CN105981463A - 支持fdr传输的无线接入系统中的资源分配方法和装置 - Google Patents

支持fdr传输的无线接入系统中的资源分配方法和装置 Download PDF

Info

Publication number
CN105981463A
CN105981463A CN201580008633.XA CN201580008633A CN105981463A CN 105981463 A CN105981463 A CN 105981463A CN 201580008633 A CN201580008633 A CN 201580008633A CN 105981463 A CN105981463 A CN 105981463A
Authority
CN
China
Prior art keywords
frame
configuration
interference
subframe
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580008633.XA
Other languages
English (en)
Other versions
CN105981463B (zh
Inventor
鲁广锡
郑载薰
韩镇百
李银终
金镇玟
崔国宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN105981463A publication Critical patent/CN105981463A/zh
Application granted granted Critical
Publication of CN105981463B publication Critical patent/CN105981463B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种支持全双工无线电(FDR)传输环境的无线接入系统。根据本发明的一个实施方式的支持FDR的无线接入系统中的基站的资源分配方法包括以下步骤:向由终端特定TDD设定的终端发送用于上行链路子帧和下行链路子帧的配置的第一帧设置;从所述终端接收包括所述终端的业务信息和/或所述终端优选的帧设置信息的响应信息;以及基于所述响应信息发送调节所述上行链路子帧与所述下行链路子帧之比的第二帧设置,其中,所述第二帧设置能够通过基于同时发送上行链路的FDR干扰终端的数量使所述第一帧设置移位来设定。

