CN105968718A - Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material - Google Patents
Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material Download PDFInfo
- Publication number
- CN105968718A CN105968718A CN201610339876.8A CN201610339876A CN105968718A CN 105968718 A CN105968718 A CN 105968718A CN 201610339876 A CN201610339876 A CN 201610339876A CN 105968718 A CN105968718 A CN 105968718A
- Authority
- CN
- China
- Prior art keywords
- graphene
- carbon fiber
- epoxy resin
- preparation
- graphite alkene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 129
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 80
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 71
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 71
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 61
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 61
- 239000002131 composite material Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 31
- 239000011347 resin Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims description 41
- 229910002804 graphite Inorganic materials 0.000 claims description 35
- 239000010439 graphite Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 24
- 229920001971 elastomer Polymers 0.000 claims description 21
- 239000005060 rubber Substances 0.000 claims description 21
- 239000007787 solid Substances 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 18
- 229910021641 deionized water Inorganic materials 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- -1 graphite alkene Chemical class 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 12
- 239000003292 glue Substances 0.000 claims description 12
- 239000004593 Epoxy Substances 0.000 claims description 11
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 10
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 claims description 9
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000012065 filter cake Substances 0.000 claims description 6
- 239000008240 homogeneous mixture Substances 0.000 claims description 6
- 239000005457 ice water Substances 0.000 claims description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Inorganic materials [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 239000007822 coupling agent Substances 0.000 claims description 5
- 238000001291 vacuum drying Methods 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 claims 6
- 229910052799 carbon Inorganic materials 0.000 claims 3
- 238000007711 solidification Methods 0.000 claims 3
- 230000008023 solidification Effects 0.000 claims 3
- 238000005470 impregnation Methods 0.000 claims 2
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 claims 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 239000010426 asphalt Substances 0.000 claims 1
- 239000012295 chemical reaction liquid Substances 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 238000002386 leaching Methods 0.000 claims 1
- 125000006533 methyl amino methyl group Chemical group [H]N(C([H])([H])[H])C([H])([H])* 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000003892 spreading Methods 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 23
- 239000000805 composite resin Substances 0.000 abstract description 5
- 238000005452 bending Methods 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 239000011800 void material Substances 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract 1
- 230000001988 toxicity Effects 0.000 abstract 1
- 231100000419 toxicity Toxicity 0.000 abstract 1
- 238000007598 dipping method Methods 0.000 description 38
- 239000000243 solution Substances 0.000 description 33
- 238000005119 centrifugation Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 11
- 229920002635 polyurethane Polymers 0.000 description 9
- 239000004814 polyurethane Substances 0.000 description 9
- 230000002787 reinforcement Effects 0.000 description 7
- 238000007790 scraping Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000012286 potassium permanganate Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000007872 degassing Methods 0.000 description 5
- 238000002525 ultrasonication Methods 0.000 description 5
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012802 nanoclay Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
一种碳纤维/石墨烯/环氧树脂预浸料及碳纤维复合材料的制备方法,属于碳纤维复合材料制备领域。本发明通过对采用改进Hummers法制备得到的石墨烯进行表面改性,在石墨烯表面或者边缘接枝‑NH2,提高其在树脂基体中的分散性,同时能够有效增加微米级碳纤维与环氧树脂基体间的界面间粘附力,减少空隙缺陷的存在,进而提高环氧树脂基复合材料的力学性能。本发明提供的碳纤维/石墨烯/环氧树脂复合材料在石墨烯的添加量为0.5wt%时力学性能最优,弯曲强度达到1525.4MPa,层间剪切强度达到91.14MPa,相比碳纤维增强环氧树脂复合材料分别提高了15.41%和14.14%。本发明具有工艺简单、溶剂毒性小、适合工业化生产等特点。A carbon fiber/graphene/epoxy resin prepreg and a method for preparing a carbon fiber composite material belong to the field of carbon fiber composite material preparation. The present invention modifies the surface of the graphene prepared by the improved Hummers method, grafts ‑NH 2 on the surface or edge of the graphene, improves its dispersibility in the resin matrix, and can effectively increase the concentration of micron carbon fiber and epoxy resin at the same time. The interfacial adhesion between the resin matrix can reduce the existence of void defects, thereby improving the mechanical properties of epoxy resin matrix composites. The carbon fiber/graphene/epoxy resin composite material provided by the present invention has the best mechanical properties when the addition of graphene is 0.5wt%, the bending strength reaches 1525.4MPa, and the interlaminar shear strength reaches 91.14MPa, compared with the carbon fiber reinforced ring Oxygen resin composites improved by 15.41% and 14.14%, respectively. The invention has the characteristics of simple process, low solvent toxicity, suitability for industrialized production and the like.
Description
技术领域technical field
本发明涉及一种复合材料的制备方法,具体讲涉及一种单向碳纤维/石墨烯/环氧树脂预浸料及碳纤维复合材料的制备方法。The invention relates to a method for preparing a composite material, in particular to a method for preparing a unidirectional carbon fiber/graphene/epoxy resin prepreg and a carbon fiber composite material.
背景技术Background technique
碳纤维增强树脂复合材料(CFRP)具有优异的比强度、比刚度、耐腐蚀、耐疲劳及高的使用温度等性能,被广泛用于航空航天、体育器材及国防军工工业。碳纤维增强树脂复合材料中基体应用最多的是环氧树脂,环氧树脂具有良好的黏结性、耐热性、耐化学药品腐蚀性、高强度和加工方便等一系列优点,但材料的断裂延伸率较低、脆性较大,其固化物与纤维的结合性也较差,严重影响了其在航空航天中的应用。Carbon fiber reinforced resin composites (CFRP) have excellent specific strength, specific stiffness, corrosion resistance, fatigue resistance and high service temperature, and are widely used in aerospace, sports equipment and national defense industries. Epoxy resin is the most widely used matrix in carbon fiber reinforced resin composite materials. Epoxy resin has a series of advantages such as good adhesion, heat resistance, chemical corrosion resistance, high strength and convenient processing, but the elongation at break of the material It is relatively low and brittle, and the combination of its cured product and fibers is also poor, which seriously affects its application in aerospace.
预浸料是用于制造树脂基复合材料的浸渍树脂体系的纤维或其织物经烘干或预聚的中间体,是制造复合材料结构件的主要中间材料。预浸料的原材料包括增强体和基体,主要的辅助材料是离型纸和压花聚乙烯薄膜等,预浸料常用的增强体主要是碳纤维、芳纶、玻璃纤维以及它们的织物,预浸料用树脂基体包括热固性树脂和热塑性树脂两大类。目前碳纤维的实际使用大部分是通过碳纤维预浸料的方式实现,为了充分发挥碳纤维的超高强度性能,基本上都需要将碳纤维做成只有径向分布、没有纬向分布的单向纤维的预浸料。预浸料品质的优劣直接影响复合材料的整体性能,通过优化加工工艺及加入不同种类的增强体可以提升预浸料的性能。Prepreg is used to manufacture resin-based composite materials impregnated resin system fibers or their fabrics after drying or pre-polymerized intermediates, and is the main intermediate material for manufacturing composite structural parts. The raw materials of prepreg include reinforcement and matrix. The main auxiliary materials are release paper and embossed polyethylene film, etc. The reinforcement commonly used in prepreg is mainly carbon fiber, aramid fiber, glass fiber and their fabrics. The resin matrix for materials includes two categories: thermosetting resins and thermoplastic resins. At present, most of the actual use of carbon fiber is realized by the way of carbon fiber prepreg. In order to give full play to the ultra-high strength performance of carbon fiber, it is basically necessary to make carbon fiber into a prepreg of unidirectional fiber with only radial distribution and no weft distribution. Dipping material. The quality of the prepreg directly affects the overall performance of the composite material. The performance of the prepreg can be improved by optimizing the processing technology and adding different types of reinforcements.
除了对碳纤维本身进行表面改性以外,多尺度增强是一种较常用的手段,即在碳纤维复合材料中加入一种或多种其它纳米结构材料,如气相二氧化硅、纳米粘土、碳纳米管、石墨烯等。石墨烯是由sp2杂化碳原子堆积形成的具有蜂窝状晶格结构的单层碳材料,由于其具有优异的高导电性、高强度、超轻薄等特性,成为聚合物复合材料中最有前景的增强材料,特别是用于增韧增强环氧树脂复合材料。橡胶加入环氧树脂可以使体系粘度增大,改善其所制备复合材料的抗冲击性,达到增韧的效果。In addition to surface modification of carbon fiber itself, multi-scale reinforcement is a more commonly used method, that is, adding one or more other nanostructure materials to carbon fiber composites, such as fumed silica, nanoclay, carbon nanotubes, etc. , graphene, etc. Graphene is a single-layer carbon material with a honeycomb lattice structure formed by the accumulation of sp 2 hybridized carbon atoms. Promising reinforcement materials, especially for toughening reinforced epoxy composites. The addition of epoxy resin to rubber can increase the viscosity of the system, improve the impact resistance of the prepared composite material, and achieve the effect of toughening.
