CN105981149B - 量子点阵列和量子点超晶格的制备方法 - Google Patents

量子点阵列和量子点超晶格的制备方法 Download PDF

Info

Publication number
CN105981149B
CN105981149B CN201480074944.1A CN201480074944A CN105981149B CN 105981149 B CN105981149 B CN 105981149B CN 201480074944 A CN201480074944 A CN 201480074944A CN 105981149 B CN105981149 B CN 105981149B
Authority
CN
China
Prior art keywords
quantum dot
substrate surface
silar
pbs
cdse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480074944.1A
Other languages
English (en)
Other versions
CN105981149A (zh
Inventor
S·金格
E·卡诺瓦斯迪亚茨
M·博恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Europe NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Europe NV SA filed Critical Toyota Motor Europe NV SA
Publication of CN105981149A publication Critical patent/CN105981149A/zh
Application granted granted Critical
Publication of CN105981149B publication Critical patent/CN105981149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Abstract

本发明介绍了一种制备量子点阵列的方法,该方法至少包括以下步骤:(a)提供晶体半导体衬底表面;(b)利用连续离子层吸附反应(SILAR)的处理在所述衬底表面上淀积量子点。所述步骤可被重复以构建量子点超晶格结构。

Description

量子点阵列和量子点超晶格的制备方法
技术领域
本发明寻求提供一种制备量子点阵列的新方式,该量子点阵列在优选实施例中可以是堆叠量子点超晶格,并且可用在诸如太阳能电池的光电装置中。
背景技术
术语“量子点”此处指的是其中存在量子限域的半导体材料的纳米尺寸颗粒。最大尺寸根据半导体材料而变化,但是通常低于100nm。量子点的精确尺寸可以使得能够调节半导体带隙,这对于更多传统的太阳能电池和相关装置中的半导体材料体膜提供了增大光电转换效率的潜力。
称为QD固体(QDS)或者QD超晶格(QD-SL)的量子点(QD)的三维有序矩阵在光电应用(包括诸如太阳能电池、LED、热电装置等的装置)中具有潜力。这种结构类型是开发新的第三代光电装置(诸如太阳能电池)的“串联(tandem)”途径的一部分。
迄今QD-SL主要通过诸如分子束外延(MBE)或者金属有机物化学气相淀积(MOCVD)的外延淀积技术生长,这些是要求低真空、高温和纯净的前驱体的技术。固态生长的QD-SL表现出低的缺陷密度,其中QD由体势垒材料完美钝化。另一方面,其处理的特征在于高成本。此外,由于晶格匹配限制,只能生长少数几个势垒材料/QD对的组合。
可替代地,已使用胶态QD的室温处理将QD施加于衬底表面。胶态QD最常是球形的,但是杆状和其他也是可用的。在这个便宜得多的途径中,QD合成不发生在原地(体衬底的顶部上)而是在溶液中。在QD合成以后,通过旋涂或滴落涂布分子钝化的QD的协议(protocol)到衬底上,将QD施加到衬底表面。由于纳米晶体较差的表面钝化,胶态途径遭受高缺陷密度并且易于光降解(通过氧化过程)。
