控制器的比例因子K能够根据系统误差的状态进行自适应调节,可以增强系统的控制性能。
本实施例中,在并网逆变器电感电流单环控制的基础上,将一个模糊控制器加入PI控制器之前与其串联。模糊控制器起到的作用是将控制系统的误差提前向减小的方向进行调节,使并网电流能够更好的跟随给定电流。这种控制方式综合了模糊控制和PI控制的优点,具有较高的精度和鲁棒性。
模糊控制器的工作过程是:对实际输出与给定输出之前的误差和误差变化率进行模糊化,通过控制器内部的逻辑决策模块,根据控制规则确定模糊关系,再应用模糊推理算法,得到控制器的模糊控制量U,最后解模糊,计算出精确控制量u,达到控制的目的。
应用于并网逆变器控制系统的模糊控制器设计按下列步骤进行:
(1)模糊控制器结构设计
根据输入变量的不同,模糊控制器可以分为一维、二维、三维等。其中,一维模糊控制器输入没有误差变化率这一项,因此动态性能不佳。三维模糊控制器控制更为精确,但计算过于复杂,实际意义不大。目前多采用二维模糊控制器。本发明实施例也采用二维模糊控制器的结构来进行设计。
其中,Ke、Kc为量化因子,K为比例因子。根据并网逆变器系统的运行情况选取误差e的基本论域为[mine,maxe],误差变化率de的基本论域为[minΔe,maxΔe],输出控制量u的基本论域为[minu,maxu]。分别设定描述它们的模糊集为{-n,-n+1,…,0,…,n-1,n},则它们的模糊论域为[-n,n],则量化因子与比例因子分别为:
K=u;
本实施例中n=6。
(2)模糊控制规则设计
模糊控制规则是模糊控制器中最重要的一部分。
首先,需要选定描述输入输出变量的词集。一般来说,词集中词汇的数目越多,控制越精确,但计算复杂;如果数目过少则会造成控制效果粗糙。7个词汇的情况是应用最广泛的,也是效果最好的。本文对模糊控制器的三个变量e,de和u都采用这种表述形式。选定7个级别,即:{负大,负中,负小,零,正小,正中,正大}。
英文字头缩写为:{NB,NM,NS,ZE,PS,PM,PB},分别代表并网逆变器系统中并网电流误差、误差变化率与控制器控制量的取值。例如,当e取负大,说明igrid与iref之间的差值为负且绝对值大,接近于emin的值,此时控制量u应向着使igrid增大、e向着趋近为0的趋势去调节。
在选定了模糊变量的词集之后,就要对模糊子集进行定义,即定义隶属度函数的形状。隶属度函数的形状有多种,如正态函数,三角形等。隶属度函数能够对模糊变量确定其词集,其设定对模糊控制器的性能有重要的影响。
在此基础上,就可以对模糊控制规则进行设定。基于并网系统的特性与经验,采用手动设计的方式。本发明的手动控制策略的条件语句描述入下:如果A且B,那么C,即if A and B,then C。其中,A与B分别表示误差与误差变化率,而C表示控制量。
经过步骤(2),可以得到模糊控制规则表。表中控制量的控制原则为:当误差或误差的变化率较大时,选择控制量向着使误差减小的方向调节,而且调节速度应该处于较快的级别;当误差或误差变化率较小时,控制量应适当减小,以保证系统稳定性为前提。
(3)解模糊化方法设计
解模糊即把模糊控制量转化成为精确的控制输出量输入到系统当中,完成对系统的控制。常用的解模糊方法主要有以下三种:最大隶属度法,中位数法,加权平均法。本文采用加权平均法来进行解模糊
(4)量化因子与比例因子的选择
设计模糊控制器除了要有好的模糊控制规则外,合理的选择模糊控制输入输出变量的尺度变换因子也是非常重要的,因为它们对模糊控制器控制性能的影响极大。
其中,模糊控制器量化因子Ke,Kc和比例因子Ku对控制系统动静态性能有很大的影响。对于本发明研究的并网逆变器来说,Ke相当于确定系统的基本论域,当取值增大时,相当于在误差不变的情况下增大输入模糊控制器的数值,使系统动态反应速率加快,但易出现超调,反而会使并网电流谐波加大、波形不稳定甚至出现振荡。而Ke取值过小时,模糊控制器的作用不明显,当有干扰存在时无法实现有效控制。当Kc增大时,相当于增大了抑制系统变化的能力,增强系统的稳定性,但可能会减慢系统上升速度,加长过渡时间。当Kc取值过小时,系统可能产生较大的超调甚至振荡。比例因子K控制模糊控制器的输出量,对系统控制作用影响较大。当K较大时,模糊控制器的调节作用比较明显,系统动态响应好,上升速率快,但是容易产生超调或振荡。当K较小时,系统较为稳定,但是在干扰出现时,模糊控制器控制作用不明显,动态响应较慢。
在设计过程中,Ke,Kc与K的大小需要结合仿真分析综合设定。本实施例的参数设定为:
Ke=2.4,Kc=2.4,K=0.1。
对并网电流误差、误差变化率与控制器控制量的论域均为[-6,6]。通过在MATLAB中的仿真得出,在电网电压理想的情况下,加入模糊控制的并网电流igrid波形较好,THD相比未加入模糊控制的系统降低,说明模糊控制能够使逆变器的性能优化。
但是,普通模糊控制器也存在缺点。例如:在控制过程中,不能根据系统的变化在线调整参数,实现动态、灵活的控制过程。而在实际运行用,电网电压无法保证始终处于理想的状态,甚至可能会发生较大扰动。当外部扰动较大的时候,采用普通模糊控制的并网逆变器并不能有效的提高电流质量。此时,如果适当增加比例因子的值,加大模糊控制器的作用,则并网电流的质量能够得到提高。因此,如果在并网逆变器的工作过程中,模糊控制器的参数能够根据外部扰动进行在线调节,理论上可以得到更好的逆变器控制性能。
下面以一个使用LC滤波器的单相并网逆变器为例说明本实施例的基于模糊控制的并网逆变器控制方法的具体实施过程。
并网逆变器系统采用电流双闭环控制方法。将比例因子自调整模糊控制器加入并网电流外环,电感电流内环仍采用PI控制。其中,比例因子自调整模糊控制器包括主模糊器和辅助模糊器。
图2所示为本实施例比例因子自调整的模糊控制器控制框图,其中,Ke、Kc为量化因子,K为比例因子。
本实施例的基于模糊控制的并网逆变器控制方法,包括:
1)向并网输入端输入当前并网电流的输出电流信号igrid与期望输出参考电流信号iref的误差、误差变化率e与de;
2)对输出电流信号igrid与期望输出参考电流信号iref误差、误差变化率e与de进行模糊化;