传统的复合材料中,石墨烯作为一种复合材料的增强体存在在聚合物基体中的分散性较差且与聚合物基体的界面结合作用较差的缺点,而碳纤维作为增强体其表面活性官能团少,与基体树脂浸润性间粘结性差且有不同程度的缺陷,从而导致石墨烯或者碳纤维增强树脂基复合材料界面粘合强度低、机械性能差,另外,传统的单一维度增强体的环氧树脂复合材料有时候会在某些性能提高的同时带动其他性能的下降。In traditional composite materials, graphene, as a reinforcement of composite materials, has the disadvantages of poor dispersion in the polymer matrix and poor interfacial bonding with the polymer matrix, while carbon fiber, as a reinforcement, has the disadvantages of surface active functional groups. Less, poor bonding with matrix resin wettability and different degrees of defects, resulting in low interface bonding strength and poor mechanical properties of graphene or carbon fiber reinforced resin matrix composites. In addition, the traditional single-dimensional reinforced epoxy Resin composites sometimes improve some properties while degrading others.
发明内容Contents of the invention
本发明提供了一种碳纤维/石墨烯/环氧树脂预浸料及其碳纤维复合材料的制备方法,可以有效解决石墨烯和碳纤维在复合材料中的应用缺陷。由氧化石墨-热膨胀还原-超声剥离制备的石墨烯往往在其基面和边缘含有一些羟基功能基团,而这些基团能够作为与硅烷偶联剂进行反应的活性位点,进而在石墨烯表面接枝氨基,通过氨改性的石墨烯能够明显的提高石墨烯与环氧树脂基体间的界面粘附能力,改善石墨烯在树脂基体中的分散性,石墨烯和碳纤维都是碳材料,两者有很高的相容性,将纳米级的石墨烯和微米级碳纤维相结合,可以显著提升树脂基复合材料的性能。The invention provides a carbon fiber/graphene/epoxy resin prepreg and a preparation method of the carbon fiber composite material, which can effectively solve the application defects of graphene and carbon fiber in the composite material. Graphene prepared by graphite oxide-thermal expansion reduction-ultrasonic exfoliation often contains some hydroxyl functional groups on its basal plane and edge, and these groups can be used as active sites to react with silane coupling agents, and then on the surface of graphene. Grafting amino groups, graphene modified by ammonia can significantly improve the interfacial adhesion between graphene and epoxy resin matrix, and improve the dispersion of graphene in resin matrix. Both graphene and carbon fiber are carbon materials. The latter has high compatibility, and the combination of nano-scale graphene and micron-scale carbon fiber can significantly improve the performance of resin-based composite materials.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种碳纤维/石墨烯/环氧树脂预浸料的制备方法,依次包括以下步骤:A kind of preparation method of carbon fiber/graphene/epoxy resin prepreg comprises the following steps successively:
(1)石墨烯的制备(1) Preparation of graphene
优选:称取NaNO3固体溶于98%的浓硫酸中,将混合液置于冰水浴中同时搅拌使NaNO3固体充分溶解;称量石墨加入到上述的混合液中,搅拌均匀;随后,缓慢加入过量高锰酸钾进行氧化,在加入过程中控制反应温度不超过20℃,搅拌均匀,将温度调到30-40℃继续搅拌反应;然后在混合液中加入去离子水稀释并滴加H2O2,使溶液变为亮黄色;过滤,在过滤的同时用质量浓度5%的盐酸溶液洗涤;将过滤后得到的滤饼用去离子水稀释,再进行超声和离心处理;在离心后得到的上层清液中加入盐酸溶液,充分搅拌后再次离心;将离心后得到的下层粘性固体烘干,得到氧化石墨样品;取所得氧化石墨,快速放入到预热至1050℃的马弗炉中保持30s得到膨胀石墨烯;取膨胀石墨烯加入无水乙醇中,超声剥离不高于15h,真空干燥得到石墨烯;Preferably: weigh the NaNO3 solid and dissolve it in 98% concentrated sulfuric acid , place the mixed solution in an ice-water bath while stirring to fully dissolve the NaNO3 solid ; weigh graphite and add it to the above mixed solution, and stir evenly; then, slowly Add excess potassium permanganate for oxidation, control the reaction temperature not to exceed 20°C during the addition process, stir evenly, adjust the temperature to 30-40°C and continue to stir the reaction; then add deionized water to the mixture to dilute and add H 2 O 2 to turn the solution into bright yellow; filter and wash with 5% hydrochloric acid solution while filtering; dilute the filter cake obtained after filtration with deionized water, and then perform ultrasonic and centrifugation; after centrifugation Add hydrochloric acid solution to the obtained supernatant, stir well and centrifuge again; dry the viscous solid in the lower layer obtained after centrifugation to obtain a graphite oxide sample; take the obtained graphite oxide and quickly put it into a muffle furnace preheated to 1050°C keep in the medium for 30s to obtain expanded graphene; take the expanded graphene and add it to absolute ethanol, ultrasonically peel it for no more than 15h, and vacuum-dry to obtain graphene;
(2)将石墨烯和N,N'-二环己基碳酰亚胺(DCC)分散在氨基硅烷偶联剂溶液中,将混合液超声1~3小时,将黑色的均匀混合物加热至60~80℃,搅拌12~20小时,然后离心分离并用去离子水清洗,将所得物置于真空烘箱中干燥,得到氨改性石墨烯;(2) Disperse graphene and N,N'-dicyclohexylcarboimide (DCC) in the aminosilane coupling agent solution, ultrasonicate the mixture for 1-3 hours, and heat the black homogeneous mixture to 60- Stir at 80°C for 12 to 20 hours, then centrifuge and wash with deionized water, and dry the resultant in a vacuum oven to obtain ammonia-modified graphene;
(3)将步骤(2)中所得的氨改性石墨烯加入到环氧树脂、聚氨酯改性液体橡胶和固化剂组合物体系中,机械搅拌并超声反应4~8h,加入促进剂(DMP-30),并继续超声反应1~2h;然后,将反应液置于真空烘箱中脱气泡(如在50℃的真空烘箱中脱气泡1~2h);得到石墨烯/环氧树脂浆液;(3) Add the ammonia-modified graphene obtained in step (2) to epoxy resin, polyurethane modified liquid rubber and curing agent composition system, mechanically stir and ultrasonically react for 4-8h, add accelerator (DMP- 30), and continue the ultrasonic reaction for 1 to 2 hours; then, place the reaction solution in a vacuum oven for degassing (such as degassing for 1 to 2 hours in a vacuum oven at 50°C); obtain a graphene/epoxy resin slurry;
(4)将上述得到的石墨烯/环氧树脂浆液倒入浸胶槽中,并在浸胶槽中放置有超声波发生器,然后将碳纤维丝束浸入浸胶槽中,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,进行反复缠绕,优选共计反复缠绕2~4层,在100~120℃条件下干燥1~4h,得到单向碳纤维/石墨烯/环氧树脂预浸料。(4) The graphene/epoxy resin slurry obtained above is poured into the dipping tank, and an ultrasonic generator is placed in the dipping tank, and then the carbon fiber tow is immersed in the dipping tank, and the tow after the dipping Use the scraping roller to remove the excess resin glue, and the tow after dipping will be wound by winding through the wire discharge machine, and then wound repeatedly, preferably with 2 to 4 layers of repeated winding, and dried at 100 to 120°C for 1 ~4h to obtain unidirectional carbon fiber/graphene/epoxy resin prepreg.
将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,冷却至室温,得到碳纤维复合材料。The prepreg is pressed and solidified by a flat-plate hot press to prepare a laminate, which is post-cured in an oven and cooled to room temperature to obtain a carbon fiber composite material.
优选的,上述步骤(1)中所述石墨为天然鳞片石墨,石墨烯为单层或多层石墨烯。Preferably, the graphite described in the above step (1) is natural flake graphite, and the graphene is single-layer or multi-layer graphene.
优选的,上述步骤(2)中所述的氨基硅烷偶联剂为3-氨丙基三乙氧基硅烷,石墨烯在3-氨丙基三乙氧基硅烷中的分散浓度为0.5~2mg/ml。Preferably, the aminosilane coupling agent described in the above step (2) is 3-aminopropyltriethoxysilane, and the dispersion concentration of graphene in 3-aminopropyltriethoxysilane is 0.5-2mg /ml.
优选的,上述步骤(2)中所述的石墨烯和脱水剂N,N'-二环己基碳酰亚胺(DCC)的质量比为10:3~5。Preferably, the mass ratio of graphene and dehydrating agent N,N'-dicyclohexylcarboimide (DCC) in the above step (2) is 10:3-5.