同时,已知连续离子层吸附反应(SILAR)技术用于薄膜制备,如CN102251235或者CN101312218中的示例公开的那样。在这个技术中,衬底被交替地浸泡在正离子前驱体溶液然后负离子前驱体溶液中。此处正离子可以例如从Cu,Zn,Sn和In之中选择,并且淀积的负离子最常是硫族化合物(特别是硫化物和硒化物,碲化物也是可能的候选,但是并不常用)。更一般地,已经报道了,Cds,CdSe,CdO,PbSe,PbS,SnS,ZnS,ZnO和Fe2O3的薄膜已由SILAR技术制备在各种衬底上。
发明内容
本发明的一个目的是,提供一种制备量子点阵列的新方式,该量子点阵列在优选实施例中可以是堆叠量子点超晶格,并且可用在诸如太阳能电池的光电装置中。期望克服分子束外延(MBE)和相关方法在成本方面要求非常高以及在前驱体材料的最小纯度和可能的类型方面受限的缺点。本发明提供了一种使用SILAR(连续离子层吸附反应)法在晶体衬底上湿法室温生长QD的方法,并且还通过在点上生长薄膜(匹配的势垒材料或者未用于衬底的那种)提供QD的无机钝化。可重复此方法以实现用作QD-SL的QD层叠层。对超晶格中QD尺寸的控制可以通过控制QD和势垒材料间隔物的生长淀积速率(例如通过控制浸泡时间和/或前驱体浓度)有利地实现。多个QD叠层可以以允许有源材料拥有强吸收-发射性能为目的来制备,有利于光电应用。
因此,在一个方面,本发明涉及至少包含以下步骤的用于制备量子点阵列的方法:
(a)提供晶体半导体衬底表面;
(b)通过连续离子层吸附反应(SILAR)的处理淀积量子点到所述衬底表面上。
在优选方法实施例中,在进一步的步骤(c)中,量子点通过附加无机壳或膜被钝化,最优选的是该无机壳或膜具有与权利要求1的方法的步骤(a)中使用的(晶体半导体)衬底表面相同的性质。在进一步的优选步骤中,可以有根据上述步骤(b)的量子点淀积处理的重复,将量子点施加到无机钝化层,该无机钝化层优选是与上述方法的步骤(a)中使用的(晶体半导体)衬底表面性质相同。多层结构可通过包括(衬底(=无机钝化层)-QD)重复循环的淀积处理的多次重复来获得。
在另一方面,本发明涉及由上述方法获得的量子点阵列或量子点超晶格结构。
附图说明
图1是示出通过SILAR方法生长AB化合物的示意图。
图2示意性示出了双层叠层中随势垒材料厚度变化的QD的应变诱导成核。
图3示意性示出了在图形化衬底上使用SILAR生长的串联结构的形成。
图4示出了(左上)TiO2裸衬底,(右上)2个循环之后TiO2上成核的PbS QD的原子力显微镜(AFM)图像。
具体实施方式
连续离子层吸附反应(SILAR)法基于触发在诸如水性(或者乙醇的或者任何其他合适的溶液的)饱和离子溶液的溶液中与固体界面的连续反应,如图1中平坦衬底的浸渍所例示的。溶液中的正离子和负离子溶解前驱体将与衬底反应以产生期望的产物。图1是示出通过SILAR方法生长AB化合物的示意图。一次SILAR循环涉及(a)A+离子溶液浸渍;(b)过量A+离子的冲洗去除;(c)B-离子溶液浸渍;(d)过量B-离子的冲洗去除。
利用SILAR的QD层成核遵循与用于生长薄膜的方案类似的方案(只在淀积材料的量的方面不同)。可以通过控制淀积速率(如MBE和MOCVD中所做的那样)来实现衬底表面上的淀积控制,以实现只有非常小的颗粒(量子点)。浸渍时间和/或前驱体浓度的控制提供了控制材料淀积的手段。利用衬底和淀积层之间适当的晶格失配和相对较低的速率,只有点会成核。用于到非晶衬底(例如玻璃)上的淀积的SILAR法将产生多晶层而非QD或者单晶。
作为一个示例性的示例,在硫化铅(PbS)量子点(QD)的淀积中,一个SILAR循环如下:
Pb2+浸渍TiO2→甲醇冲洗→Pb2+(ads)→Se2-浸渍→甲醛
冲洗=PbS(surf)1SILAR循环
硫化铅(PbS)是本发明中优选的量子点材料。
在适当的实施例中,此处给出作为可以用在本发明中的示例方法,下面的方法可以用于QD的SILAR生长:
示例性的方案
以下所列的化学制品按原样使用未经进一步提纯。
获得色层分析级甲醇,99%的铅硝酸盐(Pb(NO3)2)和(Na2S)98%。首先从甲醇中除去溶解氧。将前驱体溶解在没有氧气的甲醇中。SILAR循环前将衬底浸入甲醇30秒。在第一次浸渍的20秒期间,Pb2+从0.02mol/L的甲醇Pb(NO3)2溶液吸附到衬底表面。随后用甲醇冲洗30秒。离子会优先位于由低表面束缚能所定义的特定部位处,与衬底悬挂键形成共价键。任何未成键的离子都被冲洗掉,并且在第二次浸渍在0.02mol/L的硫化钠甲醇溶液期间,S2-将与Pb2+离子反应,促进PbSe的小颗粒(纳米晶体或QD)的形成。