其中,本实施例中根据并网逆变器系统的运行情况选取误差信e的基本论域为[mine,maxe],误差信号变化率de的基本论域为[minΔe,maxΔe],输出控制量u的基本论域为[minu,maxu]。分别设定描述它们的模糊集为{-n,-n+1,…,0,…,n-1,n},则它们的模糊论域为[-n,n],则量化因子与比例因子分别为:
本实施例中n取6。
3)根据控制规则确定模糊关系,再应用模糊推理算法,得到控制器的模糊控制量U,最后解模糊,计算出精确控制量u。
其中,e、de、u的论域取[-6,6]。
主模糊控制器的参数为:
Ke=3,Kc=3,K=0.1
辅助模糊控制器的参数为:
Ke=2.4,Kc=2.4,K=1
常用的解模糊方法主要有:最大隶属度法,中位数法,加权平均法。本文采用加权平均法来进行解模糊。
其中,模糊控制器量化因子Ke,Kc和比例因子K对控制系统动静态性能有很大的影响。对于发明的并网逆变器来说,Ke相当于确定系统的基本论域,当取值增大时,相当于在误差不变的情况下增大输入模糊控制器的数值,使系统动态反应速率加快,但易出现超调,反而会使并网电流谐波加大、波形不稳定甚至出现振荡。而Ke取值过小时,模糊控制器的作用不明显,当有干扰存在时无法实现有效控制。当Kc增大时,相当于增大了抑制系统变化的能力,增强系统的稳定性,但可能会减慢系统上升速度,加长过渡时间。当Kc取值过小时,系统可能产生较大的超调甚至振荡。比例因子K控制模糊控制器的输出量,对系统控制作用影响较大。当K较大时,模糊控制器的调节作用比较明显,系统动态响应好,上升速率快,但是容易产生超调或振荡。当K较小时,系统较为稳定,但是在干扰出现时,模糊控制器控制作用不明显,动态响应较慢。
在具体实施过程中,Ke,Kc和K的大小需要结合仿真分析综合设定。本实施例的参数设定为:
Ke=2.4,Kc=2.4,K=1
对并网电流误差、误差变化率与控制器控制量的论域均为[-6,6]。通过在MATLAB中的仿真得出,在电网电压理想的情况下,加入模糊控制的并网电流igrid波形较好,THD相比未加入模糊控制的系统降低,说明模糊控制能够使逆变器的性能优化。
其中,主模糊控制器控制规则的控制规则为:
当误差信号或误差信号的变化率大于预设值时,选择控制量向着使误差减小的方向调节,而且调节速度应该处于较快的级别;
当误差信号或误差信号变化率小于预设值时,控制量应适当减小,以保证系统稳定性为前提。
具体主模糊控制器的控制规则如下表所示:
本实施例中辅助模糊控制器的控制规则为:当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相同时,增大主模糊控制器的比例因子;
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相反时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,且所述误差信号小于第二预设值时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,所述误差信号小于第二预设值,且所述误差变化率大于所述第一预设值时,增大主模糊控制器的比例因子;
其中,所述第一预设值大于所述第二预设值。
辅助模糊控制器具体的控制规则如下表所示:
为了验证本实施例中比例因子自调整模糊控制对并网逆变器系统性能的提高,在MATLAB中对系统进行仿真。仿真参数如下:L=3mH,C=20μF,r=0.5Ω,交流侧电压有效值220V,频率50Hz,直流侧电压DC V=350V,开关频率10kHz,系统容量5kW。
经过仿真对本实施例控制方法下的并网电流谐波进行分析得出如下结论:
采用比例因子自调整控制方法的系统在电网电压稳定的情况下,并网电流的相位与频率能够精确的达到并网要求,且总谐波畸变率最小。另外,在电网电压处于理想状态时,比例因子自调整模糊控制器作用不大,并不影响系统的稳定运行。
为了验证系统在电网电压畸变较大时的性能,在仿真过程中向电网电压加入3次、5次谐波。则采用比例因子自调整控制方法的逆变器并网电流波形在电网电压产生畸变的条件下进行谐波分析和比较可以得出:
在电网电压畸变较大时,采用比例因子自调整模糊控制能够明显的提高并网电流质量,电流总谐波畸变率从8.59%下降到4.99%,3次、5次谐波含量下降明显,基本符合并网要求。
仿真结果说明,比例因子自调整模糊控制方法使逆变器根据外部条件和自身工作状态改变控制参数,使其具有自适应性,从而提高了系统的鲁棒性和动态性能。比例因子自调整模糊控制方法可以明显的提高并网逆变器系统并网电流的稳定性和抗扰动能力,从理论上验证了这种自适应模糊控制对并网逆变器系统控制性能的提高。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (5)
1.一种基于模糊控制的并网逆变器控制方法,其特征在于:包括:
将当前并网电流的输出电流信号反馈至并网输入端与期望输出参考电流信号比较,得到误差信号;
将所述误差信号和误差变化率输入辅助模糊控制器的输入端;
辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子;
所述主模糊控制器将所述误差信号和比例因子的改变量输入PI控制器;
通过所述PI控制器得到并网逆变器的输出电压指令值;
根据并网逆变器系统的输出电压指令值产生用于控制并网逆变器开关管通断的控制信号,从而在并网逆变器的功率输出端产生预期的输出电压。
2.如权利要求1所述的基于模糊控制的并网逆变器控制方法,其特征在于,所述误差信号是所述当前并网电流的输出电流信号与所述期望输出参考电流信号的差值。
3.如权利要求1所述的基于模糊控制的并网逆变器控制方法,其特征在于,所述辅助模糊控制器根据所述误差信号和所述误差变化率调整主模糊控制器的比例因子,包括:
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相同时,增大主模糊控制器的比例因子;
当所述误差信号与所述误差变化率变化大于第一预设值且变化方向相反时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,且所述误差信号小于第二预设值时,减小主模糊控制器的比例因子;