Description

支持FDR传输的无线接入系统中的资源分配方法和装置
技术领域
本发明涉及支持全双工无线电(FDR)传输环境的无线接入系统,更具体地讲,涉及一种当应用FDR时有效地发送和接收信号的方法以及支持该方法的设备。
背景技术
无线通信系统已被广泛使用以提供诸如语音或数据服务的各种类型的通信服务。通常,无线通信系统是可通过共享可用系统资源(带宽、发送(Tx)功率等)来与多个用户通信的多址系统。可使用各种多址系统。例如,码分多址(CDMA)系统、频分多址(FDMA)系统、时分多址(TDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、多载波频分多址(MC-FDMA)系统等。
发明内容
技术问题
本发明的目的在于提供一种在支持FDR传输的无线接入系统中有效地发送和接收数据的资源分配方法。
本发明的另一目的在于提供一种支持上述方法的设备。
可通过本发明实现的技术目的不限于上文具体描述的目的,对于本领域技术人员而言本文未描述的其它技术目的将从以下详细描述变得更清楚地理解。
技术方案
根据为解决上述问题而设计出的本发明的一方面,一种在支持全双工无线电(FDR)传输的无线接入系统中由基站(BS)分配资源的方法包括以下步骤:向在用户设备(UE)特定时分复用(TDD)模式下配置的UE发送关于上行链路子帧和下行链路子帧的配置的第一帧配置;从所述UE接收包括所述UE的业务信息和指示所述UE优选的帧配置的帧配置信息中的至少一个的响应信息;以及基于所述响应信息发送调节所述上行链路子帧与所述下行链路子帧之比的第二帧配置,其中,通过基于同时执行上行链路传输的FDR干扰UE的数量使所述第一帧配置移位来设定所述第二帧配置。
该方法还可包括以下步骤:根据FDR传输发送用于测量装置间干扰的所述干扰UE的标识信息。
该方法还可包括以下步骤:向所述UE发送关于可接收所述干扰UE的所述标识信息的子帧的信息。
所述干扰UE的所述标识信息可使用代码序列来生成。
如果所述UE和所述FDR干扰UE同时执行数据发送和接收,则可按照所述UE的上行链路子帧和所述FDR干扰UE的下行链路子帧被同时配置的第一定时在所述UE的上行链路子帧中发送所述干扰UE的所述标识信息。
所述第二帧配置可考虑上行链路帧被改变为下行链路帧的切换点的数量来设定。
第一帧配置信息可具有相同的上行链路子帧与下行链路子帧之比。
根据本发明的另一方面,一种在支持全双工无线电(FDR)传输的无线接入系统中分配资源的基站(BS)包括射频(RF)单元和处理器,其中,所述处理器被配置为向在用户设备(UE)特定时分复用(TDD)模式下配置的UE发送关于上行链路子帧和下行链路子帧的配置的第一帧配置,从所述UE接收包括所述UE的业务信息和指示所述UE优选的帧配置的帧配置信息中的至少一个的响应信息,并且基于所述响应信息发送调节所述上行链路子帧与所述下行链路子帧之比的第二帧配置,并且其中,通过基于同时执行上行链路传输的FDR干扰UE的数量使所述第一帧配置移位来设定所述第二帧配置。
所述处理器还可被配置为根据FDR传输来发送用于测量装置间干扰的所述干扰UE的标识信息。
所述处理器还可被配置为向所述UE发送关于可接收所述干扰UE的所述标识信息的子帧的信息。
所述干扰UE的所述标识信息可使用代码序列来生成。
如果所述UE和所述FDR干扰UE同时执行数据发送和接收,则可按照所述UE的上行链路子帧和所述FDR干扰UE的下行链路子帧被同时配置的第一定时在所述UE的上行链路子帧中发送所述干扰UE的所述标识信息。
所述第二帧配置可考虑上行链路帧被改变为下行链路帧的切换点的数量来设定。
第一帧配置信息可具有相同的上行链路子帧与下行链路子帧之比。
本发明的以上一般描述和以下详细描述是示例性和说明性的,并且旨在提供对要求保护的本发明的进一步说明。
有益效果
根据本发明的实施方式,可获得以下效果。
首先,可在支持FDR传输的无线接入系统中有效地发送和接收数据。
根据本发明的效果不限于上文具体描述的效果,对于本领域技术人员而言,本文未描述的其它优点将从本发明的以下详细描述变得更清楚地理解。即,本领域技术人员也可从本发明的实施方式导出本发明的非预期的效果。
附图说明
图1示出3GPP LTE中的无线电帧的结构。
图2示出图1的无线电帧的结构中的示例性帧配置。
图3是示出下行链路子帧的结构的示图。
图4是示出上行链路子帧的结构的示图。
图5示出支持MIMO的无线通信系统的配置。
图6示出一个资源块的示例性CRS和DRS图案。
图7示出为LTE-A系统定义的示例性DM RS图案。
图8示出为LTE-A系统定义的示例性CSI-RS图案。
图9是示出LTE-A系统中定义的示例性零功率(ZP)CSI-RS图案的示图。
图10示出支持FDR传输的示例性系统。
图11示出示例性装置间干扰。
图12示出用于图2的配置#1的对等UE的示例性帧配置。
图13示出D子帧与U子帧之比为1:1的两个示例性配置。
图14示出考虑最少数量的切换点的示例性帧配置。
图15示出通过考虑U子帧的分布以及最少数量的切换点使子帧移位而获得的示例性帧配置。
图16示出没有切换点的情况下的示例性帧配置。
图17示出示例性1比特干扰信息。
图18是示出UE特定TDD模式下的本发明的实施方式的流程图。
图19示出当图2的配置#3和#5被分别分配给图14的两个UE时使用配置#5发送至UE的10比特的PDCCH。
图20示出适用于本发明的实施方式的BS和UE。
具体实施方式
通过根据预定格式将本发明的构成组件和特性组合来提出以下实施方式。在不存在附加评论的情况下,各个构成组件或特性应该被视为可选的因素。如果需要,各个构成组件或特性可不与其它组件或特性组合。另外,一些构成组件和/或特性可被组合以实现本发明的实施方式。本发明的实施方式中所公开的操作的顺序可改变为另一顺序。如果需要,任何实施方式的一些组件或特性也可被包括在其它实施方式中,或者可被其它实施方式的那些组件或特性代替。
基于基站(BS)与终端之间的数据通信关系公开本发明的实施方式。在这种情况下,BS用作BS可经由其与终端直接通信的网络的终端节点。如果需要,本发明中将由BS进行的特定操作也可由BS的上层节点进行。
换言之,对于本领域技术人员而言将显而易见的是,使得BS能够与由包括BS的多个网络节点组成的网络中的终端通信的各种操作将由BS或者BS以外的其它网络节点进行。如果需要,术语“BS”可被固定站、节点B、演进节点B(eNB或eNode B)或者接入点(AP)代替。术语“中继器”可被中继节点(RN)或中继站(RS)代替。如果需要,术语“终端”也可被用户设备(UE)、移动站(MS)、移动订户站(MSS)或订户站(SS)代替。
应该注意的是,本发明中公开的具体术语是为了方便描述和更好地理解本发明而提出的,在本发明的技术范围或精神内,这些具体术语的使用可改变为另一形式。
在一些情况下,熟知结构和装置被省略以避免模糊本发明的概念,这些结构和装置的重要功能以框图的形式示出。贯穿附图将使用相同的标号来指代相同或相似的部件。
本发明的实施方式由针对至少一个无线接入系统公开的标准文献支持,所述无线接入系统包括电气和电子工程师协会(IEEE)802系统、第3代合作伙伴计划(3GPP)系统、3GPP长期演进(LTE)系统和3GPP2系统。具体地讲,在本发明的实施方式中为了清楚地揭示本发明的技术构思而没有描述的步骤或部件可由上述文献支持。本文所使用的所有术语可由上述文献中的至少一个支持。
本发明的以下实施方式可被应用于例如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等的各种无线接入技术。CDMA可利用诸如通用地面无线电接入(UTRA)或CDMA2000的无线(或无线电)技术来具体实现。TDMA可利用诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/增强数据速率GSM演进(EDGE)的无线(或无线电)技术来具体实现。OFDMA可利用诸如电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20和演进UTRA(E-UTRA)的无线(或无线电)技术来具体实现。UTRA是通用移动电信系统(UMTS)的一部分。第3代合作伙伴计划长期演进(3GPP LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中采用OFDMA,在上行链路中采用SC-FDMA。LTE-Advanced(LTE-A)是3GPP LTE的演进版本。WiMAX可由IEEE 802.16e(WirelessMAN-OFDMA参考系统)和高级IEEE 802.16m(WirelessMAN-OFDMA高级系统)来说明。为了清晰,以下描述集中于3GPP LTE和LTE-A系统。然而,本发明的技术特征不限于此。
