CN105988215B - 一种多光谱模组成像系统及其制造方法和应用 - Google Patents

一种多光谱模组成像系统及其制造方法和应用 Download PDF

Info

Publication number
CN105988215B
CN105988215B CN201510083615.XA CN201510083615A CN105988215B CN 105988215 B CN105988215 B CN 105988215B CN 201510083615 A CN201510083615 A CN 201510083615A CN 105988215 B CN105988215 B CN 105988215B
Authority
CN
China
Prior art keywords
infrared
visible light
imaging
light
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510083615.XA
Other languages
English (en)
Other versions
CN105988215A (zh
Inventor
张扣文
鲁丁
郑杰
卢鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Sunny Opotech Co Ltd
Original Assignee
Ningbo Sunny Opotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Sunny Opotech Co Ltd filed Critical Ningbo Sunny Opotech Co Ltd
Priority to CN201510083615.XA priority Critical patent/CN105988215B/zh
Publication of CN105988215A publication Critical patent/CN105988215A/zh
Application granted granted Critical
Publication of CN105988215B publication Critical patent/CN105988215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本发明的一种多光谱模组成像系统及其制造方法和应用,多光谱模组成像系统包括镜头单元,以用于采集入射光线;感光单元,具有多种分色通道,以用于分别感应所述采集的入射光线中不同波段的可见光和非可见光光线;以及可分离成像单元,可分离地对所述感光单元所感应的不同波段光线分别成像,以用于可选择地提取各个不同光谱形成的图像。