当并网逆变器系统稳定,所述误差信号小于第二预设值,且所述误差变化率大于所述第一预设值时,增大主模糊控制器的比例因子;
其中,所述第一预设值大于所述第二预设值。
4.如权利要求1所述的基于模糊控制的并网逆变器控制方法,其特征在于,所述辅助模糊控制器的控制规则如下表所示:
5.如权利要求1所述的基于模糊控制的并网逆变器控制方法,其特征在于,所述主模糊控制器的控制规则如下表所示:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510942821.1A CN105990853A (zh) | 2015-12-16 | 2015-12-16 | 一种基于模糊控制的并网逆变器控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510942821.1A CN105990853A (zh) | 2015-12-16 | 2015-12-16 | 一种基于模糊控制的并网逆变器控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105990853A true CN105990853A (zh) | 2016-10-05 |
Family
ID=57040603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510942821.1A Pending CN105990853A (zh) | 2015-12-16 | 2015-12-16 | 一种基于模糊控制的并网逆变器控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105990853A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106873558A (zh) * | 2017-03-22 | 2017-06-20 | 东北大学 | 一种非线性系统的模糊重复输出控制器及其控制方法 |
CN111884248A (zh) * | 2019-11-12 | 2020-11-03 | 株洲中车时代电气股份有限公司 | 一种电压控制方法及系统 |
CN112817364A (zh) * | 2020-12-28 | 2021-05-18 | 深圳供电局有限公司 | 最大功率点追踪方法、装置、控制装置和可读存储介质 |
CN113014132A (zh) * | 2021-03-16 | 2021-06-22 | 福州大学 | 基于模糊pi控制的三相电流跟踪型逆变器的控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1539588A (zh) * | 2003-04-25 | 2004-10-27 | 北京石油化工学院 | 智能逆变焊机双恒流及其自寻优控制方法 |
US20150188454A1 (en) * | 2013-12-27 | 2015-07-02 | Sanyo Electronic Co., Ltd. | Inverter device, control circuit for inverter device, and method for controlling inverter device |
-
2015
- 2015-12-16 CN CN201510942821.1A patent/CN105990853A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1539588A (zh) * | 2003-04-25 | 2004-10-27 | 北京石油化工学院 | 智能逆变焊机双恒流及其自寻优控制方法 |
US20150188454A1 (en) * | 2013-12-27 | 2015-07-02 | Sanyo Electronic Co., Ltd. | Inverter device, control circuit for inverter device, and method for controlling inverter device |
Non-Patent Citations (2)
Title |
---|
李浩然 等: "基于模糊PI参数自整定和重复控制的三相逆变器并网研究", 《电机与控制应用》 * |
杜佳妮: "基于自适应模糊控制的并网逆变器控制策略分析与研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106873558A (zh) * | 2017-03-22 | 2017-06-20 | 东北大学 | 一种非线性系统的模糊重复输出控制器及其控制方法 |
CN106873558B (zh) * | 2017-03-22 | 2019-02-26 | 东北大学 | 一种非线性系统的模糊重复输出控制器及其控制方法 |
CN111884248A (zh) * | 2019-11-12 | 2020-11-03 | 株洲中车时代电气股份有限公司 | 一种电压控制方法及系统 |
US11646675B2 (en) | 2019-11-12 | 2023-05-09 | ZhuZhou CRRC Times Electric Co., Ltd. | Voltage control method and system |
CN112817364A (zh) * | 2020-12-28 | 2021-05-18 | 深圳供电局有限公司 | 最大功率点追踪方法、装置、控制装置和可读存储介质 |
CN113014132A (zh) * | 2021-03-16 | 2021-06-22 | 福州大学 | 基于模糊pi控制的三相电流跟踪型逆变器的控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Multi resonant component-based grid-voltage-weighted feedforward scheme for grid-connected inverter to suppress the injected grid current harmonics under weak grid | |