图1示出3GPP LTE的无线电帧的结构。
图1中示出帧结构类型2。帧结构类型2适用于时分双工(TDD)系统。一个无线电帧具有Tf=307200·Ts=10ms的长度,并且包括各自具有153600·Ts=5ms的长度的两个半帧。各个半帧包括各自具有30720·Ts=1ms的长度的5个子帧。第i子帧包括各自具有Tslot=15360·Ts=0.5ms的长度的两个时隙2i和2i+1。Ts是作为Ts=1/(15kHz×2048)=3.2552×10-8(约33ns)给出的采样时间。
帧结构类型2包括具有三个字段的特殊子帧:下行链路导频时隙(DwPTS)、保护周期(GP)和上行链路导频时隙(UpPTS)。DwPTS用于UE处的初始小区搜索、同步或信道估计。UpPTS用于eNB处的信道估计以及与UE的上行链路传输同步。GP用于消除由下行链路信号的多径延迟导致的上行链路与下行链路之间的干扰。DwPTS、GP和UpPTS被包括在表1的特殊子帧中。
图2示出图1的无线电帧的结构中的示例性帧配置。
在图2中,D表示用于下行链路传输的子帧,U表示用于上行链路传输的子帧,S表示用于保护时间的特殊子帧。
各个小区中的所有UE共同具有图2的配置中的一个帧配置。即,帧配置随小区而变化,该帧配置可被称为小区特定配置。
图3是示出下行链路子帧的结构的示图。一个子帧的第一时隙的开始处的多达三个OFDM符号对应于分配有控制信道的控制区域。剩余OFDM符号对应于分配有物理下行链路共享信道(PDSCH)的数据区域。基本传输单位是一个子帧。即,横跨两个时隙分配PDCCH和PDSCH。3GPP LTE系统中所使用的下行链路控制信道的示例包括例如物理控制格式指示符信道(PCFICH)、物理下行链路控制信道(PDCCH)、物理混合自动重传请求指示符信道(PHICH)等。PCFICH位于承载关于子帧中用于控制信道的OFDM符号的数量的信息的子帧的第一OFDM符号中。PHICH包括作为对上行链路传输的响应的HARQ确认/否定确认(ACK/NACK)信号。PDCCH上所发送的控制信息被称为下行链路控制信息(DCI)。DCI包括上行链路或下行链路调度信息或者针对特定UE组的上行链路发送功率控制命令。PDCCH可包括关于下行链路共享信道(DL-SCH)的资源分配和传输格式的信息、上行链路共享信道(UL-SCH)的资源分配信息、寻呼信道(PCH)的寻呼信息、DL-SCH上的系统信息、关于PDSCH上发送的诸如随机接入响应(RAR)的高层控制消息的资源分配的信息、针对特定UE组中的各个UE的一组发送功率控制命令、发送功率控制信息、关于IP语音(VoIP)的激活的信息等。可在控制区域中发送多个PDCCH。UE可监测这多个PDCCH。PDCCH在一个或多个邻接的控制信道元素(CCE)的聚合上发送。CCE是用于以基于无线电信道的状态的编码速率提供PDCCH的逻辑分配单元。CCE包括一组RE。PDCCH的格式和可用比特数基于CCE的数量与CCE所提供的编码速率之间的相关性来确定。BS根据将要发送给UE的DCI来确定PDCCH格式并且将循环冗余校验(CRC)附接至控制信息。根据PDCCH的所有者或用途,通过无线电网络临时标识符(RNTI)来对CRC进行掩码。如果PDCCH用于特定UE,则可通过UE的小区-RNTI(C-RNTI)来对CRC进行掩码。如果PDCCH用于寻呼消息,则可通过寻呼指示符标识符(P-RNTI)来对CRC进行掩码。如果PDCCH用于系统信息(更具体地讲,系统信息块(SIB)),则可通过系统信息标识符和系统信息RNTI(SI-RNTI)来对CRC进行掩码。为了指示对从UE接收的随机接入前导码的随机接入响应,可通过随机接入-RNTI(RA-RNTI)来对CRC进行掩码。
图4是示出上行链路子帧的结构的示图。在频域中上行链路子帧可被分成控制区域和数据区域。包括上行链路控制信息的物理上行链路控制信道(PUCCH)被分配给控制区域。包括用户数据的物理上行链路共享信道(PUSCH)被分配给数据区域。为了维持单载波的性质,一个UE不同时发送PUSCH和PUCCH。用于一个UE的PUCCH被分配给子帧中的RB对。RB对的RB在两个时隙中占据不同的子载波。因此,分配给PUCCH的RB对在时隙边界上“跳频”。
多输入多输出(MIMO)系统的建模
MIMO系统利用多个Tx天线和多个Rx天线来增大数据发送/接收效率。MIMO是在不依赖于单个天线路径来接收整个消息的情况下,将从多个天线接收的数据片段置于整个消息中的应用。
MIMO方案被分成空间分集和空间复用。空间分集利用分集增益来增大传输可靠性或者小区半径,因此适合于快速移动的UE的数据传输。在空间复用中,多个Tx天线同时发送不同的数据,因此可在不增加系统带宽的情况下发送高速数据。
图5示出支持MIMO的无线通信系统的配置。如图5的(a)所示,与仅在发送机和接收机中的一个处使用多个天线相比,当在发送机和接收机二者处分别将发送(Tx)天线的数量和接收(Rx)天线的数量增加至NT和NR时,理论信道传输容量与天线数量成比例地增加。因此,传输速率和频率效率显著增大。随着信道传输容量增大,传输速率可理论上增大至在单个天线的情况下可实现的最大传输速率Ro与速率增加比率Ri的乘积。
[式1]
Ri=min(NT,NR)
例如,与单天线无线通信系统相比,具有四个Tx天线和四个Rx天线的MIMO通信系统可理论上实现传输速率的四倍增加。由于在20世纪90年代中证实了MIMO无线通信系统的理论容量增加,所以已积极地研究了许多技术以在实际实现中增加数据速率。这些技术中的一些已经被反映在包括用于3G移动通信、下一代无线局域网(WLAN)等的标准的各种无线通信标准中。
关于迄今为止的MIMO的研究趋势,正在对MIMO的许多方面进行积极的研究,包括与分集信道环境和多址环境中的多天线通信容量的计算有关的信息理论的研究、测量MIMO无线电信道和MIMO建模的研究、时空信号处理技术的研究,以增加传输可靠性和传输速率等。
将通过数学建模详细描述具有NT个Tx天线和NR个Rx天线的MIMO系统中的通信。
关于发送信号,可通过NT个Tx天线发送多达NT条信息,表示成下面的向量。
[式2]
可对各条发送信息应用不同的发送功率。使发送信息的发送功率水平分别由表示。则发送功率被控制的发送信息向量可被给出为
[式3]
s ^ = [ s ^ 1 , s ^ 2 , ... , s ^ N T ] T = [ P 1 s 1 , P 2 s 2 , ... , P N T s N T ] T
发送功率被控制的发送信息向量可利用发送功率的对角矩阵P来表示如下。
[式4]
可通过将发送功率被控制的信息向量与权重矩阵W相乘来生成NT个发送信号权重矩阵W用于根据传输信道状态等将发送信息适当地分配给Tx天线。这NT个发送信号被表示为向量x,其可被确定为
[式5]
这里,wij表示第j条信息与第i Tx天线之间的权重,W是预编码矩阵。
可根据两种方案(例如,空间分集和空间复用)不同地处理所发送的信号x。在空间复用中,不同的信号被复用并发送至接收机,使得信息向量的元素具有不同的值。在空间分集中,通过多个信道路径重复地发送相同的信号,使得信息向量的元素具有相同的值。空间复用和空间分集可组合使用。例如,可通过三个Tx天线在空间分集中发送相同的信号,而剩余信号可在空间复用中被发送至接收机。
给定NR个Rx天线,在Rx天线处接收的信号可被表示为下面的向量。
[式6]
y = [ y 1 , y 2 , ... , y N R ] T
当在MIMO无线通信系统中对信道进行建模时,它们可根据Tx和Rx天线的索引来区分。第j Tx天线与第i Rx天线之间的信道由hij表示。应该注意的是,在hij中Rx天线的索引在Tx天线的索引之前。
图5的(b)示出从NT个Tx天线至第i Rx天线的信道。信道可被共同表示成向量和矩阵。参照图5的(b),从NT个Tx天线至第i Rx天线的信道可被表示成