Description

一种多光谱模组成像系统及其制造方法和应用
技术领域
本发明涉及一种成像系统,具体地说,是一种具有可见光和红外光多光谱组成的模组成像系统及其制造方法和应用。
背景技术
随着时代的进步,数字生活已越来越被人们所接受,人们的日常生活和工作也越来越受到数字设备的影响。其中,数码摄像系统作为现代主流的摄像工具,应用于不同规格和功能的摄像设备。其工作原理简单来说就是光-电-数字信号的转变与传输,当被摄对象经过光学系统透镜的折射,在光电转换系统的感光元件上将光学图像的光信号转变为携带电荷的电信号,再将模拟电信号转变成数字信号,由芯片处理和过滤后得到成像画面。
许多摄像镜头的成像应用只需要黑白两色或是可见光谱350~700纳米的光线,普通的摄像头一般采集可见光而过滤掉其他光谱,如红外光或紫外光。但某些应用需要其他部分的频谱包含的关键数据,如监控,虹膜识别图像、食品质量检查,金属检查,外观检查以及物品的细微特征,如果摄像装置只通过捕捉可见光来成像,势必无法进行全面的清晰拍摄。如摄像装置的日夜监控或拍摄,由于晚上的可见光较弱,成像模糊,需要用红外光进行拍摄,才能保证图片的成像清晰度,更不用说虹膜识别图像,需要通过红外线对眼镜内部的虹膜进行清晰成像。
在某些机器视觉应用中,看到物体内部与看到物体外观是同样重要的能力,多年以来,摄像界一直在为同时实现这两个目标而努力奋斗,但解决方案不是太昂贵就是太难实施维护。在传统的解决方案中,由于要同时具有可见光成像功能和红外光的成像功能,一般同时为摄像装置配备两个摄像头,一个用于可见光谱成像,另一个用于红外光谱成像。用两种模组来实现两种成像功能,虽然看似简单,但对于广大用户来说,两个摄像头不仅昂贵,而且效率低下,还有可能调焦不准确,需要重新对焦以及更改相关参数,因而相机才能经常严格保持一致,以确保同一视野。此外,使用两种镜头模组,其中的设备复杂性也增加两倍,需要两套相机、镜头、电缆等,降低使用的可靠性,拍摄照片的清晰度可能会下降。
还有一种替代方式是使用高端的4-CCD芯片,也就是在一个摄像装置中使用4块不同的感光芯片,分别捕捉红、绿、蓝和近红外光谱,尽管这种相机简化了操作,提升拍摄图像画质,但是价格和维护成本是及其昂贵的。另一种替代方式是使用两个感光芯片,第一块芯片使用Bayer彩色技术,只获取可见光,而第二个芯片作为一个单色的近红外成像芯片,其中,可见光芯片能捕捉红色、绿色和蓝色,即常规影像,而近红外芯片能捕捉红外光线进行成像。这两种方式都选用多块感光芯片组成,不仅增加产品的制造价格,也会破坏摄像模组的原始结构,增大其中的体积。同时,由于红外光与可见光的折射率不同,通过镜片后会产生折射而发生色散,色散后的红外光与可见光会聚焦在不同的焦平面上,使用多块感光芯片无法满足红外光与可见光同时呈像清晰,也无法复合可见光成像画面与红外光成像画面,这也成为摄像模组制造业多光谱成像发展的一大挑战。
发明内容
本发明的主要目的在于提供一种多光谱模组成像系统及其制造方法和应用,其通过多光谱通道分离技术可选择地获取可见光和非可见光波段成像效果,以用于分别提取多种不同光谱的图像模式。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其通过一可见光红外模组可选择地获取可见光和红外波段成像效果,以用于分别提取多种图像模式,如可见光图像和红外图像。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其包括多种分色通道,通过所述可见光、红外通道及其中的分离算法,得以快速有效地分离出可见光图像和红外图像,从而,有助于一些机器视觉应用的延伸。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其通过多通道分离技术以及相应的分离算法,得以使用单个模组来完成两个独立模组的功能,有助于减少摄像设备的复杂性,降低操作难度,提高拍摄像质的准确度和可靠度。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其中,所述多通道分离技术以用于可见光与红外光的可分离成像,简化可见光红外模组镜头的设计要求,扩大其应用范围,有助于在不同领域中拍摄成像。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其充分利用红外波段的成像功能,结合可见光红外通道分离技术,可捕捉非可见光光线,提高图像的细微特征以及物体内部特征。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其具有多种应用方式,不需要在多种镜头之间更换,如可见光成像可用于日常拍照,红外成像可用于虹膜识别。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其通过可见光和红外波段共焦镜头,以用于分别提取多种图像模式,如可见光红外复合图像。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法、使用方法,其中,所述可见光红外复合图像得以应用于结构光模组重构的3D模型的颜色纹理映射,有助于获取3D模型的真实色彩信息。
本发明的另一目的在于提供一种多光谱模组成像系统及其制造方法和应用,其不需要复杂地可分离成像器件,也没有对原始结构进行重大改变,不需要增加额外的体积,得以减少相关制造成本,形成紧凑型可见光红外模组。
从而,为了实现以上提到的目的,一种多光谱模组成像系统包括一镜头单元,所述镜头单元以用于采集一入射光线;一感光单元,所述感光单元具有多种分色通道,以用于分别感应所述采集的入射光线中不同波段的可见光和非可见光光线;以及一可分离成像单元,所述可分离成像单元可分离地对所述感光单元所感应的不同波段光线分别成像,以用于可选择地提取各个不同光谱形成的图像。