Mortezaei et al. | Multifunctional control strategy for asymmetrical cascaded H-bridge inverter in microgrid applications | |
Sefa et al. | Fuzzy PI controlled inverter for grid interactive renewable energy systems | |
Guo et al. | Improved current regulation of three-phase grid-connected voltage-source inverters for distributed generation systems | |
Dong et al. | On zero steady-state error voltage control of single-phase PWM inverters with different load types | |
Saxena et al. | A spontaneous control for grid integrated solar photovoltaic energy conversion systems with voltage profile considerations | |
CN105226711A (zh) | 一种基于模糊控制的并网逆变器控制方法 | |
CN105990853A (zh) | 一种基于模糊控制的并网逆变器控制方法 | |
CN105337481A (zh) | 一种lcl型并网逆变器控制方法 | |
Bouzid et al. | Structured H∞ design method of PI controller for grid feeding connected voltage source inverter | |
Rouabah et al. | Adaptive and exact linearization control of multicellular power converter based on shunt active power filter | |
Mohammadhassani et al. | Dynamic sliding mode control of single‐stage boost inverter with parametric uncertainties and delay | |
Ahuja et al. | Control of active and reactive power of grid connected inverter using adaptive network based fuzzy inference system (ANFIS) | |
Cai et al. | Fuzzy proportional-resonant control strategy for three-phase inverters in islanded micro-grid with nonlinear loads | |
Xie et al. | Harmonic resonance analysis and stability improvement for grid-connected inverters | |
CN105978018A (zh) | 一种lc型并网逆变器控制方法 | |
Abouelmahjoub et al. | Nonlinear control strategy of single-phase unified power flow controller | |
Car et al. | DC link voltage control of back-to-back converter robust to grid conditions | |
Wang et al. | An improved hysteresis current control scheme during grid voltage zero‐crossing for grid‐connected three‐level inverters | |
Gnanavadivel et al. | Comparison of closed loop PF improvement controllers for single phase AC-DC dual output converter | |
Cai et al. | Exact feedback linearization of general four-level buck DC-DC converters | |
Srinivas et al. | Voltage and frequency control of distribution generation unit in an island mode microgrid using differential evolution | |
Genwang et al. | Single-phase sinusoidal inverter based on fuzzy PID control for small wind power system | |
Marzouki et al. | A hybrid controller for PWM active rectifiers based LCL filters | |
Gu et al. | Research on three-phase photovoltaic grid-connected inverter based on fuzzy PI control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161005 |