作为实际用于Pb2+淀积的正离子前驱体溶液,通常可以使用Pb2+的有机酸盐,诸如醋酸盐或者其他羧酸盐。典型用于提供硫化物离子的溶液包括硫化(S2-)钠或者硫化(S2-)钾溶液。硫化乙酰胺CH3CSNH2也能用作硫前驱体。任何在像甲醇那样的溶剂中可均匀分散的负离子源也可能适合。可参考本领域内的已知材料和方法,例如如Pathan,Lokhande,Science,2004,27,85-111中所给出的。
除硒化镉(CdSe)以外,本发明中使用SILAR法淀积作为量子点的其他材料可以适当包括族I-VI,II-VI,III-VI,V-VI,VIII-VI二元的硫族化合物材料,以及I-III-VI,II-II-VI,II-III-VI,II-VI-VI和II-V-VI三元硫族化合物和复合材料,例如AgS,Sb2S3,Bl3Se2,CoS和CdS,PbSe,PbS,ZnS,ZnSe等。碲化物也可以被使用。
原则上,任何半导电(晶体的)材料都可以充当本发明的衬底(和势垒材料)。在一个优选实施例中,通过SILAR生长的材料也可用作衬底。利用SILAR生长的优选材料于是就包括与上述的本发明中使用SILAR法淀积作为量子点的优选材料列表中指出的那些材料相同的材料。实际上,在室温下生长整个QD固体(QD和势垒材料)会是有兴趣的。是否可能生长QD到这样的衬底上将取决于晶格匹配限制。
在典型的室温SILAR法中,正离子和负离子前驱体溶液包含在0.001M到0.1M范围内的正离子/负离子浓度,并且衬底暴露于每种溶液的时间在1秒到1分钟之间,冲洗步骤也发生在相同的时间段,具有10秒或者20秒的典型步骤时间。可适当使用10到1000次之间的SILAR循环。
所有SILAR处理可以在室温下有利地实施并且生长不需要外部能量。通过重复这一处理,执行不同的循环,可以实现对QD尺寸的一定程度的控制。但是点将随机分布在衬底表面之上并且其尺寸分布将较宽。SILAR QD会受到生长期间的几个参数(比如循环的次数、浸渍的持续时间、后退火配方等)影响。
在依据本发明的多层结构制备中,第一层的典型特征在于单元区域上点的随机分布以及(取决于生长条件)关于尺寸的某种程度的不均匀性,这在实践中很难避免。但是,对于叠层中的第二层(参见图2),可以通过调节势垒厚度以实现QD尺寸的均匀性提高(只有较大的掩埋点会促进顶部上的新点,并且因此QD尺寸分布变得更窄)。在一个优选的3D阵列中,将有点的垂直堆叠。
为避免用于创建阵列的QD的随机分布问题,也可以使用模板作为起始衬底。这些衬底表面覆盖有表面结构,由光/化学刻蚀或者软光刻技术产生的图形。这个第一模板层将创建有序的QD阵列。在后续的层中,不再需要模板但是颗粒会以具有与上述相似的机构的图形生长。
对于光电应用,一定厚度的有源材料在某些情况下可以是有益的。在本发明的一个优选实施例中,提供了一种制备具有窄QD尺寸分布的量子点超晶格(QD SL)的方法。
为了形成三维QD-SL,在本发明中设想重复如所期望那么多次的上述SILAR处理以产生许多堆叠的QD层。QD-势垒层被适当地生长在下层的QD阵列之上。为了增强对QD尺寸分布的控制,出于下面将要解释的理由,优选的是控制势垒材料厚度。
根据制备堆叠层结构的传统外延方法中遵循的途径,可基于QD应变诱导生长来控制QD的分布。
在本发明的优选方法实施例中,使用(QD的)无机钝化,带有点的分布/阵列的第一层最优选的是覆盖有与衬底相同的材料制成的无机层。
图2示意性示出了双层叠层中随势垒材料厚度变化的QD的应变诱导成核。WL代表“湿润层”。根据衬底和淀积材料之间的不匹配,可以有两种不同制度的点成核。其中之一意味着在点形成之前有薄层的成核(WL),这在本领域内被称为Stranski-Krastanow情形。另一个选项是点直接成核(不需要WL的帮助),这被叫做Volmer-Webber情形。
如图2的顶端部分所示,在低的势垒厚度的情况下,由来自第一层的任何尺寸的QD诱导的应变图形会触发第二层中的QD的生长(宽QD尺寸分布)。如图的中间部分所示,在中等的势垒厚度的情况下,只有来自第一层的最大的点会触发第二层中特定部位上的点的成核(窄QD尺寸分布)。如图的底端部分所示,在高的势垒厚度的情况下,第一层中点的应变图形不会影响第二层中的点的成核(宽QD尺寸分布)。