根据本发明的一实施例,所述多光谱模组成像系统包括一可见光红外模组,所述可见光红外模组中的分色通道包括一可见光通道以及一红外通道,所述可见光通道以用于感应所述入射光线中的可见光波段的光线,所述红外通道以用于感应所述入射光线中的红外光波段的光线。
根据本发明的一实施例,所述感光单元的分色通道为R,G,B,IR四个通道,其中,所述R,G,B三通道形成所述可见光通道,所述IR通道形成所述红外通道。
根据本发明的一实施例,所述可分离成像单元具有一可见光红外通道分离算法,所述通道分离算法以用于对所述感光单元的可见光波段和红外波段分离成像,得以可选择地获取可见光成像、红外成像和/或可见光红外复合成像。
根据本发明的一实施例,所述镜头单元选用的是一可见光红外不共焦镜头单元,通过所述可见光通道和红外通道,分别可选择地获取所述可见光图像和所述红外图像。
根据本发明的一实施例,所述多光谱模组成像系统的可见光成像适用于日常拍照,所述红外成像适用于虹膜识别。
根据本发明的一实施例,所述镜头单元选用的是一可见光红外共焦镜头单元,以用于将所述可见光波段与所述红外波段达到同一共焦面,得以获取所述可见光红外复合成像。
根据本发明的一实施例,所述多光谱模组成像系统的可见光红外复合成像适用于结构光模组3D重构的颜色纹理映射。
一种多光谱模组成像系统的制造方法,其包括步骤:
(A)提供一镜头单元,以用于采集一入射光线;
(B)设计多种分色通道于一感光单元,以用于分别感应所述入射光线中的可见光和非可见光;以及
(C)结合一通道分离算法,以用于可分离地对所述入射光线中的可见光和非可见光进行成像。
根据本发明的一实施例,所述步骤(B)包括步骤:将所述感光单元中的所述分色通道设计为R,G,B,IR四个通道,其中,所述R,G,B三通道形成一可见光通道,以用于感应可见光波段,所述IR通道形成一红外通道,以用于感应红外波段。
根据本发明的一实施例,所述步骤(C)包括步骤:通过一可分离成像单元的可见光红外通道分离算法将所述分色通道中所感应的光线分别进行成像处理,以用于可选择地获取可见光成像、红外成像和/或可见光红外复成像。
根据本发明的一实施例,所述步骤(A)包括步骤:所述镜头单元选用的是一可见光红外共焦镜头,以用于将所述可见光波段与所述红外波段达到同一聚焦面。
根据本发明的一实施例,所述方法进一步包括步骤(D):通过改变所述镜头单元的材料和/或镜片的面型来同时控制红外波段和可见光波段的成像像质,以用于消除色差,使得两种可见光波段和红外波段清晰成像在同一位置。
一种多光谱模组成像系统的使用方法,其包括步骤:
(a)目标物体的一入射光线通过一镜头单元采集;
(b)所述镜头单元采集的入射光线通过一感光单元的多种分色通道感应,以用于不同波段的光线可分离地进入不同的分色通道;以及
(c)通过一可分离成像单元对各个分色通道中的不同波段进行成像,以用于可选择地获取不同光谱成像。
根据本发明的一实施例,所述步骤(b)包括步骤:所述入射光线分别进入所述分色通道中的可见光通道和红外通道,以用于所述感光单元可分离的感应所述可见光波段和所述红外波段。
根据本发明的一实施例,所述步骤(c)包括步骤:结合所述可分离成像单元的可见光红外通道分离算法,可分离地获取所述可见光成像、红外成像和/或可见光红外复合成像。
根据本发明的一实施例,所述步骤(a)包括步骤:所述入射光线通过一可见光红外共焦镜头,使得所述可见光波段与红外波段达到同一聚焦面。
附图说明
图1是根据本发明的一优选实施例的一种多光谱模组成像系统的模块示意图。
图2A是根据本发明的上述优选实施例的所述多光谱模组成像系统的应用示意图(日常拍摄状态)。
图2B是根据本发明的上述优选实施例的所述多光谱模组成像系统的应用示意图(虹膜识别状态)。
图3A是根据本发明的上述优选实施例的所述多光谱模组成像系统的应用示意图(可见光成像)。
图3B是根据本发明的上述优选实施例的所述多光谱模组成像系统的应用示意图(红外成像)。
图4是根据本发明的上述优选实施例的所述多光谱模组成像系统的可见光红外不共焦示意图。
图5是根据本发明的上述优选实施例的所述多光谱模组成像系统的可见光红外共焦示意图。
图6是根据本发明的上述优选实施例的所述多光谱模组成像系统的制造方法流程图。
图7是根据本发明的上述优选实施例的所述多光谱模组成像系统的成像方法流程图。
具体实施方式
根据本发明的权利要求和说明书所公开的内容,本发明的技术方案具体如下文所述。
如图1所示的是一种多光谱模组成像系统,所述多光谱模组成像系统包括一镜头单元10,所述镜头单元10以用于采集一入射光线;一感光单元20,所述感光单元20具有多种分色通道21,以用于分别感应所述采集的入射光线中不同波段的可见光和非可见光光线;以及一可分离成像单元30,所述可分离成像单元30可分离地对所述感光单元20所感应的不同波段光线分别成像,以用于可选择地提取各个不同光谱形成的图像。从而,通过多光谱通道分离技术可选择地获取可见光和非可见光波段成像效果,以用于分别提取多种不同光谱的图像模式。
所述多光谱模组成像系统包括一可见光红外模组,所述可见光红外模组中的分色通道21包括一可见光通道211以及一红外通道212,所述可见光通道211以用于感应所述入射光线中的可见光波段的光线,所述红外通道212以用于感应所述入射光线中的红外光波段的光线,通过所述可见光红外模组可选择地获取可见光和红外波段成像效果,以用于分别提取一可见光图像和一红外图像。其中,所述可见光通道211与所述红外通道212分别对不同波段的光线进行感应,红外光无法被所述可见光通道211感应,可见光也无法被所述红外通道212感应,使得所述可见光红外模组可分离成像。