[式7]
h i T = [ h i 1 , h i 2 , ... , h iN T ]
因此,从NT个Tx天线至NR个Rx天线的所有信道可被表示成下面的矩阵。
[式8]
实际信道经过上述信道矩阵H,然后与加性高斯白噪声(AWGN)相加。与NR个Rx天线相加的AWGN被给出为下面的向量。
[式9]
n = [ n 1 , n 2 , ... , n N R ] T
从上述数学建模,所接收到的信号向量被给出为
[式10]
表示信道状态的信道矩阵H的行数和列数根据Rx和Tx天线的数量来确定。具体地讲,信道矩阵H中的行数等于Rx天线的数量NR,信道矩阵H中的列数等于Tx天线的数量NT。因此,信道矩阵H的大小为NR×NT
矩阵的秩被定义为矩阵中的独立行数与独立列数中的较小者。因此,矩阵的秩不大于矩阵的行数或列数。信道矩阵H的秩rank(H)满足以下约束。
[式11]
rank(H)≤min(NT,NR)
在MIMO传输中,术语“秩”表示用于独立地发送信号的路径的数量,术语“层数”表示通过各个路径发送的信号流的数量。通常,由于发送机发送用于信号传输的秩的数量那么多的层,所以除非另外指示,否则秩具有与层数相同的含义。
参考信号(RS)
在无线通信系统中,在无线电信道上发送分组。鉴于无线电信道的本质,在传输期间分组可能失真。为了成功地接收信号,接收机应该利用信道信息来补偿所接收到的信号的失真。通常,为了使得接收机能够获取信道信息,发送机发送发送机和接收机二者已知的信号,并且接收机基于在无线电信道上接收的信号的失真来获取信道信息的知识。该信号被称为导频信号或RS。
在通过多个天线的数据发送和接收的情况下,成功的信号接收需要Tx天线与Rx天线之间的信道状态的知识。因此,应该针对各个Tx天线存在RS。
在移动通信系统中,RS根据其服务的目的被大致分成两种类型:用于信道信息获取的RS和用于数据解调的RS。前一种类型的RS应该在宽带中发送以使得UE能够获取下行链路信道信息。甚至没有接收到特定子帧中的下行链路数据的UE也应该能够接收这些RS并测量它们。当eNB发送下行链路数据时,它在分配给下行链路数据的资源中发送后一种类型的RS。UE可通过接收所述RS来执行信道估计,并且因此基于信道估计将数据解调。这些RS应该在数据传输区域中发送。
在传统3GPP LTE系统(例如,符合3GPP LTE版本8的系统)中,针对单播服务定义了两种类型的下行链路RS:公共RS(CRS)和专用RS(DRS)。CRS用于CSI获取和测量(例如,用于切换)。CRS也被称为小区特定RS。DRS用于数据解调,被称为UE特定RS。传统3GPP LTE系统仅将DRS用于数据解调,将CRS用于信道信息获取和数据解调两个目的。
小区特定的CRS在每一个子帧中横跨宽带来发送。根据eNB处的Tx天线的数量,eNB可发送用于多达四个天线端口的CRS。例如,具有两个Tx天线的eNB发送用于天线端口0和天线端口1的CRS。如果eNB具有四个Tx天线,则它发送用于相应四个Tx天线端口(天线端口0至天线端口3)的CRS。
图6示出在eNB具有四个Tx天线的系统中用于RB(在正常CP的情况下,包括时间中的14个OFDM符号×频率中的12个子载波)的CRS和DRS图案。在图6中,标记为“R0”、“R1”、“R2”和“R3”的RE分别表示用于天线端口0至天线端口4的CRS的位置。标记为“D”的RE表示在LTE系统中定义的DRS的位置。
作为LTE系统的演进,LTE-A系统可支持多达八个Tx天线。因此,也应该支持用于多达八个Tx天线的RS。由于在LTE系统中仅针对多达四个Tx天线定义下行链路RS,所以当在LTE-A系统中eNB具有五至八个下行链路Tx天线时,应该针对五至八个Tx天线端口另外定义RS。应该针对多达八个Tx天线端口考虑用于信道测量的RS和用于数据解调的RS二者。
LTE-A系统的设计的重要考虑之一是向后兼容性。向后兼容性是确保传统LTE终端即使在LTE-A系统中也正常地操作的特征。如果用于多达八个Tx天线端口的RS被增加到在每一个子帧中横跨总频带发送由LTE标准定义的CRS的时间-频率区域,则RS开销变得巨大。因此,应该针对多达八个天线端口设计新的RS以使得RS开销减小。
大体上,向LTE-A系统引入两种新类型的RS。一种类型是为信道测量的目的服务以用于选择传输秩、调制和编码方案(MCS)、预编码矩阵索引(PMI)等的CSI-RS。另一类型是用于通过多达八个Tx天线发送的数据的解调的解调RS(DM RS)。
与传统LTE系统中用于测量(例如,信道测量和切换的测量)和数据解调两个目的的CRS相比,CSI-RS被设计为主要用于信道估计,但是它也可用于切换的测量。由于仅为了获取信道信息而发送CSI-RS,所以与传统LTE系统中的CRS不同,它们可不在每一个子帧中发送。因此,CSI-RS可被配置为沿着时间轴间断地(例如,周期性地)发送,以用于减小CSI-RS开销。
当在下行链路子帧中发送数据时,也专门向调度有数据传输的UE发送DM RS。因此,可设计专用于特定UE的DM RS以使得它们仅在为该特定UE调度的资源区域中(即,仅在承载用于该特定UE的数据的时间-频率区域中)发送。
图7示出为LTE-A系统定义的示例性DM RS图案。在图7中,在承载下行链路数据的RB(在正常CP的情况下,具有时间中的14个OFDM符号×频率中的12个子载波的RB)中承载DMRS的RE的位置被标记。可针对LTE-A系统中另外定义的四个天线端口(天线端口7至天线端口10)发送DM RS。用于不同天线端口的DM RS可由它们的不同频率资源(子载波)和/或不同的时间资源(OFDM符号)来标识。这意味着DM RS可按照频分复用(FDM)和/或时分复用(TDM)来复用。如果用于不同天线端口的DM RS位于相同的时间-频率资源中,则它们可由其不同的正交码来标识。即,这些DM RS可按照码分复用(CDM)来复用。在图7所示的情况下,用于天线端口7和天线端口8的DM RS可通过基于正交码的复用被设置于DM RS CDM组1的RE上。类似地,用于天线端口9和天线端口10的DM RS可通过基于正交码的复用被设置于DM RS CDM组2的RE上。
图8示出为LTE-A系统定义的示例性CSI-RS图案。在图8中,在承载下行链路数据的RB(在正常CP的情况下,具有时间中的14个OFDM符号×频率中的12个子载波的RB)中承载CSI-RS的RE的位置被标记。图8的(a)至图8的(e)所示的CSI-RS图案之一可用于任何下行链路子帧。可针对LTE-A系统所支持的八个天线端口(天线端口15至天线端口22)发送CSI-RS。用于不同天线端口的CSI-RS可由它们的不同频率资源(子载波)和/或不同的时间资源(OFDM符号)来标识。这意味着CSI-RS可按照FDM和/或TDM来复用。位于相同的时间-频率资源中的用于不同天线端口的CSI-RS可由其不同的正交码来标识。即,这些CSI-RS可按照CDM来复用。在图8的(a)所示的情况下,用于天线端口15和天线端口16的CSI-RS可通过基于正交码的复用被设置于CSI-RS CDM组1的RE上。用于天线端口17和天线端口18的CSI-RS可通过基于正交码的复用被设置于CSI-RS CDM组2的RE上。用于天线端口19和天线端口20的CSI-RS可通过基于正交码的复用被设置于CSI-RS CDM组3的RE上。用于天线端口21和天线端口22的CSI-RS可通过基于正交码的复用被设置于CSI-RS CDM组4的RE上。参照图8的(a)所描述的相同原理适用于图8的(a)至图8的(e)所示的CSI-RS图案。
图9是示出在LTE-A系统中定义的示例性零功率(ZP)CSI-RS图案的示图。ZP CSI-RS大致用于两个目的。首先,ZP CSI-RS用于改进CSI-RS性能。即,一个网络可使另一网络的CSI-RS RE静默以便改进所述另一网络的CSI-RS测量性能,并且通过将静默的RE设定至ZPCSI-RS来向其UE告知静默的RE,以使得UE可正确地执行速率匹配。其次,ZP CSI-RS用于干扰测量以便于CoMP CQI计算。即,一些网络可使ZP CRS-RS RE静默并且UE可通过从ZP CSI-RS测量干扰来计算CoMP CQI。
图6至图9的RS图案仅是示例性,应用于本发明的各种实施方式的RS图案不限于这些具体的RS图案。换言之,即使当定义并使用不同于图6至图9的RS图案的RS图案时,也可同样地应用本发明的各种实施方式。