因此,对于特定范围的势垒厚度(图2中的中等的势垒厚度),可以实现QD的垂直自组装,也可以提升第二层和后续层的QD尺寸的均匀性。垂直自组装也将用于电耦合QD层叠层,这将有利于提取(例如在太阳能电池中)或者注入(例如LED)电荷到晶格中。
在本发明中,在制备三维叠层中,潜在候选势垒层的选择(设想与衬底材料性质相同)取决于QD/势垒的晶格匹配。预期QD/势垒类型II能带排列(alignment)(其中两种材料中有能带偏移,因此一种电荷载流子被局部化在一种材料中而另一种电荷载流子被局部化在另一种材料中)有利于其中载流子需要分开的PV应用,而类型I(其中两种电荷载流子都被局部化到核心)能带排列有利于发光应用(LED和QD激光器)。类型I例如:CdSe/ZnS,PbS/ZnS,PbS/CdS,类型II:CdTe/CdSe,CdSe/CdTe和ZnTe/CdS,CdS/TiO2,SnO2,PbS/TiO2,ZnO.QD/势垒系统。
尽管对每种可以使用的可能的材料类型都可以有尺寸(例如QD尺寸)的优化,但是设想10-100纳米的层宽度通常适合用于促进第二层的QD中的排序。如果装置在叠层中只需要有一个QD层,则较高的厚度可以是合适的。
此外,势垒厚度应该使得诱导QD材料的SILAR的第二个淀积阶段中的应变。厚度的精确的优选值将取决于QD材料类型和晶格性质。然而,厚度将被适当地调整直到它诱导适于在下一个SILAR循环中在优选位置处生长QD的应变。
在本发明的实践中,可以设想结合任何已经在上文中分别陈述并且指出在本发明的实践中是有益的、优选的、恰当的或者一般可适用的特征或者实施例。本说明书应被认为包括此处描述的特征或者实施例的所有这样的组合,除非这样的组合在本文中被称为是互相排斥的或者在上下文中被明确理解为互相排斥的。
实验部分-示例
下面的实验部分用实验方法例示出本发明的实践,但是不认为本发明的范围仅限于下面的特定示例。
对于SILAR硫化铅量子点合成,化学制品按原样使用未经进一步提纯。从VWR获得色层分析级甲醇(CH3OH)。硝酸铅(Pb(NO3)2)99%从Sigma-Aldrich获得。硫化钠(Na2S)98%也从Sigma-Aldrich获得。首先,从总共300ml的甲醇中去除溶解的气态氧。两个250mL圆底烧瓶各装有150mL色层分析级甲醇并且向它们鼓入氩气流一小时。为此,每个烧瓶都配备了一个橡胶隔片,一根长针刺穿该橡胶隔片将其末端浸入溶液中。长针与硅胶管相连连接到Schlenk线的氩气部分。作为吹出氩气的排出装置,用一根较短的针刺穿隔片,将它插到仅够穿过隔片但不到达液体表面。在一个100mL的螺纹盖瓶中,用45分钟的声波降解法将405mg的硝酸铅溶解在60mL的无氧甲醇中以产生透明溶液。在第二个100mL的螺纹盖瓶中用45分钟的声波降解法将95mg的无水硫化钠溶解在60mL的甲醇中以产生不透明的白色溶液。剩余的180mL无氧甲醇被分成3个60mL的部分装在标记为“甲醇I”,“甲醇II”和“甲醇III”的100mL螺纹盖瓶中。全部5个瓶子都被转移到氮气氛的手套操作箱中。在惰性气氛下,在执行SILAR循环前将衬底浸入到60mL甲醇III中30秒。一次循环由浸入0.02mol/L的甲醇Pb(NO3)2溶液20s,浸入甲醇I冲洗槽30s,浸入0.02mol/L的甲醇Na2S溶液20s,浸入甲醇II冲洗槽30s组成。因为随着SILAR循环次数的增长冲洗槽I和II可能被污染,在整个SILAR处理后执行最终的浸入60mL的甲醇III 50s。在SILAR处理期间的浸入时间的总结在下面的表格1中可见。允许样品在惰性气氛中干燥。对于分批处理多个样品,使用另外的60mL无氧甲醇作为SILAR循环之前的湿润槽取代使用最终的冲洗槽甲醇III。
表1:具有n个循环的SILAR处理的浸入时间
步骤 浸入次数 浸入时间/s
湿润 1 30
Pb<sup>2+</sup> n 20
冲洗I n 30
S<sup>2-</sup> n 20
冲洗II n 20
冲洗III 1 50
如图4中示出的:
(左上)TiO2裸衬底的AFM(原子力显微镜);
(右上)2个循环之后TiO2上成核的PbS QD的AFM——高度分布峰值在~2nm处。(底部)