其中,所述可见光红外模组的分色通道21采用R(红色),G(绿色),B(蓝色),IR(红外)分色法,将Bayer颜色模式更改为R,G,B,IR四个通道,适用于CMOS感光芯片中,结合相应的软件算法,可分别提取出所述可见光图像和所述红外图像,其中,所述R,G,B三通道形成所述可见光通道211,以用于捕捉红色、绿色和蓝色,通过所述可见光通道211的颜色调节形成所述可见光图像,所述IR通道形成所述红外通道212,以用于捕捉红外光,通过所述红外通道212单独形成所述红外图像。换句话说,所述感光单元20的分色通道21为R,G,B,IR四个通道,其中,所述R,G,B,IR四通道的通道分离法也可适用于CCD感光芯片中,通过相应的软件算法,可分别提取出可见光图像和红外图像。
所述多光谱模组的分色通道21也可进一步包括一UV通道,所述UV通道形成一紫外通道,以用于捕捉紫外光来进行紫外成像,结合相应的通道分离算法,可分别提取出多种波段的不同图像,如可见光图像、红外图像、紫外图像。
所述可分离成像单元30具有一可见光红外通道分离算法,所述通道分离算法以用于对所述感光单元20的可见光波段和红外波段分离成像,以得以可选择地获取可见光成像31、红外成像32和/或可见光红外复合成像33。所述可分离成像单元30通过所述通道分离算法将所述分色通道21中所感应的光线分别进行成像处理,所述入射光线通过所述可见光红外模组的可见光通道211和红外通道212得以可分离地成像,所述可见光波段的成像和所述红外波段的成像通过通道分离算法来进行剥离,分离出所述可见光图像和所述红外图像。从而,通过所述可见光通道211、红外通道212及其中的分离算法,得以快速有效地分离出可见光图像和所述红外图像,有助于一些机器视觉应用的延伸,通过使用单个模组来完成两个独立模组的功能,有助于减少摄像设备的复杂性,降低操作难度,提高拍摄像质的准确度和可靠性。
所述多光谱模组的结构紧凑,得以提供不同光谱的成像画面,不需要添加额外的镜头或是感光芯片,通过多通道分离技术及其相应的分离算法即可用于可见光和红外光的可分离成像,简化所述可见光红外模组的设计要求,扩大其应用范围,有助于在不同领域中拍摄成像,如通过所述可见光红外模组分别用于可见光的日常拍摄和红外的虹膜识别成像。其中,所述可见光红外模组具有多种应用方式,不需要再多种镜头之间更换,如所述可见光成像31可用于日常拍摄,所述红外成像32可用于虹膜识别以及夜视监控、拍摄。
图2A和图2B所示的所述多光谱模组成像系统的应用,通过可见光、红外通道212分离技术,将所述可见光红外模组多位一体使用,如将所述多光谱模组成像系统应用于一摄像机,所述摄像机的感光单元20采用可见光、红外通道分离技术,结合所述可分离成像单元30的通道分离算法,可选择地获取所述可见光成像31或所述红外成像32。当作为日常拍摄使用时,所述摄像机提取所述可见光成像31画面,显示可见光所形成的图像,有助于进行日常娱乐拍摄,采集景象;当作为虹膜识别使用时,所述摄像机提取所述红外成像画面,显示红外波段形成的图像,以用于拍摄虹膜识别的图像,如果所述摄像机应用于手机、平板或电脑上等电子设备上,其中的摄像功能不仅具有常规拍摄的功能,还具有虹膜识别的密码功能,同时,所述摄像机也得以用于采集虹膜识别的图像。
图3A和图3B所示的所述多光谱模组成像系统的另一种应用,通过可见光、红外通道分离技术将所述可见光红外模组同时提取分离的可见光图像和红外图像,无论是白天还是夜晚,不需要更换镜头进行拍摄。红外摄影有别于传统的黑白彩色照片,拍出的画面给人以强烈的震撼感,同时红外线相对可见光对一些材料及衣料具有穿透能力,如薄化纤、烟雾、水汽等,能拍出神奇的透视效果,这些特征得以将红外摄影在军事、公安、考古、医学以及食品检查领域有着广泛的应用。将所述多光谱模组成像系统应用于一摄像机中,使用者不仅可以提取所述可见光通道211形成的可见光图像,还可以提取所述红外通道212形成的红外图像,便于使用者的拍摄,而不需要两组摄像头进行分别拍摄,有助于降低成本,所述多光谱模组成像系统有助于同时获取可分离的可见光图像和红外图像。如在食品检查中,利用所述可见光通道211捕捉图像表面性质,而利用红外通道212来捕捉早期检查中的衰败迹象,有助于简化操作步骤,可选择的获取可分离的可见光图像和红外图像。
其中,当所述多光谱模组成像系统应用于夜间拍摄或监控时,由于可见光波长大约在350-700nm之间,而近红外光的波长大约在700-950nm之间,因而,通过所述红外通道212对红外线的感应得以延长摄像机的波长曲线,得以拍摄更加清晰的图像,弥补可见光不足的影响,而不会一到晚上拍摄就无法显示清晰图像或造成镜头清晰度下降、聚焦不实等情况发生。通过所述可见光红外模组成像系统不仅能在白天拍摄清晰图像,也能在夜晚或较暗的环境下拍摄清晰图像,其充分利用红外波段的成像功能,结合可见光红外通道分离技术,可分别采集可见光和红外线,有助于提高图像的细微特征以及物体内部特征,减少外界环境对拍摄的影响。
所述多光谱模组成像系统的镜头单元10得以选用的是一多光谱不共焦镜头单元10或是一多光谱共焦镜头单元10,当所述可见光红外模组的镜头单元10选择的是一可见光红外不共焦镜头时,所述可见光波段和所述红外波段的最佳像质呈现在不同距离上,通过所述可见光通道211和所述红外通道212,分别可选择地获取所述可见光图像和所述红外图像;当所述可见光红外模组的镜头单元10选择的是一可见光红外共焦镜头时,通过所述可见光红外通道分离技术,以用于分别提取多种图像模式,如可见光图像、红外图像以及可见光红外复合图像。
图4所示的是所述多光谱模组成像系统的镜头单元10选用的是可见光红外不共焦透镜单元,其中,L代表所述镜头单元10,VL代表可见光聚焦面,NIR代表红外聚焦面,d为可见光聚焦面与红外聚焦面之间的距离。由于所述红外波段和所述可见光波段的波长不同,当所述入射光线透过所述镜头单元10时,所述红外波段和所述可见光波段造成折射率的不同,形成不同的色差,从而导致景深的不同,使得所述红外波段和可见光波段的最佳像质无法成像在同一距离上。由于红外波段的波长较长,常规镜头对红外波段的聚焦能力较弱,如果在镜头设计阶段未对两种波段的焦距进行控制,所述红外波段和所述可见光波段在同一对焦距离上会有不同的像质。也就是说,所述红外波段与所述可见光波段的聚焦面处于不同的距离,最佳像质会出现在不同的距离上,其中,所述近红外聚焦面与所述可见光聚焦面之间的距离大约为0.04mm,通过所述可见光红外通道分离技术,得以可选择地对所述镜头单元10进行调焦,分别获取所述可见光图像和所述红外图像,使得所述红外波段成像用于拍摄虹膜识别的图像,所述可见光波段成像以用于日常拍摄。