优选的,上述步骤(3)中所述的环氧树脂组合物组分包括环氧树脂、聚氨酯改性液体橡胶和固化剂,固化剂为二氨基二苯甲烷或者甲基四氢苯酐,促进剂为2,4,6-三(二甲胺基甲基)苯酚。Preferably, the epoxy resin composition component described in above-mentioned step (3) comprises epoxy resin, polyurethane modified liquid rubber and curing agent, and curing agent is diaminodiphenylmethane or methyltetrahydrophthalic anhydride, accelerator For 2,4,6-tris(dimethylaminomethyl)phenol.
优选的,上述步骤(3)中所述的组合物体系中各组分质量比例环氧树脂:聚氨酯改性液体橡胶:固化剂二氨基二苯甲烷为100:5~15:25~40,或环氧树脂:聚氨酯改性液体橡胶:固化剂甲基四氢苯酐为100:5~15:60~70,每100份的环氧树脂中添加促进剂的量为1ml。Preferably, the mass ratio of each component in the composition system described in the above step (3) is 100:5~15:25~40, or Epoxy resin: polyurethane modified liquid rubber: the ratio of curing agent methyl tetrahydrophthalic anhydride is 100:5-15:60-70, and the amount of accelerator added per 100 parts of epoxy resin is 1ml.
优选的,上述步骤(3)中所述的氨改性石墨烯的质量为环氧树脂质量的0.05~1%。Preferably, the mass of the ammonia-modified graphene described in the above step (3) is 0.05-1% of the mass of the epoxy resin.
上述环氧树脂优选为环氧树脂E51。The above-mentioned epoxy resin is preferably epoxy resin E51.
优选的,所述的复合材料固化过程为90℃下固化1~2小时,然后130℃下固化2~4小时,最后150℃下固化2~4小时。Preferably, the curing process of the composite material is curing at 90°C for 1-2 hours, then curing at 130°C for 2-4 hours, and finally curing at 150°C for 2-4 hours.
一种碳纤维/石墨烯/环氧树脂预浸料为单向预浸料,由碳纤维丝束浸胶后通过排丝机缠绕排丝获得。A carbon fiber/graphene/epoxy resin prepreg is a unidirectional prepreg, which is obtained by winding and arranging wires through a wire arranging machine after impregnating carbon fiber tow.
与现有技术相比,本发明提供的技术方案具有以下优异效果:Compared with the prior art, the technical solution provided by the invention has the following excellent effects:
1、本发明提供的技术方案采用了纳米级尺度的氨改性石墨烯改善了石墨烯易于团聚的弊端,通过氨基与树脂基体之间的化学键结合,提高了石墨烯在树脂基体中的分散性,并且与基体间有较好的界面相互作用。在碳纤维/石墨烯/环氧树脂复合材料中,适量的氨改性石墨烯不仅能够在纤维与基体间起到很好地侨联作用,减少了空隙缺陷的产生,同时其良好地分散性有助于外加载荷的均匀传递。1. The technical solution provided by the present invention adopts the ammonia-modified graphene of nanometer scale to improve the disadvantages of easy agglomeration of graphene, and improves the dispersion of graphene in the resin matrix through the chemical bond between the amino group and the resin matrix , and have better interfacial interaction with the matrix. In carbon fiber/graphene/epoxy resin composites, an appropriate amount of ammonia-modified graphene can not only play a good role in cross-linking between the fiber and the matrix, but also reduce the generation of void defects, and its good dispersion can help Uniform transfer of applied loads.
2、树脂基体加入氨改性石墨烯后其强度有大幅的提升,从而推迟了材料在外加载荷作用下裂纹的产生。同时,碳纤维与树脂基体间的强的粘结作用,阻止了裂纹的进一步发展。氨改性石墨烯显著地提高了碳纤维复合材料的力学性能。2. The strength of the resin matrix is greatly improved after adding ammonia-modified graphene, which delays the generation of cracks in the material under the action of external load. At the same time, the strong bonding between carbon fiber and resin matrix prevents the further development of cracks. Ammonia-modified graphene significantly improves the mechanical properties of carbon fiber composites.
3、工艺简单,对环境无污染,适合工业化生产。3. The process is simple, has no pollution to the environment, and is suitable for industrial production.
4、本发明制备的碳纤维/石墨烯/环氧树脂复合材料在石墨烯的添加量为0.5wt%时力学性能最优,弯曲强度达到1525.4MPa,层间剪切强度达到91.14MPa,相比碳纤维增强环氧树脂复合材料分别提高了15.41%和14.14%。4. The carbon fiber/graphene/epoxy resin composite material prepared by the present invention has the best mechanical properties when the addition of graphene is 0.5wt%, the bending strength reaches 1525.4MPa, and the interlaminar shear strength reaches 91.14MPa, compared with carbon fiber Reinforced epoxy resin composites improved by 15.41% and 14.14%, respectively.
具体实施方式detailed description
下面结合实施例对本发明作进一步的详细说明,但本发明并不限于以下实施例。以下实施例一般每100ml浓硫酸对应1.5gNaNO3固体、1.5g石墨、9g高锰酸钾,用量也可进行调整。The present invention will be described in further detail below in conjunction with the examples, but the present invention is not limited to the following examples. The following examples generally correspond to 1.5g NaNO 3 solid, 1.5g graphite, and 9g potassium permanganate per 100ml concentrated sulfuric acid, and the consumption can also be adjusted.
实施例1Example 1
称取NaNO3固体溶于98%的浓硫酸中,将混合液置于冰水浴中同时搅拌使NaNO3固体充分溶解;称量少量石墨加入到上述的混合液中,搅拌均匀;随后,缓慢加入过量高锰酸钾进行氧化,在加入过程中控制反应温度不超过20℃,搅拌均匀,将温度调到30℃继续搅拌反应;然后在混合液中加入去离子水稀释并滴加H2O2,使溶液变为亮黄色;过滤,在过滤的同时用质量浓度5%的盐酸溶液洗涤;将过滤后得到的滤饼用去离子水稀释,再进行超声和离心处理;在离心后得到的上层清液中加入盐酸溶液,充分搅拌后再次离心;将离心后得到的下层粘性固体烘干,得到氧化石墨样品;取所得氧化石墨,快速放入到预热至1050℃的马弗炉中保持30s得到膨胀石墨烯;取一定量膨胀石墨烯加入无水乙醇中,真空干燥得到石墨烯。Weigh the NaNO 3 solid and dissolve it in 98% concentrated sulfuric acid, place the mixed solution in an ice-water bath while stirring to fully dissolve the NaNO 3 solid; weigh a small amount of graphite and add it to the above mixed solution, and stir evenly; then, slowly add Excess potassium permanganate is oxidized. During the addition process, control the reaction temperature not to exceed 20°C, stir evenly, adjust the temperature to 30°C and continue to stir the reaction; then add deionized water to the mixture to dilute and add H 2 O 2 dropwise , to make the solution turn bright yellow; filter and wash with 5% hydrochloric acid solution while filtering; dilute the filter cake obtained after filtration with deionized water, and then perform ultrasonic and centrifugation; the upper layer obtained after centrifugation Add hydrochloric acid solution to the clear liquid, stir well and centrifuge again; dry the viscous solid in the lower layer obtained after centrifugation to obtain a graphite oxide sample; take the obtained graphite oxide and quickly put it into a muffle furnace preheated to 1050°C for 30s Obtaining expanded graphene; adding a certain amount of expanded graphene to absolute ethanol, and vacuum drying to obtain graphene.