Claims (6)

1.一种用于制备量子点阵列多层叠层的方法,所述方法至少包括以下步骤:
(a)提供晶体半导体衬底表面;
(b)利用连续离子层吸附反应(SILAR)的处理在所述衬底表面上淀积量子点,
其中,在另一步骤(c)中,通过附加无机壳或膜使所述量子点钝化,并且
其中,由此获得的无机钝化层延伸经过步骤(b)中获得的所述量子点阵列的大部分或者全部,
所述方法还包括重复根据步骤(b)的量子点淀积处理,将所述量子点施加于所述无机钝化层,
其中形成于所述衬底表面上的量子点阵列中的量子点分布通过应变诱导生长来控制随后形成的一个或多个量子点层中的量子点分布,并且
所述无机钝化层的厚度为10-100纳米。
2.根据权利要求1所述的方法,其中,所述衬底表面是二氧化钛(TiO2)。
3.根据权利要求1或2所述的方法,其中,淀积的所述量子点包含一种或更多种从由硫化铅(PbS)、硒化镉(CdSe)组成的组中选取的材料。
4.根据权利要求1或2所述的方法,其中,在步骤(c)中,通过附加如下的无机壳或膜使所述量子点钝化,所述无机壳或膜具有与权利要求1的方法的步骤(a)中使用的所述晶体半导体衬底表面相同的性质。
5.根据权利要求1所述的方法,其中,所述无机钝化层包括势垒材料,并且所述量子点的材料与所述势垒材料,表示为量子点的材料/势垒材料,选自如下材料构成的组中:CdSe/ZnS,PbS/ZnS,PbS/CdS,CdTe/CdSe,CdSe/CdTe,ZnTe/CdS,SnO2或PbS/TiO2,和CdS/TiO2
6.一种利用权利要求1到5中任意一项所述的方法得到的量子点阵列或者量子点超晶格结构。
CN201480074944.1A 2014-02-06 2014-02-06 量子点阵列和量子点超晶格的制备方法 Active CN105981149B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/052362 WO2015117659A1 (en) 2014-02-06 2014-02-06 Process for preparing quantum dot array and quantum dot superlattice

Publications (2)

Publication Number Publication Date
CN105981149A CN105981149A (zh) 2016-09-28
CN105981149B true CN105981149B (zh) 2019-11-29

Family

ID=50064630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480074944.1A Active CN105981149B (zh) 2014-02-06 2014-02-06 量子点阵列和量子点超晶格的制备方法

Country Status (4)