图5所示的是所述多光谱模组成像系统的镜头单元10选用的是可见光红外共焦镜头单元10,通过消除色差设计使得所述红外聚焦面与所述可见光聚焦面相重合,同时获得较佳的可见光成像31和红外成像32效果,得以使所述可见光波段成像部分与所述红外波段成像部分相重合,不仅可分离地获取的所述可见光图像和红外图像,还可以获取所述可见光红外复合图像。其中,所述消除色差设计通过改变所述镜头单元10的透镜材料和/或镜片的面型来同时控制红外波段和可见光波段的成像像质,使得所述红外波段与所述可见光波段的最佳成像在同一距离上,达到两种波段同时成像清晰在同一位置上。
换句话说,所述多光谱模组成像系统的可见光红外模组是一可见光红外不共焦模组或一可见光红外共焦模组,所述可见光红外不共焦模组的可见光与红外在不同距离上成像,所述可见光红外共焦模组的可见光与红外在同一距离上成像。对所述可见光红外共焦模组设计时需严格控制所述镜头单元10的色差分量,使得所述可见光与红外的聚焦平面重合,以用于消除色差,同步可见光与红外的焦距,而不需要额外增加红外矫正器件,减少相关制造和使用成本。通过选取不同材料来消除所述镜头单元10的色差和/或改变面型作色差补偿,得以使所述可见光波段与所述红外波段实现共焦,获取所述可见光红外复合图像。
当所述镜头单元10选用的是一可见光红外不共焦镜头单元,通过所述可见光通道211和红外通道212,分别可选择地获取所述可见光图像和所述红外图像;当所述镜头单元10选用的是一可见光红外共焦镜头单元,以用于将所述可见光波段与所述红外波段达到同一共焦面,得以获取所述可见光红外复合成像33。
所述可见光红外共焦模组适用于结构光模组中对3D重构的颜色纹理映射,通过获取可见光红外复合图像,得以使可见光波段成像部分与红外波段成像部分相重合,以用于精确获取3D模型的真实色彩信息。由于在常规的三维模型处理中,纹理在获取和映射的过程常会出现纹理颜色、纹理阴影的问题,使重建的三维模型出现较大的失真,通过所述可见光红外复合图像得以精确代表3D模型的真实色彩信息。
其中,由于所述可见光红外模组需要同时采集可见光和红外线,所述可见光红外模组的滤光片不需要滤掉红外波段,所述可见光红外模组得以不加滤光片,即使用空镜座,由于所述波段的光线都进入到所述感光单元20的感光面,不需要的波段进入后会转变成噪声,影响色彩还原性和成像质量,因而,所述可见光红外模组适于在镜座上安装可见光红外均透过的滤光片。换句话说,所述可见光红外模组包括一双通滤光片,所述双通滤光片以用于过滤其他波段的光线,只透过所述入射光线的可见光波段和红外波段,而过滤掉不需要的其他波段的光线,有助于对成像质量和色彩还原性上的性能提升。
其中,所述多光谱模组成像系统不需要复杂地可分离成像器件,也没有对原始结构进行重大改变,不需要增加额外的体积,得以减少相关制造成本,形成紧凑型可见光红外模组。
一种多光谱模组成像系统的制造方法,其包括步骤:
(A)提供一镜头单元10,以用于采集一入射光线;
(B)设计多种分色通道21于一感光单元20,以用于分别感应所述入射光线中的可见光和非可见光;以及
(C)结合通道分离算法,以用于可分离地对所述入射光线中的可见光和非可见光进行成像。
其中,所述步骤(B)包括步骤:将所述感光单元20中的所述分色通道21设计为R,G,B,IR四个通道,其中,所述R,G,B三通道形成一可见光通道211,以用于感应可见光波段,所述IR通道形成一红外通道212,以用于感应红外波段。
其中,所述步骤(C)包括步骤:通过一可分离成像单元30的可见光红外通道分离算法将所述分色通道21中所感应的光线分别进行成像处理,以用于可选择地获取可见光成像31、红外成像32和/或可见光红外复合成像33。
其中,所述步骤(A)包括步骤:所述镜头单元10选用的是一可见光红外共焦镜头,以用于将所述可见光波段与所述红外波段达到同一聚焦面。
其中,所述方法进一步包括步骤(D):通过改变所述镜头单元10的材料和/或镜片的面型来同时控制红外波段和可见光波段的成像像质,以用于消除色差,使得两种可见光波段和红外波段清晰成像在同一位置。
一种多光谱模组成像系统的成像方法,其包括步骤:
(a)目标物体的一入射光线通过一镜头单元10采集;
(b)所述镜头单元10采集的入射光线通过一感光单元20的多种分色通道21感应,以用于不同波段的光线可分离地进入不同的分色通道21;以及
(c)通过一可分离成像单元30对各个分色通道21中的不同波段进行成像,以用于可选择地获取不同光谱成像。
其中,所述步骤(b)包括步骤:所述入射光线分别进入所述分色通道21中的可见光通道211和红外通道212,以用于所述感光单元20可分离的感应所述可见光波段和所述红外波段。
其中,所述步骤(c)包括步骤:结合所述可分离成像单元30的可见光红外通道分离算法,可分离地获取所述可见光成像31、红外成像32和/或可见光红外复合成像33。
其中,所述步骤(a)包括步骤:所述入射光线通过一可见光红外共焦镜头,使得所述可见光波段与红外波段达到同一聚焦面。
上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
同时本发明上述实施例仅为说明本发明技术方案之用,仅为本发明技术方案的列举,并不用于限制本发明的技术方案及其保护范围。采用等同技术手段、等同设备等对本发明权利要求书及说明书所公开的技术方案的改进应当认为是没有超出本发明权利要求书及说明书所公开的范围。