全双工无线电(FDR)传输
支持FDR的系统是指能够同时支持在传输装置中使用相同资源的发送和接收的系统。例如,支持FDR传输的eNB或UE可执行传输而无需在频率/时间等中执行上行链路/下行链路双工。
图10示出支持FDR传输的示例性系统。
参照图10,FDR系统中存在两种类型的干扰。
第一种是装置内干扰,其指示经由FDR装置的发送天线发送的信号由于被FDR装置的接收天线接收而充当干扰。通常,自干扰信号以高于期望的信号的功率被接收。因此,重要的是通过干扰消除操作完全地消除装置内干扰。
第二种是装置间干扰,其中由eNB或UE发送的上行链路信号由于被相邻eNB或UE接收而充当干扰。在传统通信系统中,由于实现上行链路/下行链路传输在频率或时间中分开执行的半双工(例如,FDD或TDD),所以上行链路与下行链路之间没有发生干扰。然而,上行链路和下行链路共享相同的频率/时间资源的FDR传输环境可导致FDR装置与相邻装置之间的干扰。
尽管甚至在FDR系统中仍发生传统通信系统中的相邻小区之间的干扰,本发明中将不涵盖这种情况。
图11示出示例性装置间干扰。
如上所述,仅在小区中使用相同资源的FDR传输中发生装置间干扰(IDI)。
参照图11,对于UE 2,由UE 1发送至eNB的上行链路信号可充当干扰。
尽管为了IDI的描述方便,图11中仅示出了两个UE,本发明的特征不限于该数量的UE。
如上所述,FDR系统是指同时支持使用相同时间和/或相同频率的发送和接收的系统。即,例如,UE1的上行链路发送和UE2的下行链路接收可同时发生。即,支持FDR传输的UE应该能够同时支持上行链路和下行链路二者。然而,在传统通信系统中所使用的配置中,由于UE在一个时刻执行上行链路或下行链路传输,所以无法支持FDR。
根据本发明的FDR的TDD帧配置方法
本发明提供了一种支持使用FDR传输的TDD通信系统的帧配置方法以及支持使用FDR传输的TDD通信系统的区别信号发送和接收方法。
以下,尽管为了便于描述,像LTE标准中一样将假设一个帧的长度为10ms并且一个子帧的长度为1ms,本发明的特征不限于上述长度的无线电帧和上述长度的子帧。
作为支持FDR传输的方法,可针对各个UE配置帧,以使得小区中的UE可同时执行上行链路和下行链路传输。
例如,假设在相同的小区中,UE1被指派图2的上行链路-下行链路配置3,UE2被指派上行链路-下行链路配置4。在这种情况下,UE1和UE2可在子帧4中执行同时发送和接收。即,UE可依照小区中的UE使用不同的帧配置在小区中同时执行发送和接收。
在配置帧时,帧可被配置为使得最少包括一个下行链路(D)子帧以支持由eNB向小区中的UE的同步信号和相关系统信息的传输。
另外,由于应该在UE的信息和数据的上行链路传输之前部署考虑定时提前的GP,所以可在上行链路(U)子帧之前部署特殊(S)子帧。
可考虑非对称下行链路/上行链路业务和开销来使用各种类型的帧配置。具体地讲,由于未在每一个无线电帧中发送同步信号和系统信息,所以可使用没有D子帧或U子帧的无线电帧。
另外,可包括至少一个U子帧以便执行针对下行链路的HARQ。
作为子帧配置的示例,图2的小区特定帧配置可用作UE特定帧配置。
例如,当图11的UE1使用图2的配置#0并且图11的UE2使用图11的配置#2时,eNB的全双工(FD)操作可在子帧#3、#4、#8和#9中执行。
根据本发明,可考虑数据业务的对称性来配置帧。
例如,如果UE在FD模式下使用图2的配置#1,则可取的是对等UE符合图12的帧配置以便于同时发送和接收的业务的最大传输。(由于周期性为5ms,所以仅子帧#3、#4、#8和#9可改变)。
图12示出对于图2的配置#1,对等UE的示例性帧配置。
然而,由于包括GP的S子帧应该存在于子帧#4和#9之前,所以由于从下行链路至上行链路的切换点而难以实际地实现图12的配置。因此,当图2的配置#1中的D子帧与U子帧之比为1:1时,可考虑切换点使用如图13中一样的两个配置。
图13示出如图2的配置#1中一样D子帧与U子帧之比为1:1的两个示例性配置。
本发明的实施方式提出了一种考虑D子帧和U子帧的各种比率的开销使从下行链路至上行链路的切换点的数量最少化的帧配置。
即,由于在切换点处必然需要S子帧,所以通过使S子帧最少化来配置具有较小开销的无线电帧。
在相同小区中同时执行发送和接收的UE中发生IDI。因此,为了使UE之间的干扰最小化,可取的是在所有配置的子帧中尽可能均匀地分布U子帧。这种部署可在使形成IDI的UE的数量最少化的同时使FD模式的使用最大化。
在配置新的帧时,eNB可针对正使用的帧配置的各个子帧识别U子帧的数量,并且从具有最少数量的U子帧的子帧开始分配U子帧。在这种情况下,可通过使所使用的配置移位来分布分配给子帧的U子帧的数量。移位的值可考虑无线电帧的重复周期具有最大值((无线电帧的重复周期/传输时间间隔(TTI))-1)。
图14示出在传统通信系统中仅考虑最少数量的切换点的配置(图2的配置#3、#4和#5),图15示出除了考虑最少数量的切换点以外,通过使子帧移位以使U子帧尽可能公平地分布而获得的示例性帧配置。
与图14相比,在图15中,移位值0、3和5被分别应用于配置#3、配置#4和配置#5。
在图14中,由于子帧#3,使用配置#5的UE易遭受来自使用配置#3和#4的UE的IDI。另一方面,在图15中,所有配置的UE易遭受来自最大一个UE的IDI。
这种部署方法具有这样的优点:通过减少遭受干扰的UE的数量,如使用签名信号的方法(将在下面描述)中一样减少了对能够在UE之间区分的标识符执行全搜索的次数。
在图14中,使用配置#5的UE可仅在子帧#3或#4中与另一UE使用FD模式。此外,在图15中,有这样的优点:使用配置#5的UE可在子帧#0、#1、#8和#9以外的子帧中与另一UE使用FD模式。
此外,图16的帧配置可利用仅用于FDR系统的无线电子帧来建立。
在这种情况下,为了去除S子帧,当先前无线电帧的最后子帧为U子帧时,仅使用仅由U子帧组成的配置。
在图16中,如果大容量数据(例如,多媒体数据)的上行链路和下行链路业务容量相似,则由于不存在S子帧,可提供最大传输量。
eNB可通过高层信令向各个UE发送指示UE特定配置的信息。
在这种情况下,eNB可接收关于来自各个UE的业务的信息以确定UE特定配置。
另外,eNB可使用经由PUCCH发送的上行链路控制信息(UCI)来接收关于UE所优选的帧配置的信息。如果关于UE所优选的帧配置的信息作为n比特被增加到UCI,则可区分总共2n种配置。
在从UE接收关于业务的信息或者关于优选配置的信息之后,eNB确定是否执行与所接收到的信息有关的帧配置。在确定配置时,eNB可仅参考从UE接收的信息,或者当UE强烈要求上行链路/下行链路传输时可总是适应UE所优选的帧配置。
另选地,UE可基于子帧向eNB发送由其接收的干扰的功率水平,eNB可间接地推断作为干扰影响对应UE附近的UE的数量。利用此,eNB可改变干扰UE和受害者UE的配置。在这种情况下,可通过UCI发送各个子帧的干扰信息。例如,是否存在两个或更多个干扰源可依照子帧由1比特指示符指示。在图15中,需要总共10比特。
例如,如果配置#3、#4和#5分别被分配给图14中的三个UE,则使用配置#5的UE可发送10比特干扰信息,如图17所示。
UE可在每一个U子帧中向eNB发送关于业务的信息或者关于优选配置的信息。利用所接收到的信息,eNB可重置帧配置或者搜索可最有效地执行FD模式的UE。例如,当存在优选图2的配置#0和#5的UE时,eNB可选择UE以在FD模式下执行传输。
UE可在部分U子帧中发送关于业务的信息或者关于优选配置的信息。例如,如果优选配置的业务量改变,则UE可在部分U子帧中发送业务信息或优选配置信息。在接收到不包括配置信息的U子帧时,eNB可不改变UE的帧配置或者可考虑另一UE的配置改变UE的帧配置。
图18是示出UE特定TDD模式下的本发明的实施方式的流程图。
尽管图11的UE1和UE2被假设为UE,根据此实施方式的方法在FDMA或TDMA中同样适用于针对两个或更多个UE在FD模式下操作的UE对。
首先,eNB指示UE执行UE特定TDD模式操作(S1801)。
可利用经由PDCCH发送的DCI来执行UE特定TDD模式操作的指示。
接下来,eNB发送关于初始UE特定帧配置的信息。初始UE特定帧配置可被设定为使得U子帧和D子帧具有与图2的配置#1中相同的比率,以便于上行链路和下行链路UE有效地在FD模式下操作。
在接收到关于初始UE特定帧配置的信息时,UE向eNB发送PUCCH(S1805),eNB基于PUCCH发送UE特定配置信息(S1807)。在这种情况下,本发明的各种实施方式可根据上述帧配置方法被应用于UE特定配置信息。
如果不需要UE特定TDD操作,则eNB结束UE特定TDD操作(S1809和S1811),并且如果要继续执行UE特定TDD操作,则eNB确定是否使用通过UE的PUCCH接收的信息(S1813)。如果使用PUCCH,则执行发送PUCCH的步骤S1805,并且如果不执行通过PUCCH的配置,则执行发送UE特定配置信息的步骤S1807。
UE之间可发生IDI(由FD模式导致的装置之间的干扰)。为了通过测量这种干扰来减小IDI,可向各个UE或UE组分配独特签名。以下,能够在UE之间区分的用于干扰测量的信号将被称作签名信号。
UE可使用签名信号知道形成IDI的UE的信号强度、UE或签名索引、诸如相位的信道向量以及定时信息。
签名信号可以是例如代码序列或打孔图案。签名信号可由能够在UE或UE组之间区分的各种形式的信号组成。可利用代码序列来应用UE特定或UE组特定加扰或交织。为了便于接收方UE容易地执行干扰测量,仅一个UE或一个UE组可排他地发送签名信号。在这种情况下,排他单元可至少为OFDM符号。
例如,如果签名信号由序列配置并且利用一个OFDM符号发送,则各个UE要发送的序列的索引可通过UE ID来计算。即,所述索引可通过UE ID的函数来配置,或者当构成UEID的信息的量大于序列的索引时可通过取模(mod)运算来计算(序列索引=(UE ID)mod(总索引数))。
作为具体示例,为了在签名信号之间区分,可利用UE ID或序列索引配置m序列。当使用LTE的辅同步信号(SSS)中所使用的如下式所指示的m序列时,N(1) ID可利用UE ID或序列索引计算m’,从而在签名之间区分。
[式12]
m0=m′mod31
在各个帧配置的所有U子帧中发送签名信号。相反,由IDI导致的受害者UE在D子帧中接收签名信号。另外,部分UE可接收签名信号而无需在U子帧中发送信息。
为了接收签名信号,eNB可利用形成IDI的UE的配置信息向由IDI导致的受害者UE指定可接收签名信号的子帧。另选地,eNB可通过将在FD模式下使用的UE的配置索引发送至由IDI导致的受害者UE来确定接收方UE要接收签名信号的子帧。这种信息可通过PDCCH来发送。
图19示出当图2的配置#3和#5分别被分配给图14的两个UE时,利用配置#5发送至UE的10比特的PDCCH。
当发送形成干扰的UE的配置索引时,可发送总配置n的floor(log2(n))比特和移位值((无线电帧的重复周期/TTI)-1)的floor(log2((无线电帧的重复周期/TTI)-1))比特。在这种情况下,函数floor(x)指示不超过x的最小自然数。
如果eNB发送无线电帧配置,则UE可仅通过部分U子帧中的签名信号来区分。例如,如图11中一样由于eNB的FD模式,仅两个UE同时执行发送/接收,UE1可仅在为UE1首次配置U子帧并且通过为UE2首次配置D子帧的子帧中发送签名信号。即,签名发送/接收定时可基于eNB已知的配置来预定。
在这种情况下,eNB可使用受干扰影响的UE的配置信息来向形成干扰的UE以及受干扰影响的UE指定要发送签名信号的子帧。
另选地,eNB可通过发送受干扰影响的UE的配置索引来确定要发送签名信号的子帧。这种信息可通过PDCCH来发送并且当接收子帧被指示时可使用总共10比特。
如果发送受干扰影响的UE的配置索引或者如果发送形成干扰的UE的配置索引,则可发送总配置n的floor(log2(n))比特和移位值((无线电帧的重复周期/TTI)-1)的floor(log2((无线电帧的重复周期/TTI)-1))比特。
所测量的签名信号可由接收方UE用于干扰消除,并且可由eNB用于帧配置或者签名信号分配。
用于测量签名信号的UE可将签名信号信息反馈给eNB以使得eNB可将UE分成形成IDI的UE和受干扰影响的UE。为此,eNB可执行调度限制。即,组中的UE被限制以使得所分配的时间或频率资源可尽可能地分离开。另选地,可执行形成IDI的UE的上行链路功率控制以调节干扰的量。
接收签名信号的UE可获取形成干扰的相邻UE的信道信息。UE可将信道信息反馈给eNB,eNB可利用信道信息导出形成干扰的UE的上行链路信号的PMI。即,eNB可确定PMI以使攻击者UE的上行链路信号对受害者UE的影响最小化,并且使得上行链路信号可被很好地发送至eNB。
图20示出适用于本发明的实施方式的BS和UE。
如果无线通信系统包括中继器,则在BS与中继器之间执行回程链路上的通信,在中继器与UE之间执行接入链路上的通信。因此,根据情况,图20所示的BS或UE可被中继器代替。
参照图20,无线通信系统包括BS 2010和UE 2020。BS 2010包括处理器2013、存储器2014以及射频(RF)单元2011和2012。处理器2013可被配置为执行本发明中所提出的过程和/或方法。存储器2014连接至处理器2013并且存储与处理器2013的操作有关的各种类型的信息。RF单元2011和2012连接至处理器2013并且发送和/或接收无线电信号。UE 2020包括处理器2023、存储器2024以及RF单元2021和2022。处理器2023可被配置为执行根据本发明所提出的过程和/或方法。存储器2024连接至处理器2023并且存储与处理器2023的操作有关的各种类型的信息。RF单元2012和2022连接至处理器2023并且发送和/或接收无线电信号。BS 2010和/或UE 2020可包括单个天线或多个天线。
上述本发明的实施方式是本发明的元件和特征按照预定形式的组合。所述元件或特征可被认为是选择性的,除非另外提及。各个元件或特征可在不与其它元件或特征组合的情况下实践。另外,本发明的实施方式可通过将部分元件和/或特征组合来构造。本发明的实施方式中所描述的操作顺序可重新布置。任一个实施方式的一些构造可被包括在另一实施方式中,并且可被另一实施方式的对应构造代替。对于本领域技术人员而言显而易见的是,所附权利要求书中未明确彼此引用的权利要求可按照组合方式作为本发明的实施方式呈现,或者通过提交申请之后的后续修改作为新的权利要求而被包括。在一些情况下,在本公开中被描述为由BS执行的特定操作可由BS的上层节点执行。即,显而易见的是,在由包括BS的多个网络节点构成的网络中,为了与UE通信而执行的各种操作可由BS或者BS以外的网络节点执行。术语BS可由术语固定站、节点B、eNode B(eNB)、接入点(AP)等代替。
本发明的实施方式可通过例如硬件、固件、软件或其组合的各种手段来实现。在硬件配置中,根据本发明的示例性实施方式的方法可通过一个或更多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器等来实现。
在固件或软件配置中,本发明的实施方式可按照模块、过程、函数等的形式来实现。软件代码可被存储在存储器单元中并由处理器执行。存储器单元可位于处理器的内部或外部,并可经由各种已知手段向处理器发送数据和从处理器接收数据。
存储器单元可位于处理器的内部或外部,以通过各种已知手段与处理器交换数据。
已经给出了本发明的优选实施方式的详细描述以使得本领域技术人员能够实现和实践本发明。尽管参照示例性实施方式描述了本发明,本领域技术人员将理解,在不脱离所附权利要求书中所描述的本发明的精神或范围的情况下,可对本发明进行各种修改和变化。因此,本发明不应限于本文所描述的特定实施方式,而是应该符合与本文所公开的原理和新颖特征一致的最宽范围。
在不脱离本发明的精神和基本特性的情况下,本发明可按照本文阐述的方式以外的其它特定方式来实施。因此,上述详细描述在所有方面均被解释为是例示性的,而非限制性的。本发明的范围应该由所附权利要求的合理解释来确定,落入所附权利要求的含义和等同范围内的所有改变均将被涵盖于其中。所附权利要求书中未明确引用的权利要求可按照组合方式作为本发明的示例性实施方式呈现,或者通过提交申请之后的后续修改作为新的权利要求而被包括。
工业实用性
本发明可用在诸如UE、中继器和eNB的无线通信装置中。