Country Link
US (1) US9917218B2 (zh)
JP (1) JP6463773B2 (zh)
CN (1) CN105981149B (zh)
WO (1) WO2015117659A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384214B (zh) * 2018-12-28 2021-07-23 Tcl科技集团股份有限公司 一种量子阱结构的制备方法和量子阱结构
CN110702744B (zh) * 2019-10-17 2020-06-19 山东交通学院 一种专用于船体尾气的处理装置与感测系统
CN112811473B (zh) * 2021-01-06 2022-09-30 安徽师范大学 纳米手环三氧化二铁/石墨烯量子点/二氧化锡核壳结构复合材料及其制备方法和电池应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312218A (zh) * 2008-04-18 2008-11-26 天津大学 连续离子层吸附反应法制备铜铟硒化合物薄膜的方法
TW201133831A (en) * 2010-03-26 2011-10-01 Fujifilm Corp Method for producing nano particles, method for producing quantum dot, photoelectric conversion device and solar cell
CN102251235A (zh) * 2011-07-07 2011-11-23 中南大学 一种铜锌锡硫薄膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172534B1 (ko) * 2010-02-18 2012-08-10 한국화학연구원 전고체상 이종 접합 태양전지
TWI408834B (zh) * 2010-04-02 2013-09-11 Miin Jang Chen 基於奈米晶粒之光電元件及其製造方法
US8609553B2 (en) * 2011-02-07 2013-12-17 Micron Technology, Inc. Methods of forming rutile titanium dioxide and associated methods of forming semiconductor structures
US20130042906A1 (en) * 2011-08-19 2013-02-21 Ming-Way LEE Quantum-dot sensitized solar cell
WO2013126548A2 (en) * 2012-02-21 2013-08-29 Massachusetts Institute Of Technology Spectrometer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312218A (zh) * 2008-04-18 2008-11-26 天津大学 连续离子层吸附反应法制备铜铟硒化合物薄膜的方法
TW201133831A (en) * 2010-03-26 2011-10-01 Fujifilm Corp Method for producing nano particles, method for producing quantum dot, photoelectric conversion device and solar cell
CN102251235A (zh) * 2011-07-07 2011-11-23 中南大学 一种铜锌锡硫薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells》;Sojiro Hachiya,et al.;《J. Appl. Phys.》;20120525;第111卷;104315-1-104315-4 *

Also Published As

Publication number Publication date
CN105981149A (zh) 2016-09-28
WO2015117659A1 (en) 2015-08-13
US9917218B2 (en) 2018-03-13
JP6463773B2 (ja) 2019-02-06
JP2017515294A (ja) 2017-06-08
US20170162733A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
TWI595679B (zh) 太陽能電池
US20120000525A1 (en) Nanostructured solar cells
EP2435248A2 (en) Thin films for photovoltaic cells
Lepetit Influence of KF post deposition treatment on the polycrystalline Cu (In, Ga) Se2/CdS heterojunction formation for photovoltaic application
CN105981149B (zh) 量子点阵列和量子点超晶格的制备方法
JP5421890B2 (ja) 光電変換素子の製造方法
CN105006426B (zh) 生长在GaAs衬底上的InAs量子点及其制备方法
CN103119674A (zh) 光伏电池及其制造方法
JPWO2008120306A1 (ja) Cis系薄膜太陽電池デバイスの製造方法
Yang et al. Nondestructive interface construction for CdS-buffered ZnO nanorod/Cu 2 O composite structure solar cells
CN107078180A (zh) 一种光伏电池及其制造方法
US9806209B2 (en) Passivated iron disulfide surface encapsulated in zinc sulfide
Kanuru et al. Surface morphological studies of solar absorber layer Cu2ZnSnS4 (CZTS) thin films by non-vacuum deposition methods
Armstrong et al. Three-dimensional structures based on ZnO/CdS and ZnO/(Zn, Mg) O core–shell nanowires embedded in Cu (In, Ga) S2 for solar cell applications
CN107527962B (zh) 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池
TW201244120A (en) The manufacturing method of photoelectric conversion element
Armstrong et al. ALD processed MgZnO buffer layers for Cu (In, Ga) S 2 solar cells
Son et al. Control of morphology and orientation of electrochemically grown ZnO nanorods
Laghfour et al. Thickness effect on Cu 2 ZnSnS 4 properties using non-toxic and low-cost process
Bu Hybrid p-type copper sulphide coated zinc oxide nanowire heterojunction device
Darbeigi Nameghi et al. Effect ofsulfur source concentration and deposition time on structure, morphology and optical properties ofZnS nanocrystalline thin films
KR20150032438A (ko) 화학 수조 증착법을 이용한 czts 기반 박막 제조방법
Keene Developing next generation quantum dot solids for photovoltaics
Alzahrani Molybdenum Disulfide Incorporated Electron Transport Layer for Bulk Heterojunction Polymer Solar Cells
WO2015046876A2 (ko) 3차원 p-n접합구조 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200413

Address after: Aichi Prefecture, Japan

Patentee after: Toyota Motor Corp.

Address before: Brussels

Patentee before: TOYOTA MOTOR EUROPE NV/SA

TR01 Transfer of patent right