Claims (10)

1.一种多光谱模组成像系统,其特征在于,包括:
一镜头单元,所述镜头单元以用于采集一入射光线;
一感光单元,所述感光单元具有多种分色通道,以用于分别感应所述采集的入射光线中不同波段的可见光和非可见光光线;以及
一可分离成像单元,所述可分离成像单元可分离地对所述感光单元所感应的不同波段光线分别成像,以用于可选择地提取各个不同光谱形成的图像,其中所述可分离成像单元具有一可见光红外通道分离算法,所述通道分离算法以用于对所述感光单元的可见光波段和红外波段分离成像,得以可选择地获取可见光成像、红外成像和可见光红外复合成像,其中所述镜头单元选用的是一可见光红外共焦镜头单元,以用于将所述可见光波段与所述红外波段达到同一共焦面,得以获取所述可见光成像、红外成像和可见光红外复合成像,所述多光谱模组成像系统包括一双通滤光片,入射光线通过所述镜头单元后通过所述双通滤光片过滤后,进而到达所述感光单元。
2.根据权利要求1所述的多光谱模组成像系统,其包括一可见光红外模组,所述可见光红外模组中的分色通道包括一可见光通道以及一红外通道,所述可见光通道以用于感应所述入射光线中的可见光波段的光线,所述红外通道以用于感应所述入射光线中的红外光波段的光线。
3.根据权利要求2所述的多光谱模组成像系统,所述感光单元的分色通道为R,G,B,IR四个通道,其中,所述R,G,B三通道形成所述可见光通道,所述IR通道形成所述红外通道。
4.根据权利要求3所述的多光谱模组成像系统,所述多光谱模组成像系统的可见光成像适用于日常拍照,所述红外成像适用于虹膜识别。
5.根据权利要求4所述的多光谱模组成像系统,所述多光谱模组成像系统的可见光红外复合成像适用于结构光模组3D重构的颜色纹理映射。
6.一种多光谱模组成像系统的制造方法,其特征在于,包括步骤:
(A)提供一镜头单元,以用于采集一入射光线;
(B)设计多种分色通道于一感光单元,以用于分别感应所述入射光线中的可见光和非可见光;以及
(C)结合一通道分离算法,以用于可分离地对所述入射光线中的可见光和非可见光进行成像,并通过一可分离成像单元的可见光红外通道分离算法将所述分色通道中所感应的光线分别进行成像处理,以用于可选择地获取可见光成像、红外成像和可见光红外复合成像;
所述镜头单元选用的是一可见光红外共焦镜头单元,以用于将所述可见光波段与所述红外波段达到同一共焦面,得以获取所述可见光成像、红外成像和可见光红外复合成像,提供一双通滤光片,入射光线通过所述镜头单元后通过所述双通滤光片过滤,进而到达所述感光单元。
7.根据权利要求6所述的制造方法,所述步骤(B)包括步骤:将所述感光单元中的所述分色通道设计为R,G,B,IR四个通道,其中,所述R,G,B三通道形成一可见光通道,以用于感应可见光波段,所述IR通道形成一红外通道,以用于感应红外波段。
8.根据权利要求6或7所述的制造方法,所述方法进一步包括步骤(D):通过改变所述镜头单元的材料和/或镜片的面型来同时控制红外波段和可见光波段的成像像质,以用于消除色差,使得两种可见光波段和红外波段清晰成像在同一位置。
9.一种多光谱模组成像系统的成像方法,其特征在于,包括步骤:
(a)目标物体的一入射光线通过一镜头单元采集;
(b)所述镜头单元采集的入射光线通过一感光单元的多种分色通道感应,以用于不同波段的光线可分离地进入不同的分色通道;以及
(c)通过一可分离成像单元对各个分色通道中的不同波段进行成像,以用于可选择地获取不同光谱成像,并结合所述可分离成像单元的可见光红外通道分离算法,可分离地获取可见光成像、红外成像和可见光红外复合成像;
其中所述步骤(a)包括步骤:所述入射光线通过一可见光红外共焦镜头,使得所述可见光波段与红外波段达到同一聚焦面,所述入射光线通过所述镜头单元后通过一双通滤光片过滤光线。
10.根据权利要求9所述的成像方法,所述步骤(b)包括步骤:所述入射光线分别进入所述分色通道中的可见光通道和红外通道,以用于所述感光单元可分离的感应所述可见光波段和所述红外波段。
CN201510083615.XA 2015-02-15 2015-02-15 一种多光谱模组成像系统及其制造方法和应用 Active CN105988215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510083615.XA CN105988215B (zh) 2015-02-15 2015-02-15 一种多光谱模组成像系统及其制造方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510083615.XA CN105988215B (zh) 2015-02-15 2015-02-15 一种多光谱模组成像系统及其制造方法和应用