Claims (14)

1.一种在支持全双工无线电FDR传输的无线接入系统中由基站BS分配资源的方法,该方法包括以下步骤:
向在用户设备UE特定时分复用TDD模式下配置的UE发送与上行链路子帧和下行链路子帧的配置相关的第一帧配置;
从所述UE接收包括所述UE的业务信息和指示所述UE优选的帧配置的帧配置信息中的至少一个的响应信息;以及
基于所述响应信息来发送调节所述上行链路子帧与所述下行链路子帧之比的第二帧配置,
其中,通过基于同时执行上行链路传输的FDR干扰UE的数量使所述第一帧配置移位来设定所述第二帧配置。
2.根据权利要求1所述的方法,该方法还包括以下步骤:根据FDR传输来发送用于测量装置间干扰的干扰UE的标识信息。
3.根据权利要求2所述的方法,该方法还包括以下步骤:向所述UE发送与能够接收所述干扰UE的所述标识信息的子帧相关的信息。
4.根据权利要求2所述的方法,其中,使用代码序列来生成所述干扰UE的所述标识信息。
5.根据权利要求2所述的方法,其中,如果所述UE和所述FDR干扰UE同时执行数据发送和接收,则按照所述UE的上行链路子帧和所述FDR干扰UE的下行链路子帧被同时配置的第一定时在所述UE的上行链路子帧中发送所述干扰UE的所述标识信息。
6.根据权利要求1所述的方法,其中,考虑上行链路帧被改变为下行链路帧的切换点的数量来设定所述第二帧配置。
7.根据权利要求1所述的方法,其中,第一帧配置信息具有相同的上行链路子帧与下行链路子帧之比。
8.一种用于在支持全双工无线电FDR传输的无线接入系统中分配资源的基站BS,该BS包括:
射频RF单元;以及
处理器,
其中,所述处理器被配置为向在用户设备UE特定时分复用TDD模式下配置的UE发送与上行链路子帧和下行链路子帧的配置相关的第一帧配置,
从所述UE接收包括所述UE的业务信息和指示所述UE优选的帧配置的帧配置信息中的至少一个的响应信息,并且
基于所述响应信息来发送调节所述上行链路子帧与所述下行链路子帧之比的第二帧配置,并且
其中,通过基于同时执行上行链路传输的FDR干扰UE的数量使所述第一帧配置移位来设定所述第二帧配置。
9.根据权利要求8所述的BS,其中,所述处理器还被配置为根据FDR传输来发送用于测量装置间干扰的干扰UE的标识信息。
10.根据权利要求9所述的BS,其中,所述处理器还被配置为向所述UE发送与能够接收所述干扰UE的所述标识信息的子帧相关的信息。
11.根据权利要求9所述的BS,其中,使用代码序列来生成所述干扰UE的所述标识信息。
12.根据权利要求9所述的BS,其中,如果所述UE和所述FDR干扰UE同时执行数据发送和接收,则按照所述UE的上行链路子帧和所述FDR干扰UE的下行链路子帧被同时配置的第一定时在所述UE的上行链路子帧中发送所述干扰UE的所述标识信息。
13.根据权利要求8所述的BS,其中,考虑上行链路帧被改变为下行链路帧的切换点的数量来设定所述第二帧配置。
14.根据权利要求8所述的BS,其中,第一帧配置信息具有相同的上行链路子帧与下行链路子帧之比。
CN201580008633.XA 2014-02-16 2015-02-16 支持fdr传输的无线接入系统中的资源分配方法和装置 Expired - Fee Related CN105981463B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461940485P 2014-02-16 2014-02-16
US61/940,485 2014-02-16
US201461949267P 2014-03-07 2014-03-07
US61/949,267 2014-03-07
PCT/KR2015/001541 WO2015122732A1 (ko) 2014-02-16 2015-02-16 Fdr 전송을 지원하는 무선접속시스템에서 자원 할당 방법 및 장치

Publications (2)

Publication Number Publication Date
CN105981463A true CN105981463A (zh) 2016-09-28
CN105981463B CN105981463B (zh) 2019-12-10

Family

ID=53800398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580008633.XA Expired - Fee Related CN105981463B (zh) 2014-02-16 2015-02-16 支持fdr传输的无线接入系统中的资源分配方法和装置

Country Status (6)

Country Link
US (1) US10064177B2 (zh)
EP (1) EP3107343B1 (zh)
JP (1) JP6608833B2 (zh)
KR (1) KR102284365B1 (zh)
CN (1) CN105981463B (zh)
WO (1) WO2015122732A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115063A (zh) * 2017-01-05 2019-08-09 华为技术有限公司 用于切换的网络装置和方法
CN112075122A (zh) * 2018-05-03 2020-12-11 交互数字专利控股公司 用于具有全双工无线电的无线局域网(wlan)的信道接入方案

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748990B2 (en) 2015-02-09 2017-08-29 Huawei Technologies Co., Ltd. System and method for training signals for full-duplex communications systems
US20160233904A1 (en) * 2015-02-09 2016-08-11 Huawei Technologies Co., Ltd. System and Method for Full-Duplex Operation in a Wireless Communications System
US10412749B2 (en) * 2015-05-21 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in license assisted access
US10306562B2 (en) * 2015-10-29 2019-05-28 Qualcomm Incorporated Transport format combination selection during self-jamming interference
US10044491B2 (en) * 2016-03-14 2018-08-07 Industrial Technology Research Institute Data transmission method for performing full-duplex communications and base station using the same
KR102554339B1 (ko) 2016-04-15 2023-07-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법 및 장치
US11515991B2 (en) 2016-09-29 2022-11-29 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
US10779276B2 (en) 2018-03-30 2020-09-15 Apple Inc. Self-contained slot and slot duration configuration in NR systems
KR102113709B1 (ko) * 2018-05-23 2020-05-21 주식회사 맨컴 유해 가스를 제거하는 가스 제거기를 포함하는 제어 판넬 모듈 박스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227602A1 (en) * 2001-01-24 2002-07-31 Lucent Technologies Inc. Method for dynamic allocation of timeslots in a TDD communication system
CN101159485A (zh) * 2007-10-28 2008-04-09 中兴通讯股份有限公司 一种时分双工系统信号的传输方法及帧结构
US20090135748A1 (en) * 2007-11-16 2009-05-28 Bengt Lindoff Adaptive Scheduling for Half-Duplex Wireless Terminals
CN102415014A (zh) * 2009-04-28 2012-04-11 中兴通讯(美国)公司 在lte tdd系统中动态调整下行链路/上行链路分配比的方法和系统
CN102893697A (zh) * 2010-05-26 2013-01-23 索尼公司 基站、无线通信方法、用户设备和无线通信系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049450A (ja) * 2005-08-10 2007-02-22 Hitachi Kokusai Electric Inc 可変tdd制御方法
GB2418806B (en) 2005-08-19 2006-09-27 Ipwireless Inc Duplex operation in a cellular communication system
US8483036B2 (en) * 2006-02-24 2013-07-09 Lg Electronics Inc. Method of searching code sequence in mobile communication system
US8009639B2 (en) 2006-12-27 2011-08-30 Wireless Technology Solutions Llc Feedback control in an FDD TDD-CDMA system
ES2623231T3 (es) * 2007-08-08 2017-07-10 Godo Kaisha Ip Bridge 1 Dispositivo y método de comunicación
EP2203015A1 (en) * 2008-12-23 2010-06-30 Nokia Siemens Networks OY Method for generating cooperation areas in communications networks and corresponding network nodes
EP2742748A4 (en) * 2011-08-12 2015-08-26 Intel Corp SYSTEM AND METHOD FOR UPLINK POWER CONTROL IN A WIRELESS COMMUNICATION SYSTEM
US9137788B2 (en) * 2011-09-05 2015-09-15 Nec Laboratories America, Inc. Multiple-input multiple-output wireless communications with full duplex radios
KR101920496B1 (ko) 2011-11-25 2018-11-21 애플 인크. 인터밴드 tdd 전송 방식에서 사용자 단말의 전송 모드 정보를 송수신하는 방법 및 장치
CN103188797A (zh) * 2011-12-28 2013-07-03 北京三星通信技术研究有限公司 一种改变tdd上下行配置的方法
CN103220723B (zh) * 2012-01-18 2016-08-10 华为技术有限公司 无线通信方法及装置
GB2498561A (en) * 2012-01-20 2013-07-24 Renesas Mobile Corp Allocating part of the frequency domain for full duplex communication and part for half duplex communication between a Node B and UEs
US9215039B2 (en) * 2012-03-22 2015-12-15 Sharp Laboratories Of America, Inc. Devices for enabling half-duplex communication
EP2879454A4 (en) * 2012-07-27 2016-07-06 Kyocera Corp MOBILE COMMUNICATION SYSTEM
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227602A1 (en) * 2001-01-24 2002-07-31 Lucent Technologies Inc. Method for dynamic allocation of timeslots in a TDD communication system
CN101159485A (zh) * 2007-10-28 2008-04-09 中兴通讯股份有限公司 一种时分双工系统信号的传输方法及帧结构
US20090135748A1 (en) * 2007-11-16 2009-05-28 Bengt Lindoff Adaptive Scheduling for Half-Duplex Wireless Terminals
CN102415014A (zh) * 2009-04-28 2012-04-11 中兴通讯(美国)公司 在lte tdd系统中动态调整下行链路/上行链路分配比的方法和系统
CN102893697A (zh) * 2010-05-26 2013-01-23 索尼公司 基站、无线通信方法、用户设备和无线通信系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115063A (zh) * 2017-01-05 2019-08-09 华为技术有限公司 用于切换的网络装置和方法
CN112075122A (zh) * 2018-05-03 2020-12-11 交互数字专利控股公司 用于具有全双工无线电的无线局域网(wlan)的信道接入方案
CN112075122B (zh) * 2018-05-03 2024-02-23 交互数字专利控股公司 用于具有全双工无线电的无线局域网(wlan)的信道接入方案

Also Published As

Publication number Publication date
US20160345315A1 (en) 2016-11-24
US10064177B2 (en) 2018-08-28
EP3107343A4 (en) 2017-10-18
WO2015122732A1 (ko) 2015-08-20
JP2017506841A (ja) 2017-03-09
KR102284365B1 (ko) 2021-08-02
EP3107343B1 (en) 2021-05-05
KR20160120278A (ko) 2016-10-17
CN105981463B (zh) 2019-12-10
EP3107343A1 (en) 2016-12-21
JP6608833B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
KR102247028B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
US10306619B2 (en) Method and apparatus for channel estimation for radio link between a base station and a relay station
CN105981454B (zh) 在支持设备到设备通信的无线通信系统中发送同步信号和同步信道的方法及其装置
CN105141391B (zh) 无线电通信系统中减少小区间干扰的方法和设备
CN106068668B (zh) 在无线通信系统中执行设备到设备通信的方法和装置
CN105981463A (zh) 支持fdr传输的无线接入系统中的资源分配方法和装置
CN104662818B (zh) 用于在无线通信系统中发送和接收下行信号的方法和装置
CN104704754B (zh) 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
CN105978670B (zh) 在无线通信系统中传送用于下行链路传输的ack/nack的方法和装置
CN104604283B (zh) 在无线通信系统中估计信道的方法和设备
CN103988456B (zh) 无线接入系统中测量信道状态信息的方法及设备
CN105210315B (zh) 在无线通信系统中执行测量的方法及其设备
CN104254996B (zh) 无线接入系统中的tti绑定方法及其设备
CN109923828A (zh) 无线通信系统中终端的探测方法和用于所述探测方法的装置
CN104025673B (zh) 用于在无线接入系统中设置下行发射功率的方法及其设备
CN109923817A (zh) 在无线通信系统中在终端和基站之间发送和接收物理上行链路控制信道的方法和支持该方法的装置
EP3122126A1 (en) Method for transmitting and receiving signal in wireless communication system and device therefor
US10516495B2 (en) Method for measuring inter-device interference in wireless communication system supporting FDR transmission, and apparatus therefor
CN109644111A (zh) 用于在无线通信系统中由终端发送和接收pscch和pssch的方法和装置
CN107925496A (zh) 在无线通信系统中接收或发送用于位置确定的参考信号的方法及其设备
WO2017061822A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN108183784A (zh) 接收物理下行链路共享信道信号的方法和用户设备
CN105453463B (zh) 在无线通信系统中从装置对装置终端发送信号的方法和设备
CN105284063A (zh) 用于在支持fdr发送的无线接入系统中发送/接收信号的方法和装置
CN103891181B (zh) 收发信号的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191210

Termination date: 20210216

CF01 Termination of patent right due to non-payment of annual fee