将石墨烯和N,N'-二环己基碳酰亚胺(DCC)分散在氨基硅烷偶联剂3-氨丙基三乙氧基硅烷溶液中,石墨烯在3-氨丙基三乙氧基硅烷中的分散浓度为0.5mg/ml,石墨烯和N,N'-二环己基碳酰亚胺(DCC)的质量比为10:3。将混合液超声1小时,将黑色的均匀混合物加热至60℃,搅拌12小时,然后离心分离并用去离子水清洗,将所得物置于真空烘箱中在65℃干燥12h,得到氨改性石墨烯;将环氧树脂、聚氨酯改性液体橡胶、固化剂二氨基二苯甲烷和氨基改性石墨烯按照100:5:25:0.1的质量比混合均匀,机械搅拌并超声反应4h,每100份的环氧树脂中加入促进剂(DMP-30)的量为1ml,并继续超声反应1h。然后,将反应液置于50℃的真空烘箱中脱气泡1h;Graphene and N,N'-dicyclohexylcarboimide (DCC) were dispersed in the aminosilane coupling agent 3-aminopropyltriethoxysilane solution, and graphene was dispersed in 3-aminopropyltriethoxy The dispersion concentration in base silane is 0.5mg/ml, and the mass ratio of graphene and N,N'-dicyclohexylcarboimide (DCC) is 10:3. Ultrasonic the mixed solution for 1 hour, heat the black homogeneous mixture to 60°C, stir for 12 hours, then centrifuge and wash with deionized water, and place the resultant in a vacuum oven at 65°C for 12 hours to obtain ammonia-modified graphene; Mix epoxy resin, polyurethane modified liquid rubber, curing agent diaminodiphenylmethane and amino-modified graphene according to the mass ratio of 100:5:25:0.1, mechanically stir and ultrasonically react for 4h, every 100 parts of ring The amount of accelerator (DMP-30) added to the oxygen resin was 1ml, and the ultrasonic reaction was continued for 1h. Then, the reaction solution was placed in a vacuum oven at 50°C for degassing for 1 h;
将树脂浆液倒入浸胶槽中,并在浸胶槽中放置有超声波发生器,功率控制为150W,威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,控制浸胶时间为10秒,丝束张力为150克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕2层,在100℃条件下干燥1h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化1小时,然后130℃下固化2小时,最后150℃下固化2小时。冷却至室温,得到本发明所述的碳纤维/石墨烯/环氧树脂基复合材料。Pour the resin slurry into the dipping tank, and place an ultrasonic generator in the dipping tank. The power is controlled at 150W. The T300 grade 3K carbon fiber tow from Weihai Kaizhan Fiber Co., Ltd. enters the dipping tank, and the dipping time is controlled as For 10 seconds, the tension of the tow is 150 grams. The tow after dipping is removed by a scraping roller to remove excess resin glue. Dry at 100° C. for 1 hour to obtain a unidirectional prepreg, and the carbon fiber mass fraction in the prepreg is 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 1 hour at 90°C, then 2 hours at 130°C, and finally 2 hours at 150°C. Cool to room temperature to obtain the carbon fiber/graphene/epoxy resin-based composite material of the present invention.
实施例2Example 2
称取NaNO3固体溶于98%的浓硫酸中,将混合液置于冰水浴中同时搅拌使NaNO3固体充分溶解;称量少量石墨加入到上述的混合液中,搅拌均匀;随后,缓慢加入过量高锰酸钾进行氧化,在加入过程中控制反应温度不超过20℃,搅拌均匀,将温度调到40℃继续搅拌反应;然后在混合液中加入去离子水稀释并滴加H2O2,使溶液变为亮黄色;过滤,在过滤的同时用质量浓度5%的盐酸溶液洗涤;将过滤后得到的滤饼用去离子水稀释,再进行超声和离心处理;在离心后得到的上层清液中加入盐酸溶液,充分搅拌后再次离心;将离心后得到的下层粘性固体烘干,得到氧化石墨样品;取所得氧化石墨,快速放入到预热至1050℃的马弗炉中保持30s得到膨胀石墨烯;取一定量膨胀石墨烯加入无水乙醇中,超声5h,真空干燥得到石墨烯。Weigh the NaNO 3 solid and dissolve it in 98% concentrated sulfuric acid, place the mixed solution in an ice-water bath while stirring to fully dissolve the NaNO 3 solid; weigh a small amount of graphite and add it to the above mixed solution, and stir evenly; then, slowly add Excess potassium permanganate is oxidized. During the addition process, control the reaction temperature not to exceed 20°C, stir evenly, adjust the temperature to 40°C and continue to stir the reaction; then add deionized water to the mixture to dilute and add H 2 O 2 dropwise , to make the solution turn bright yellow; filter and wash with 5% hydrochloric acid solution while filtering; dilute the filter cake obtained after filtration with deionized water, and then perform ultrasonic and centrifugation; the upper layer obtained after centrifugation Add hydrochloric acid solution to the clear liquid, stir well and centrifuge again; dry the viscous solid in the lower layer obtained after centrifugation to obtain a graphite oxide sample; take the obtained graphite oxide and quickly put it into a muffle furnace preheated to 1050°C for 30s Obtaining expanded graphene; adding a certain amount of expanded graphene to absolute ethanol, ultrasonicating for 5 hours, and vacuum drying to obtain graphene.
将石墨烯和N,N'-二环己基碳酰亚胺(DCC)分散在3-氨丙基三乙氧基硅烷溶液中,石墨烯在3-氨丙基三乙氧基硅烷中的分散浓度为2mg/ml,石墨烯和N,N'-二环己基碳酰亚胺(DCC)的质量比为2:1。将混合液超声3小时,将黑色的均匀混合物加热至80℃,搅拌20小时,然后离心分离并用去离子水清洗,将所得物置于真空烘箱中在65℃干燥12h,得到氨改性石墨烯;将环氧树脂、聚氨酯改性液体橡胶、固化剂甲基四氢苯酐和氨基改性石墨烯按照100:15:60:0.1的质量比混合均匀,机械搅拌并超声反应8h,每100份的环氧树脂中加入促进剂(DMP-30)的量为1ml,并继续超声反应2h。然后,将反应液置于50℃的真空烘箱中脱气泡2h;Dispersion of Graphene and N,N'-Dicyclohexylcarboimide (DCC) in 3-Aminopropyltriethoxysilane Solution, Dispersion of Graphene in 3-Aminopropyltriethoxysilane The concentration is 2mg/ml, and the mass ratio of graphene and N,N'-dicyclohexylcarboimide (DCC) is 2:1. Ultrasonic the mixture for 3 hours, heat the black homogeneous mixture to 80°C, stir for 20 hours, then centrifuge and wash with deionized water, and place the resultant in a vacuum oven at 65°C for 12 hours to obtain ammonia-modified graphene; Mix epoxy resin, polyurethane modified liquid rubber, curing agent methyl tetrahydrophthalic anhydride and amino-modified graphene according to the mass ratio of 100:15:60:0.1, mechanically stir and ultrasonically react for 8h, every 100 parts of ring The amount of accelerator (DMP-30) added to the oxygen resin was 1ml, and the ultrasonic reaction was continued for 2h. Then, the reaction solution was placed in a vacuum oven at 50°C for 2 hours to debubble;
将树脂浆液倒入浸胶槽中,并在浸胶槽中放置有超声波发生器,功率控制为200W,威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,控制浸胶时间为20秒,丝束张力为200克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕4层,在120℃条件下干燥4h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化2小时,然后130℃下固化4小时,最后150℃下固化4小时。冷却至室温,得到本发明所述的碳纤维/石墨烯/环氧树脂基复合材料。Pour the resin slurry into the dipping tank, and place an ultrasonic generator in the dipping tank. The power is controlled at 200W. The T300 grade 3K carbon fiber tow from Weihai Kaizhan Fiber Co., Ltd. enters the dipping tank, and the dipping time is controlled as For 20 seconds, the tension of the tow is 200 grams. The tow after dipping is removed by a scraping roller to remove excess resin glue. Dry at 120° C. for 4 hours to obtain a unidirectional prepreg, and the carbon fiber mass fraction in the prepreg is 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 2 hours at 90°C, 4 hours at 130°C, and 4 hours at 150°C. Cool to room temperature to obtain the carbon fiber/graphene/epoxy resin-based composite material of the present invention.
实施例3Example 3
称取NaNO3固体溶于98%的浓硫酸中,将混合液置于冰水浴中同时搅拌使NaNO3固体充分溶解;称量少量石墨加入到上述的混合液中,搅拌均匀;随后,缓慢加入过量高锰酸钾进行氧化,在加入过程中控制反应温度不超过20℃,搅拌均匀,将温度调到35℃继续搅拌反应;然后在混合液中加入去离子水稀释并滴加H2O2,使溶液变为亮黄色;过滤,在过滤的同时用质量浓度5%的盐酸溶液洗涤;将过滤后得到的滤饼用去离子水稀释,再进行超声和离心处理;在离心后得到的上层清液中加入盐酸溶液,充分搅拌后再次离心;将离心后得到的下层粘性固体烘干,得到氧化石墨样品;取所得氧化石墨,快速放入到预热至1050℃的马弗炉中保持30s得到膨胀石墨烯;取一定量膨胀石墨烯加入无水乙醇中,超声15h,真空干燥得到石墨烯。Weigh the NaNO 3 solid and dissolve it in 98% concentrated sulfuric acid, place the mixed solution in an ice-water bath while stirring to fully dissolve the NaNO 3 solid; weigh a small amount of graphite and add it to the above mixed solution, and stir evenly; then, slowly add Excess potassium permanganate is oxidized. During the addition process, control the reaction temperature not to exceed 20°C, stir evenly, adjust the temperature to 35°C and continue to stir the reaction; then add deionized water to the mixture to dilute and add H 2 O 2 dropwise , to make the solution turn bright yellow; filter and wash with 5% hydrochloric acid solution while filtering; dilute the filter cake obtained after filtration with deionized water, and then perform ultrasonic and centrifugation; the upper layer obtained after centrifugation Add hydrochloric acid solution to the clear liquid, stir well and centrifuge again; dry the viscous solid in the lower layer obtained after centrifugation to obtain a graphite oxide sample; take the obtained graphite oxide and quickly put it into a muffle furnace preheated to 1050°C for 30s To obtain expanded graphene; add a certain amount of expanded graphene to absolute ethanol, ultrasonicate for 15 hours, and vacuum-dry to obtain graphene.
将石墨烯和N,N'-二环己基碳酰亚胺(DCC)分散在3-氨丙基三乙氧基硅烷溶液中,石墨烯在3-氨丙基三乙氧基硅烷中的分散浓度为1mg/ml,石墨烯和N,N'-二环己基碳酰亚胺(DCC)的质量比为2:1。将混合液超声2小时,将黑色的均匀混合物加热至70℃,搅拌16小时,然后离心分离并用去离子水清洗,将所得物置于真空烘箱中在65℃干燥12h,得到氨改性石墨烯;将环氧树脂、橡胶、固化剂甲基四氢苯酐和氨基改性石墨烯按照100:10:70:0.5的质量比混合均匀,机械搅拌并超声反应6h,每100份的环氧树脂中加入促进剂(DMP-30)的量为1ml,并继续超声反应2h。然后,将反应液置于50℃的真空烘箱中脱气泡1h;Dispersion of Graphene and N,N'-Dicyclohexylcarboimide (DCC) in 3-Aminopropyltriethoxysilane Solution, Dispersion of Graphene in 3-Aminopropyltriethoxysilane The concentration is 1mg/ml, and the mass ratio of graphene and N,N'-dicyclohexylcarboimide (DCC) is 2:1. Ultrasonic the mixture for 2 hours, heat the black homogeneous mixture to 70°C, stir for 16 hours, then centrifuge and wash with deionized water, and place the resultant in a vacuum oven at 65°C for 12 hours to obtain ammonia-modified graphene; Mix epoxy resin, rubber, curing agent methyl tetrahydrophthalic anhydride and amino-modified graphene according to the mass ratio of 100:10:70:0.5, mechanically stir and ultrasonically react for 6 hours, and add to every 100 parts of epoxy resin The amount of accelerator (DMP-30) was 1ml, and the ultrasonic reaction was continued for 2h. Then, the reaction solution was placed in a vacuum oven at 50°C for degassing for 1 h;
将树脂浆液倒入浸胶槽中,并在浸胶槽中放置有超声波发生器,功率控制为180W,威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,控制浸胶时间15秒,丝束张力为180克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕3层,在110℃条件下干燥3h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化1小时,然后130℃下固化2小时,最后150℃下固化4小时。冷却至室温,得到本发明所述的碳纤维/石墨烯/环氧树脂基复合材料。Pour the resin slurry into the dipping tank, and place an ultrasonic generator in the dipping tank. The power is controlled at 180W. The T300 grade 3K carbon fiber tow of Weihai Extension Fiber Co., Ltd. enters the dipping tank, and the dipping time is controlled for 15 second, the tow tension is 180 grams, the tow after dipping is removed excess resin glue by the scraping roller, the tow after dipping is discharged by winding through the wire arrangement machine, and is wound repeatedly for 3 layers, at 110 Dry at ℃ for 3 hours to obtain a unidirectional prepreg, the mass fraction of carbon fiber in the prepreg is 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 1 hour at 90°C, then 2 hours at 130°C, and finally 4 hours at 150°C. Cool to room temperature to obtain the carbon fiber/graphene/epoxy resin-based composite material of the present invention.
实施例4Example 4
称取NaNO3固体溶于98%的浓硫酸中,将混合液置于冰水浴中同时搅拌使NaNO3固体充分溶解;称量少量石墨加入到上述的混合液中,搅拌均匀;随后,缓慢加入过量高锰酸钾进行氧化,在加入过程中控制反应温度不超过20℃,搅拌均匀,将温度调到35℃继续搅拌反应;然后在混合液中加入去离子水稀释并滴加H2O2,使溶液变为亮黄色;过滤,在过滤的同时用质量浓度5%的盐酸溶液洗涤;将过滤后得到的滤饼用去离子水稀释,再进行超声和离心处理;在离心后得到的上层清液中加入盐酸溶液,充分搅拌后再次离心;将离心后得到的下层粘性固体烘干,得到氧化石墨样品;取所得氧化石墨,快速放入到预热至1050℃的马弗炉中保持30s得到膨胀石墨烯;取一定量膨胀石墨烯加入无水乙醇中,超声15h,真空干燥得到石墨烯。Weigh the NaNO 3 solid and dissolve it in 98% concentrated sulfuric acid, place the mixed solution in an ice-water bath while stirring to fully dissolve the NaNO 3 solid; weigh a small amount of graphite and add it to the above mixed solution, and stir evenly; then, slowly add Excess potassium permanganate is oxidized. During the addition process, control the reaction temperature not to exceed 20°C, stir evenly, adjust the temperature to 35°C and continue to stir the reaction; then add deionized water to the mixture to dilute and add H 2 O 2 dropwise , to make the solution turn bright yellow; filter and wash with 5% hydrochloric acid solution while filtering; dilute the filter cake obtained after filtration with deionized water, and then perform ultrasonic and centrifugation; the upper layer obtained after centrifugation Add hydrochloric acid solution to the clear liquid, stir well and centrifuge again; dry the viscous solid in the lower layer obtained after centrifugation to obtain a graphite oxide sample; take the obtained graphite oxide and quickly put it into a muffle furnace preheated to 1050°C for 30s To obtain expanded graphene; add a certain amount of expanded graphene to absolute ethanol, ultrasonicate for 15 hours, and vacuum-dry to obtain graphene.
将石墨烯和N,N'-二环己基碳酰亚胺(DCC)分散在3-氨丙基三乙氧基硅烷溶液中,石墨烯在3-氨丙基三乙氧基硅烷中的分散浓度为1mg/ml,石墨烯和N,N'-二环己基碳酰亚胺(DCC)的质量比为2:1。将混合液超声2小时,将黑色的均匀混合物加热至70℃,搅拌16小时,然后离心分离并用去离子水清洗,将所得物置于真空烘箱中在65℃干燥12h,得到氨改性石墨烯;将环氧树脂、橡胶、固化剂二氨基二苯甲烷和氨基改性石墨烯按照100:10:35:0.5的质量比混合均匀,机械搅拌并超声反应6h,每100份的环氧树脂中加入促进剂(DMP-30)的量为1ml,并继续超声反应2h。然后,将反应液置于50℃的真空烘箱中脱气泡1h;Dispersion of Graphene and N,N'-Dicyclohexylcarboimide (DCC) in 3-Aminopropyltriethoxysilane Solution, Dispersion of Graphene in 3-Aminopropyltriethoxysilane The concentration is 1mg/ml, and the mass ratio of graphene and N,N'-dicyclohexylcarboimide (DCC) is 2:1. Ultrasonic the mixture for 2 hours, heat the black homogeneous mixture to 70°C, stir for 16 hours, then centrifuge and wash with deionized water, and place the resultant in a vacuum oven at 65°C for 12 hours to obtain ammonia-modified graphene; Mix epoxy resin, rubber, curing agent diaminodiphenylmethane and amino-modified graphene according to the mass ratio of 100:10:35:0.5, mechanically stir and ultrasonically react for 6 hours, and add to every 100 parts of epoxy resin The amount of accelerator (DMP-30) was 1ml, and the ultrasonic reaction was continued for 2h. Then, the reaction solution was placed in a vacuum oven at 50°C for degassing for 1 h;
将树脂浆液倒入浸胶槽中,并在浸胶槽中放置有超声波发生器,功率控制为180W,威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,控制浸胶时间为15秒,丝束张力为180克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕3层,在110℃条件下干燥3h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化1小时,然后130℃下固化2小时,最后150℃下固化4小时。冷却至室温,得到本发明所述的碳纤维/石墨烯/环氧树脂基复合材料。Pour the resin slurry into the dipping tank, and place an ultrasonic generator in the dipping tank. The power is controlled at 180W. The T300 grade 3K carbon fiber tow from Weihai Kaizhan Fiber Co., Ltd. enters the dipping tank, and the dipping time is controlled as 15 seconds, the tow tension is 180 grams, the tow after dipping is removed excess resin glue by the scraping roller, the tow after dipping is discharged by winding through the wire arrangement machine, and is wound repeatedly for 3 layers. Dry at 110° C. for 3 hours to obtain a unidirectional prepreg, and the mass fraction of carbon fibers in the prepreg is 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 1 hour at 90°C, then 2 hours at 130°C, and finally 4 hours at 150°C. Cool to room temperature to obtain the carbon fiber/graphene/epoxy resin-based composite material of the present invention.
实施例5Example 5
本实施例与实施例1的不同在于,树脂基体组合物中环氧树脂、聚氨酯改性液体橡胶橡胶、固化剂二氨基二苯甲烷和氨基改性石墨烯按照100:10:30:0.7的质量比混合均匀。The difference between this embodiment and Example 1 is that epoxy resin, polyurethane modified liquid rubber rubber, curing agent diaminodiphenylmethane and amino-modified graphene are according to the quality of 100:10:30:0.7 in the resin matrix composition Than mix evenly.
实施例6Example 6
本实施例与实施例1的不同在于,树脂基体组合物中环氧树脂、聚氨酯改性液体橡胶橡胶、固化剂二氨基二苯甲烷和氨基改性石墨烯按照100:10:30:1的质量比混合均匀。The difference between this embodiment and embodiment 1 is that epoxy resin, polyurethane modified liquid rubber rubber, curing agent diaminodiphenylmethane and amino-modified graphene are according to the quality of 100:10:30:1 in the resin matrix composition Than mix evenly.
实施例7Example 7
本实施例与实施例3的不同在于,树脂基体组合物中环氧树脂、聚氨酯改性液体橡胶橡胶、固化剂甲基四氢苯酐和氨基改性石墨烯按照100:10:70:0.7的质量比混合均匀。The difference between this embodiment and embodiment 3 is that epoxy resin, polyurethane modified liquid rubber rubber, curing agent methyl tetrahydrophthalic anhydride and amino-modified graphene are according to the quality of 100:10:70:0.7 in the resin matrix composition Than mix evenly.
实施例8Example 8
本实施例与实施例3的不同在于,树脂基体组合物中环氧树脂、聚氨酯改性液体橡胶橡胶、固化剂甲基四氢苯酐和氨基改性石墨烯按照100:10:70:1的质量比混合均匀。The difference between this embodiment and embodiment 3 is that epoxy resin, polyurethane modified liquid rubber rubber, curing agent methyl tetrahydrophthalic anhydride and amino-modified graphene are according to the quality of 100:10:70:1 in the resin matrix composition Than mix evenly.
对比例1Comparative example 1
威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,胶液按照如下方法配制:将环氧树脂、橡胶、固化剂二氨基二苯甲烷按照100:10:35的质量比混合均匀,机械搅拌并超声反应6h,每100份的环氧树脂中加入1ml促进剂(DMP-30),并继续超声反应2h,将反应液置于50℃的真空烘箱中脱气泡1h,将胶液倒入浸胶槽,超声波发生器的功率控制为200W,控制浸胶时间为20秒,丝束张力为180克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕2层,在110℃条件下干燥3h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化1小时,然后130℃下固化2小时,最后150℃下固化2小时。冷却至室温,得到本实施例所述的碳纤维/环氧树脂复合材料。The T300 grade 3K carbon fiber tows of Weihai Tuanfa Fiber Co., Ltd. enter the dipping tank, and the glue solution is prepared as follows: mix epoxy resin, rubber, and curing agent diaminodiphenylmethane according to the mass ratio of 100:10:35 , mechanically stirred and ultrasonically reacted for 6h, added 1ml accelerator (DMP-30) to every 100 parts of epoxy resin, and continued ultrasonically for 2h, the reaction solution was placed in a vacuum oven at 50°C for 1h to debubble, and the glue Pour into the dipping tank, the power of the ultrasonic generator is controlled to 200W, the dipping time is controlled to be 20 seconds, and the tow tension is 180 grams. The tow after dipping removes excess resin glue by a scraping roller. After dipping The tows are arranged by winding through the wire-discharging machine, wound repeatedly for 2 layers, and dried at 110°C for 3 hours to obtain a unidirectional prepreg with a mass fraction of carbon fiber in the prepreg of 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 1 hour at 90°C, then 2 hours at 130°C, and finally 2 hours at 150°C. Cool to room temperature to obtain the carbon fiber/epoxy resin composite material described in this example.
对比例2Comparative example 2
威海拓展纤维有限公司的T300级3K碳纤维丝束进入浸胶槽中,胶液按照如下方法配制:将环氧树脂、橡胶、固化剂甲基四氢苯酐按照100:15:70的质量比混合均匀,机械搅拌并超声反应6h,每100份的环氧树脂中加入1ml促进剂(DMP-30),并继续超声反应2h,将反应液置于50℃的真空烘箱中脱气泡1h,将胶液倒入浸胶槽,超声波发生器的功率控制为180W,控制浸胶时间为15秒,丝束张力为180克,浸胶后的丝束通过刮胶辊去除多余的树脂胶液,浸胶后的丝束通过排丝机采用缠绕的方式排丝,反复缠绕4层,在110℃条件下干燥3h,得到单向预浸料,预浸料中碳纤维质量分数为60%。将预浸料通过平板热压机压制固化制备层压板,在烘箱中进行后固化,固化过程为90℃下固化1小时,然后130℃下固化2小时,最后150℃下固化2小时。冷却至室温,得到本实施例所述的碳纤维/环氧树脂复合材料。The T300 grade 3K carbon fiber tow of Weihai Tuanfa Fiber Co., Ltd. enters the dipping tank, and the glue solution is prepared according to the following method: mix epoxy resin, rubber, and curing agent methyl tetrahydrophthalic anhydride in a mass ratio of 100:15:70 , mechanically stirred and ultrasonically reacted for 6h, added 1ml accelerator (DMP-30) to every 100 parts of epoxy resin, and continued ultrasonically for 2h, the reaction solution was placed in a vacuum oven at 50°C for 1h to debubble, and the glue Pour into the dipping tank, the power of the ultrasonic generator is controlled to be 180W, the dipping time is controlled to be 15 seconds, and the tow tension is 180 grams. The tow after dipping removes excess resin glue by a scraping roller. After dipping The tows are arranged by winding through the wire-discharging machine, wound repeatedly for 4 layers, and dried at 110°C for 3 hours to obtain a unidirectional prepreg with a mass fraction of carbon fiber in the prepreg of 60%. The prepreg was pressed and cured by a flat hot press to prepare a laminate, and post-cured in an oven. The curing process was 1 hour at 90°C, then 2 hours at 130°C, and finally 2 hours at 150°C. Cool to room temperature to obtain the carbon fiber/epoxy resin composite material described in this example.
本发明按照《GB/T 1449-2005纤维增强塑料弯曲性能试验方法》测试了碳纤维复合材料的弯曲性能,按照《JC/T 773单向纤维增强塑料层间剪切强度试验方法》测试了碳纤维复合材料的层间剪切强度,本发明实施例1~8和对比例1~2得到的碳纤维复合材料的力学性能测试结果如表1所示。The present invention tests the flexural properties of carbon fiber composite materials according to "GB/T 1449-2005 Fiber Reinforced Plastic Bending Performance Test Method", and tests the carbon fiber composite material according to "JC/T 773 Unidirectional Fiber Reinforced The interlaminar shear strength of the material, the test results of the mechanical properties of the carbon fiber composite materials obtained in Examples 1-8 of the present invention and Comparative Examples 1-2 are shown in Table 1.
表1本发明实施例和比较例得到的碳纤维复合材料的力学性能数据The mechanical property data of the carbon fiber composite material that table 1 embodiment of the present invention and comparative example obtain
由表1可以看出,在本发明得到的碳纤维/石墨烯/环氧树脂复合材料的弯曲强度和层间剪切强度相比碳纤维/环氧树脂复合材料有了显著的提高,说明改性石墨烯的加入有助于外加载荷的均匀传递,碳纤维与树脂基体间的界面结合力较好,有助于力学性能的提高。As can be seen from Table 1, the flexural strength and the interlaminar shear strength of the carbon fiber/graphene/epoxy resin composite material obtained in the present invention have significantly improved compared to the carbon fiber/epoxy resin composite material, indicating that modified graphite The addition of alkene helps the uniform transmission of the applied load, and the interfacial bonding force between the carbon fiber and the resin matrix is better, which contributes to the improvement of the mechanical properties.
最后应当说明的是:以上实施例仅用以对本发明的技术方案作进一步的说明,但并不局限于此,本领域技术人员阅读本发明说明书后,可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的权利要求保护范围之内。Finally, it should be noted that the above examples are only used to further illustrate the technical solutions of the present invention, but are not limited thereto. After reading the description of the present invention, those skilled in the art can modify the specific implementation of the present invention or equivalent Replacement, any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention are within the protection scope of the pending claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610339876.8A CN105968718A (en) | 2016-05-20 | 2016-05-20 | Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610339876.8A CN105968718A (en) | 2016-05-20 | 2016-05-20 | Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105968718A true CN105968718A (en) | 2016-09-28 |
Family
ID=56956131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610339876.8A Pending CN105968718A (en) | 2016-05-20 | 2016-05-20 | Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105968718A (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107903627A (en) * | 2017-11-29 | 2018-04-13 | 西华大学 | A kind of thermoplasticity lightweight composite material and preparation method thereof |
CN107936273A (en) * | 2017-11-29 | 2018-04-20 | 西华大学 | A kind of high-performance light composite material of carbon fiber enhancement resin base and preparation method thereof |
CN108049184A (en) * | 2017-12-31 | 2018-05-18 | 厦门大学 | A kind of surface treatment of carbon fibers agent and its processing method based on graphene oxide |
CN108058417A (en) * | 2017-11-15 | 2018-05-22 | 陈川莲 | A kind of preparation method of graphene elasticity screen cloth enhancing carbon fiber fishing rod |
CN108219375A (en) * | 2017-12-31 | 2018-06-29 | 厦门大学 | Surface modified carbon fiber prepreg material based on graphene oxide and preparation method thereof |
CN108517123A (en) * | 2018-04-17 | 2018-09-11 | 青岛泰歌新材料科技有限公司 | A kind of modified composite material and preparation method using carbon nanotube and graphene |
CN108673911A (en) * | 2018-06-21 | 2018-10-19 | 上海大学 | A kind of preparation facilities and preparation method thereof based on graphene toughening high-performance carbon fibre polymer matrix composites battery tray |
CN108794986A (en) * | 2018-06-15 | 2018-11-13 | 杭州华正新材料有限公司 | A kind of epoxy-fiberglass-cloth laminated board and preparation method thereof |
CN109111694A (en) * | 2018-07-06 | 2019-01-01 | 黄河科技学院 | The production and stress measuring method of glass fiber reinforced epoxy resin plate |
CN109177207A (en) * | 2018-07-09 | 2019-01-11 | 黄河科技学院 | Para-aramid fiber enhances unsaturated-resin board making and stress measuring method |
CN109206848A (en) * | 2017-06-30 | 2019-01-15 | 洛阳尖端技术研究院 | A kind of epoxy prepreg and preparation method thereof |
CN109608668A (en) * | 2018-12-03 | 2019-04-12 | 北京化工大学 | Preparation of a carbon fiber/graphene oxide/epoxy resin prepreg and carbon fiber composite material |
CN109627698A (en) * | 2018-10-26 | 2019-04-16 | 河北纳格新材料科技有限公司 | A kind of wear-resisting unsaturated-resin composite material and preparation method |
CN109982459A (en) * | 2019-04-08 | 2019-07-05 | 常州唯品石墨烯科技有限公司 | A kind of graphene composite heating silk and preparation method thereof |
CN110484222A (en) * | 2019-07-31 | 2019-11-22 | 中国石油集团工程技术研究院有限公司 | A kind of epoxy resin-matrix cementing fluid and preparation method thereof |
CN110526233A (en) * | 2019-08-10 | 2019-12-03 | 武汉轻工大学 | A kind of device and preparation method for quickly producing graphene crystal |
CN111349313A (en) * | 2018-12-20 | 2020-06-30 | 帕洛阿尔托研究中心公司 | Fiber reinforced plastics reinforced with functionalized particles |
CN111417063A (en) * | 2019-12-26 | 2020-07-14 | 瑞声科技(新加坡)有限公司 | Carbon fiber dome, preparation method thereof and loudspeaker |
CN111808310A (en) * | 2020-06-08 | 2020-10-23 | 安徽福斯特渔具有限公司 | Preparation method of special high-performance composite material pre-immersion liquid for aerospace |
CN111925627A (en) * | 2020-08-19 | 2020-11-13 | 福州大学 | Reinforced and toughened modified epoxy resin composite material and preparation method thereof |
CN112063110A (en) * | 2020-09-14 | 2020-12-11 | 新程汽车工业有限公司 | High-stability decomposition type skylight reinforcing plate and processing method thereof |
CN112292361A (en) * | 2018-03-28 | 2021-01-29 | 卓尔泰克公司 | Conductive Compounds for Carbon Fiber |
CN112502207A (en) * | 2020-11-10 | 2021-03-16 | 广东华科大建筑技术开发有限公司 | Portable sheet flexible jacking device applied to building jacking deviation correction |
CN112848561A (en) * | 2021-01-22 | 2021-05-28 | 沈阳航空航天大学 | Graphene modified multifunctional Glare laminate and preparation method thereof |
CN113072795A (en) * | 2021-03-15 | 2021-07-06 | 浙江宝旌炭材料有限公司 | Aramid fiber/graphene composite reinforced carbon fiber resin prepreg |
CN113234246A (en) * | 2021-07-01 | 2021-08-10 | 西南大学 | Preparation method of graphene/plate cocoon toughened carbon fiber composite material |
CN113999493A (en) * | 2021-11-26 | 2022-02-01 | 齐鲁工业大学 | A kind of preparation method of high thermal conductivity composite material |
CN114456542A (en) * | 2021-12-15 | 2022-05-10 | 中北大学 | Carbon fiber composite material and preparation method thereof |
CN114561086A (en) * | 2022-04-21 | 2022-05-31 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | Water-lubricated composite material and preparation method thereof |
CN114683583A (en) * | 2022-03-21 | 2022-07-01 | 中山市卡邦碳纤维材料制品有限公司 | A kind of winding carbon fiber tube and its processing technology |
CN114957914A (en) * | 2022-03-28 | 2022-08-30 | 中建工程产业技术研究院有限公司 | Carbon fiber composite material and preparation and recovery method thereof |
CN115785765A (en) * | 2022-12-22 | 2023-03-14 | 上海海隆赛能新材料有限公司 | Nodular iron casting anticorrosive primer for wind generating set and preparation method thereof |
CN115895000A (en) * | 2022-09-02 | 2023-04-04 | 西安热工研究院有限公司 | A self-lubricating fiber fabric composite material and its forming method |
CN116160724A (en) * | 2023-04-11 | 2023-05-26 | 西安理工大学 | Lightning damage resistant aviation composite material and preparation method thereof |
CN116178673A (en) * | 2022-12-15 | 2023-05-30 | 镇江利德尔复合材料有限公司 | A process for preparing composite materials by vacuum infusion method |
CN116987307A (en) * | 2023-06-27 | 2023-11-03 | 韶山市碳基材料产业研究院 | Preparation method of resin graphite carbon fiber composite material |
WO2024124837A1 (en) * | 2022-12-14 | 2024-06-20 | 安徽弘昌新材料股份有限公司 | High-temperature-resistant prepreg for producing carbon fiber composite material, and preparation method therefor |
CN119161692A (en) * | 2024-11-18 | 2024-12-20 | 内蒙古沃志新材料科技有限公司 | A carbon fiber reinforced modified resin material and preparation method thereof |
-
2016
- 2016-05-20 CN CN201610339876.8A patent/CN105968718A/en active Pending
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109206848A (en) * | 2017-06-30 | 2019-01-15 | 洛阳尖端技术研究院 | A kind of epoxy prepreg and preparation method thereof |
CN108058417A (en) * | 2017-11-15 | 2018-05-22 | 陈川莲 | A kind of preparation method of graphene elasticity screen cloth enhancing carbon fiber fishing rod |
CN107936273A (en) * | 2017-11-29 | 2018-04-20 | 西华大学 | A kind of high-performance light composite material of carbon fiber enhancement resin base and preparation method thereof |
CN107903627A (en) * | 2017-11-29 | 2018-04-13 | 西华大学 | A kind of thermoplasticity lightweight composite material and preparation method thereof |
CN108049184A (en) * | 2017-12-31 | 2018-05-18 | 厦门大学 | A kind of surface treatment of carbon fibers agent and its processing method based on graphene oxide |
CN108219375A (en) * | 2017-12-31 | 2018-06-29 | 厦门大学 | Surface modified carbon fiber prepreg material based on graphene oxide and preparation method thereof |
CN112292361A (en) * | 2018-03-28 | 2021-01-29 | 卓尔泰克公司 | Conductive Compounds for Carbon Fiber |
US11566369B2 (en) | 2018-03-28 | 2023-01-31 | Zoltek Corporation | Electrically conductive sizing for carbon fibers |
CN108517123B (en) * | 2018-04-17 | 2020-08-11 | 青岛泰歌新材料科技有限公司 | Modified composite material using carbon nano tube and graphene and preparation method thereof |
CN108517123A (en) * | 2018-04-17 | 2018-09-11 | 青岛泰歌新材料科技有限公司 | A kind of modified composite material and preparation method using carbon nanotube and graphene |
CN108794986A (en) * | 2018-06-15 | 2018-11-13 | 杭州华正新材料有限公司 | A kind of epoxy-fiberglass-cloth laminated board and preparation method thereof |
CN108673911A (en) * | 2018-06-21 | 2018-10-19 | 上海大学 | A kind of preparation facilities and preparation method thereof based on graphene toughening high-performance carbon fibre polymer matrix composites battery tray |
CN108673911B (en) * | 2018-06-21 | 2023-10-17 | 上海大学 | Preparation method of graphene-based toughened high-performance carbon fiber resin matrix composite battery tray |
CN109111694A (en) * | 2018-07-06 | 2019-01-01 | 黄河科技学院 | The production and stress measuring method of glass fiber reinforced epoxy resin plate |
CN109177207A (en) * | 2018-07-09 | 2019-01-11 | 黄河科技学院 | Para-aramid fiber enhances unsaturated-resin board making and stress measuring method |
CN109627698A (en) * | 2018-10-26 | 2019-04-16 | 河北纳格新材料科技有限公司 | A kind of wear-resisting unsaturated-resin composite material and preparation method |
CN109608668A (en) * | 2018-12-03 | 2019-04-12 | 北京化工大学 | Preparation of a carbon fiber/graphene oxide/epoxy resin prepreg and carbon fiber composite material |
CN111349313A (en) * | 2018-12-20 | 2020-06-30 | 帕洛阿尔托研究中心公司 | Fiber reinforced plastics reinforced with functionalized particles |
CN109982459A (en) * | 2019-04-08 | 2019-07-05 | 常州唯品石墨烯科技有限公司 | A kind of graphene composite heating silk and preparation method thereof |
CN110484222A (en) * | 2019-07-31 | 2019-11-22 | 中国石油集团工程技术研究院有限公司 | A kind of epoxy resin-matrix cementing fluid and preparation method thereof |
CN110526233A (en) * | 2019-08-10 | 2019-12-03 | 武汉轻工大学 | A kind of device and preparation method for quickly producing graphene crystal |
CN111417063A (en) * | 2019-12-26 | 2020-07-14 | 瑞声科技(新加坡)有限公司 | Carbon fiber dome, preparation method thereof and loudspeaker |
CN111417063B (en) * | 2019-12-26 | 2022-04-12 | 瑞声科技(新加坡)有限公司 | Carbon fiber dome, preparation method thereof and loudspeaker |
CN111808310A (en) * | 2020-06-08 | 2020-10-23 | 安徽福斯特渔具有限公司 | Preparation method of special high-performance composite material pre-immersion liquid for aerospace |
CN111925627A (en) * | 2020-08-19 | 2020-11-13 | 福州大学 | Reinforced and toughened modified epoxy resin composite material and preparation method thereof |
CN111925627B (en) * | 2020-08-19 | 2022-12-23 | 福州大学 | Reinforced and toughened modified epoxy resin composite material and preparation method thereof |
CN112063110A (en) * | 2020-09-14 | 2020-12-11 | 新程汽车工业有限公司 | High-stability decomposition type skylight reinforcing plate and processing method thereof |
CN112502207A (en) * | 2020-11-10 | 2021-03-16 | 广东华科大建筑技术开发有限公司 | Portable sheet flexible jacking device applied to building jacking deviation correction |
CN112848561A (en) * | 2021-01-22 | 2021-05-28 | 沈阳航空航天大学 | Graphene modified multifunctional Glare laminate and preparation method thereof |
CN113072795A (en) * | 2021-03-15 | 2021-07-06 | 浙江宝旌炭材料有限公司 | Aramid fiber/graphene composite reinforced carbon fiber resin prepreg |
CN113234246A (en) * | 2021-07-01 | 2021-08-10 | 西南大学 | Preparation method of graphene/plate cocoon toughened carbon fiber composite material |
CN113999493A (en) * | 2021-11-26 | 2022-02-01 | 齐鲁工业大学 | A kind of preparation method of high thermal conductivity composite material |
CN113999493B (en) * | 2021-11-26 | 2023-04-14 | 齐鲁工业大学 | A kind of preparation method of high thermal conductivity composite material |
CN114456542B (en) * | 2021-12-15 | 2023-07-21 | 中北大学 | A kind of carbon fiber composite material and preparation method thereof |
CN114456542A (en) * | 2021-12-15 | 2022-05-10 | 中北大学 | Carbon fiber composite material and preparation method thereof |
CN114683583A (en) * | 2022-03-21 | 2022-07-01 | 中山市卡邦碳纤维材料制品有限公司 | A kind of winding carbon fiber tube and its processing technology |
CN114957914A (en) * | 2022-03-28 | 2022-08-30 | 中建工程产业技术研究院有限公司 | Carbon fiber composite material and preparation and recovery method thereof |
CN114561086A (en) * | 2022-04-21 | 2022-05-31 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | Water-lubricated composite material and preparation method thereof |
CN115895000A (en) * | 2022-09-02 | 2023-04-04 | 西安热工研究院有限公司 | A self-lubricating fiber fabric composite material and its forming method |
CN115895000B (en) * | 2022-09-02 | 2024-10-29 | 西安热工研究院有限公司 | Self-lubricating fiber fabric composite material and forming method |
WO2024124837A1 (en) * | 2022-12-14 | 2024-06-20 | 安徽弘昌新材料股份有限公司 | High-temperature-resistant prepreg for producing carbon fiber composite material, and preparation method therefor |
CN116178673A (en) * | 2022-12-15 | 2023-05-30 | 镇江利德尔复合材料有限公司 | A process for preparing composite materials by vacuum infusion method |
CN115785765A (en) * | 2022-12-22 | 2023-03-14 | 上海海隆赛能新材料有限公司 | Nodular iron casting anticorrosive primer for wind generating set and preparation method thereof |
CN116160724A (en) * | 2023-04-11 | 2023-05-26 | 西安理工大学 | Lightning damage resistant aviation composite material and preparation method thereof |
CN116160724B (en) * | 2023-04-11 | 2025-04-22 | 西安理工大学 | Aviation composite material resistant to lightning damage and preparation method thereof |
CN116987307A (en) * | 2023-06-27 | 2023-11-03 | 韶山市碳基材料产业研究院 | Preparation method of resin graphite carbon fiber composite material |
CN116987307B (en) * | 2023-06-27 | 2024-03-12 | 韶山市碳基材料产业研究院 | Preparation method of resin graphite carbon fiber composite material |
CN119161692A (en) * | 2024-11-18 | 2024-12-20 | 内蒙古沃志新材料科技有限公司 | A carbon fiber reinforced modified resin material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105968718A (en) | Preparation method of carbon fiber/graphene/epoxy resin prepreg and carbon fiber composite material | |
CN105968717B (en) | A kind of preparation of carbon fiber/graphite alkene/carbon nano tube/epoxy resin prepreg and carbon fibre composite | |
CN106068346B (en) | Manufacturing method, prepreg and the fibre reinforced composites for applying sizing agent reinforcing fiber, applying sizing agent reinforcing fiber | |
CN109867916B (en) | Plant fiber reinforced resin matrix composite material and preparation method thereof | |
CN103409985B (en) | Preparation method of carbon nano tube loaded carbon fiber | |
CN107057283B (en) | Carbon fiber reinforced resin matrix composite material and preparation method thereof | |
CN107629224B (en) | Preparation method of double sizing agent modified carbon fiber reinforced epoxy resin matrix composites | |
CN105131529A (en) | Preparation method of composite material with fiber surface coated with cellulose nano crystals and used for multi-scale enhancement | |
CN104558644A (en) | Preparation method of continuous fiber reinforced hybrid multi-scale composite material | |
CN109505135A (en) | A kind of method that polyether ketone ketone sizing agent and its starching prepare carbon fibre composite | |
CN109608668A (en) | Preparation of a carbon fiber/graphene oxide/epoxy resin prepreg and carbon fiber composite material | |
CN104911917A (en) | Preparation method of water-based carbon fiber sizing agent suitable for thermoplastic matrix | |
CN106189220A (en) | A kind of Graphene modified glass-fiber strengthens resin composite materials and preparation method thereof | |
CN110093022A (en) | A kind of dopamine modified glass-fiber/unsaturated polyester composite preparation method | |
CN107722595A (en) | A kind of preparation method of the multiple dimensioned composite of graphite fiber olefinic thermoplastic polyarylether | |
CN116376220A (en) | A long fiber reinforced polyetheretherketone composite material and its preparation method | |
CN110158346A (en) | A kind of polyimide fiber paper based insulation material and preparation method thereof | |
CN111005229B (en) | Carbon fiber sizing agent and preparation method thereof | |
CN104151827A (en) | Preparation method of carbon fiber/carbon nanotube/organic silicone resin multidimensional hybrid composite material | |
CN109897375B (en) | High-strength flexible epoxy resin modified cyanate ester resin/carbon fiber composite shape memory material and preparation method thereof | |
CN104910347B (en) | A kind of preparation method and application of hyperbranched biphenyl liquid crystal grafted sisal microcrystal | |
CN115490987A (en) | Amino-terminated hyperbranched polymer modified carbon cloth reinforced resin-based friction material and preparation method thereof | |
CN118652535A (en) | A thermoplastic sheet and its production process | |
CN104448711A (en) | Epoxy resin/carbon fiber/halloysite nanotube composite material and preparation method thereof | |
CN109972396A (en) | A kind of graphene modified carbon fiber sizing agent and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160928 |
|
RJ01 | Rejection of invention patent application after publication |