Publications (2)

Publication Number Publication Date
CN105988215A CN105988215A (zh) 2016-10-05
CN105988215B true CN105988215B (zh) 2020-03-06

Family

ID=57042448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510083615.XA Active CN105988215B (zh) 2015-02-15 2015-02-15 一种多光谱模组成像系统及其制造方法和应用

Country Status (1)

Country Link
CN (1) CN105988215B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979723A (zh) * 2017-11-30 2018-05-01 信利光电股份有限公司 一种摄像头成像的方法、系统及其组件
CN108965654B (zh) 2018-02-11 2020-12-25 浙江宇视科技有限公司 基于单传感器的双光谱摄像机系统和图像处理方法
TWI669538B (zh) * 2018-04-27 2019-08-21 點晶科技股份有限公司 立體影像擷取模組及立體影像擷取方法
CN110809881B (zh) * 2018-08-31 2021-08-24 深圳市大疆创新科技有限公司 图像处理系统和方法
CN110798623A (zh) * 2019-10-15 2020-02-14 华为技术有限公司 单目摄像机、图像处理系统以及图像处理方法
CN110798602B (zh) * 2019-11-29 2022-08-19 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置
CN111667434B (zh) * 2020-06-16 2023-05-09 南京大学 一种基于近红外增强的弱光彩色成像方法
US20220103732A1 (en) * 2020-09-29 2022-03-31 Aac Optics Solutions Pte. Ltd. Imaging assembly and camera

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674012B2 (ja) * 1995-10-27 2005-07-20 株式会社ニコン 固体撮像装置
JPH09166493A (ja) * 1995-12-15 1997-06-24 Nikon Corp 撮像装置、撮像方法、および受光装置
JP4012995B2 (ja) * 1997-01-21 2007-11-28 ソニー株式会社 画像撮像装置および方法
JP2005004181A (ja) * 2003-05-21 2005-01-06 Fujinon Corp 可視光・赤外光撮影用レンズシステム
CN1971927B (zh) * 2005-07-21 2012-07-18 索尼株式会社 物理信息获取方法、物理信息获取装置和半导体器件
US7821552B2 (en) * 2005-12-27 2010-10-26 Sanyo Electric Co., Ltd. Imaging apparatus provided with imaging device having sensitivity in visible and infrared regions
US8134191B2 (en) * 2006-01-24 2012-03-13 Panasonic Corporation Solid-state imaging device, signal processing method, and camera
JP2008288629A (ja) * 2007-05-15 2008-11-27 Sony Corp 画像信号処理装置、撮像素子、および画像信号処理方法、並びにコンピュータ・プログラム
JP4386096B2 (ja) * 2007-05-18 2009-12-16 ソニー株式会社 画像入力処理装置、および、その方法
JP5262180B2 (ja) * 2008-02-26 2013-08-14 ソニー株式会社 固体撮像装置及びカメラ
KR20110019724A (ko) * 2008-06-18 2011-02-28 파나소닉 주식회사 고체 촬상 장치
CN101742109A (zh) * 2010-01-18 2010-06-16 张力 多模式摄像机图像处理电路及采用该电路的图像处理方法
CN101894364B (zh) * 2010-05-31 2012-10-03 重庆大学 基于光学非下采样轮廓波变换的图像融合方法和装置
CN102323670B (zh) * 2011-09-06 2013-07-03 中国科学院长春光学精密机械与物理研究所 紫外、可见光和近红外三波段光学成像系统
CN202433590U (zh) * 2011-10-12 2012-09-12 舜宇光学(中山)有限公司 一种日、夜两用型高分辨率监视镜头
CN102495474B (zh) * 2011-12-09 2013-04-03 北京理工大学 一种可见光/长波红外宽波段共调焦光学成像系统
KR101926489B1 (ko) * 2013-02-04 2018-12-07 한화테크윈 주식회사 다중대역 필터배열 센서를 이용한 영상융합장치 및 방법
CN203134799U (zh) * 2013-03-20 2013-08-14 豪威科技(上海)有限公司 Cmos影像传感器
CN103278927B (zh) * 2013-06-21 2015-05-13 西安工业大学 双波段共口径共光路共变焦成像光学系统
CN104079908B (zh) * 2014-07-11 2015-12-02 上海富瀚微电子股份有限公司 红外与可见光图像信号处理方法及其实现装置

Also Published As

Publication number Publication date
CN105988215A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN105988215B (zh) 一种多光谱模组成像系统及其制造方法和应用
AU2016278201B2 (en) Multispectral imaging apparatus
US8711256B2 (en) Image processing apparatus, image processing method, and program to create a composite image from color image data and monochrome image data
KR101824290B1 (ko) 고해상도 멀티스펙트럼 이미지 캡처 기법
TWI434574B (zh) 成像設備
CN103327342B (zh) 具有透明滤波器像素的成像系统
US7855786B2 (en) Single camera multi-spectral imager
US20130033578A1 (en) Processing multi-aperture image data
CN107770521B (zh) 相机拍摄模式调整方法
CN107292860A (zh) 一种图像处理的方法及装置
TW201421145A (zh) 包括至少一拜耳型攝影機的攝影機陣列系統及關聯的方法
EP2537332A1 (en) Processing multi-aperture image data
CN106911876A (zh) 用于输出图像的方法和设备
CN107112339A (zh) 摄像器件和电子装置
CN107820066A (zh) 一种低照度彩色摄像机
TW201721113A (zh) 多點光譜系統
CN107852469A (zh) 摄像元件、图像处理方法和电子装置
CN107995400A (zh) 图像采集装置、摄影装置及图像采集方法
JP2018513964A (ja) スナップショット型偏光ハイパースペクトルカメラ及び結像方法
CN107205139A (zh) 多通道采集的图像传感器及采集方法
JP5108013B2 (ja) カラー撮像素子及びこれを用いた撮像装置及びフィルタ
CN110460783B (zh) 阵列摄像模组及其图像处理系统、图像处理方法和电子设备
CN115187559A (zh) 用于图像的光照检测方法、装置、存储介质与电子设备
KR101120568B1 (ko) 다중 스펙트럼 전자기파의 영상 촬영 시스템 및 다중 스펙트럼 전자기파의 영상 촬영 방법
CN108024035B (zh) 成像装置和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant