CN105964303A - 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法 - Google Patents

一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法 Download PDF

Info

Publication number
CN105964303A
CN105964303A CN201610315594.4A CN201610315594A CN105964303A CN 105964303 A CN105964303 A CN 105964303A CN 201610315594 A CN201610315594 A CN 201610315594A CN 105964303 A CN105964303 A CN 105964303A
Authority
CN
China
Prior art keywords
macrocyclic compound
oxygen reduction
reduction catalyst
mass parts
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610315594.4A
Other languages
English (en)
Other versions
CN105964303B (zh
Inventor
张叶臻
丁呈华
孙汝中
谢海泉
柳文敏
罗保民
孙瑞雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanyang Normal University
Original Assignee
Nanyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanyang Normal University filed Critical Nanyang Normal University
Priority to CN201610315594.4A priority Critical patent/CN105964303B/zh
Publication of CN105964303A publication Critical patent/CN105964303A/zh
Application granted granted Critical
Publication of CN105964303B publication Critical patent/CN105964303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提出了一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其是通过在石墨粉中加入浓硫酸、五氧化二磷、过硫酸钾,通过加热搅拌得到预氧化石墨,再加入浓硫酸、高锰酸钾反应后再加入过氧化氢溶液、盐酸溶液透析后得到氧化石墨,再在氧化石墨中加入分散剂和大环化合物进行超声分散后,加入绿色还原剂反应,最后洗涤干燥得到最终产物。本发明利用溶剂热法或者水热法实现大环化合物修饰石墨烯的一步合成,条件温和,不需要高温或高压,工艺简单,易于工业化生产,制得的催化剂催化效果好。

Description

一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备 方法
技术领域
本发明涉及新能源材料,具体涉及一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法。
背景技术
随着经济的发展,能源短缺和环境污染问题日益严重,寻找环境友好的可持续能源迫在眉睫。其中,燃料电池作为清洁能源的一种受到广大研究者的青睐和重视。由于氧气在自然界中广泛存在,方便易得,具有较高的氧化还原电位,并且其还原的产物为水,清洁无污染,所以被公认为最佳的燃料电池阴极电子受体。但在常温常压下,氧气发生还原反应的过电势较高,需要催化剂来提高其反应速率,最常用的催化剂是贵金属铂。然而,由于贵金属铂存在资源有限、价格昂贵、长期运行稳定性差等问题,使用受到了严重限制,所以开发可以取代金属铂的高效、低成本、长使用寿命的氧还原催化剂成为关键。
大环化合物修饰的碳材料被认为是有可能取代金属铂的有效催化剂之一,已有大量研究报道(S.Lj. Gojkovic´, S. Gupta, R.F. Savinell, Heat-treated iron(III)tetramethoxyphenyl porphyrin chloride supported on high-area carbon as anelectrocatalyst for oxygen reduction, Journal of Electroanalytical Chemistry,1999, 462:63-72)。其中,石墨烯作为一种新型碳纳米材料,其良好的导电性有利于电子的传导、极大的比表面积可以提高负载催化剂的分散程度,从而提高催化剂的催化活性。同时,石墨烯高的机械强度和稳定的电化学性能可以有效避免由于载体被破坏而导致的催化剂损失,从而提高催化剂的稳定性。并且,石墨烯含有丰富的π电子,可以和多环芳烃类化合物发生π-π共轭作用而复合。所以,石墨烯更适合用作大环化合物的载体用于氧还原催化研究。
但是,目前大环化合物修饰石墨烯氧还原催化剂的制备过程往往需要先合成石墨烯,再和大环化合物复合,增加了生产成本和工艺复杂度,并且石墨烯的合成过程常需要使用有毒的还原剂水合肼,其对人体危害大。因此,急需开发一种工艺简单、成本低、绿色的制备方法。
发明内容
本发明的目的是提供一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法。该方法工艺简单、成本低、绿色环保,并且合成的产物对氧气还原有很好的催化性能。本发明制备的催化剂可应用于微生物燃料电池、醇类燃料电池等领域。
本说明所采取的技术方案如下:
一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,采用以下方法步骤:
⑴.在质量份为1的天然石墨粉中加入质量份比为5~20:1~3:1~3的浓硫酸、五氧化二磷、过硫酸钾,油浴加热50~100℃,磁力搅拌,降至室温洗涤、干燥,得到预氧化石墨;
⑵.在上述得到的预氧化石墨中加入质量份为20~80的浓硫酸和质量份为3~10的高锰酸钾,控制温度低于20℃,然后30~50℃油浴反应1~10 h,用水稀释,控制整个过程温度不高于50℃;
加入浓度为30%、质量份为3~10的过氧化氢溶液,等溶液变成亮黄色,再加入浓度为12mol/L、质量份为50~100的盐酸溶液,然后装入透析袋透析,透析结束后,将溶液干燥得到氧化石墨;
⑶.将步骤⑵所得的氧化石墨中加入分散剂和大环化合物,超声分散,氧化石墨与大环化合物的质量份比为10~2000:1;
⑷.在步骤⑶得到的溶液中加入绿色还原剂,转移到反应釜中,在50~200℃下反应1~24小时,氧化石墨与绿色还原剂的质量份比为1:10~50;
⑸.将步骤⑷得到的产物洗涤干燥,即得到大环化合物修饰石墨烯氧还原催化剂。
所述大环化合物为酞菁、卟啉及其衍生物、金属配合物的一种或一种以上。
所述金属配合物包括铁、钴、镍、铜、锌或锰的配合物。
所述绿色还原剂为氢碘酸、抗坏血酸、茶多酚、黄酮类、尿酸、谷胱甘肽的一种或一种以上。
所述分散剂为水、甲醇、乙醇、异丙醇、正己烷或十二烷基硫酸钠的水溶液。
所述超声分散是指超声时间为1~50h,超声波功率为200~600W,超声温度为室温。
本说明采用上述技术方案具有的有益效果为:
⑴.本发明利用绿色还原剂,环保无污染;
⑵.本发明利用溶剂热法或者水热法实现大环化合物修饰石墨烯的一步合成,条件温和,不需要高温或高压,工艺简单,易于工业化生产;
⑶.本发明制备的大环化合物修饰石墨烯对氧气还原有很好的催化效果,可取代金属铂催化剂,降低成本;
⑷.本发明制备的大环化合物修饰的石墨烯复合材料,可以应用于质子交换膜燃料电池、微生物燃料电池以及甲醇燃料电池等领域,具有广阔的应用前景。
附图说明
图1 表示本发明实施例二制备的石墨烯的TEM(a)和EDS(c)图和实施例三制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的TEM(b)和EDS(d)图;
图2 表示本发明实施例三制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯在N2(点线)和O2(实线)饱和的中性磷酸缓冲溶液中的循环伏安图;
图3表示本发明实施例三制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯在0.1 mol L-1KOH溶液中循环1圈(实线)和5000圈(虚线)后的循环伏安图;
图4表示本发明实施例三制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯(实线)和商用Pt/C催化剂(虚线)通一氧化碳的电流-时间曲线图。
具体实施方式
下面对本发明一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法作具体说明。
实施例1
取6 g石墨粉于烧瓶中,加入24 mL浓硫酸、5 g过硫酸钾和5 g五氧化二磷,混合均匀后80℃加热5 h。冷却至室温后,加入1 L水稀释,然后抽滤洗涤,烘干,得到预氧化石墨。
将上述得到的预氧化石墨中加入240 mL浓硫酸,再缓慢加入30 g高锰酸钾,控制温度低于20℃,然后转入油浴锅中35℃反应2 h,然后加水稀释,控制整个过程温度不高于50℃。
加入40 ml浓度为30%的双氧水,溶液变为亮黄色,最后加入180 mL浓度为12 mol/L的浓盐酸和1820 mL的去离子水,将得到的分散液装入透析袋透析,透析结束后,将溶液干燥得到氧化石墨。
实施例2
称取实施例1中的氧化石墨20 mg,加入10 ml去离子水,超声分散1 h(300 W),然后加入0.25 g抗坏血酸,迅速转入到反应釜中100℃下加热2 h,冷却到室温,洗涤干燥,得到石墨烯;
实施例3
⑴.称取实施例1中的氧化石墨20 mg,加入10 ml去离子水,再加入1 mg酞菁铁(III)-4,4′,4′′,4′′′-四磺酸(购于sigma aldrich),超声分散1 h(300 W),得到酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰的氧化石墨烯溶液;
⑵.将上述溶液中加入0.25 g抗坏血酸,转入到反应釜中100℃下加热2 h,冷却到室温,洗涤干燥,得到酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰的石墨烯;
图1是本发明实施例2制备的石墨烯的TEM(a)和EDS(c)图和实施例3制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的TEM(b)和EDS(d)图,表明酞菁铁(III)-4,4′,4′′,4′′′-四磺酸已经成功修饰到石墨烯表面。
实施例4
将实施例3中制备的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰的石墨烯均匀分散于0.1% nafion溶液中,得到1 mg/mL的悬浊液,用移液枪取2 μL此悬浊液滴涂到玻碳电极的表面,在红外灯下干燥,得到酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的复合物修饰的玻碳电极。
实施例5
酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的制备如实施例3所述。采用三电极体系,表征实施例四中得到的修饰电极的催化氧还原特性。以酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的复合物修饰的玻碳电极为工作电极,银/氯化银(3M)为参比电极,铂电极为辅助电极,在中性磷酸缓冲溶液(pH=7)中进行测试。
先将中性磷酸缓冲溶液中通氮气15分钟,以除去溶液中的氧气,然后记录下工作电极在氮气饱和状态下的循环伏安图。再将溶液中通入氧气15分钟,记录下电极在氧气饱和状态下的循环伏安图。通过无氧和有氧两种状态的比较,可以得出酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯对氧还原的催化特性。由图2知,该催化剂对氧还原有很好的催化活性。
实施例6
采用三电极体系,以0.1 mol/L氢氧化钾溶液为电解质溶液,表征实施例3中得到的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的稳定性。图3是该复合物循环1圈和5000圈后的循环伏安图。其中,实线是修饰电极循环1圈所得,虚线是循环5000圈后所得。从图上可以看出,经过5000圈的循环,该复合物对氧还原的催化电流和电位几乎没有改变,仍有十分良好的催化性能, 表明该复合物有很好的电化学稳定性。
实施例7
采用三电极体系,以0.1 mol/L氢氧化钾溶液为电解质溶液,表征实施例3中得到的酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯的抗一氧化碳中毒性。工作电极分别为酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯和商用Pt/C催化剂。向电极施加-0.15 V的恒定电压,将0.1 mol/L氢氧化钾溶液中通入氧气15分钟,使氧气达到饱和状态,250秒后通入5体积份氧气和1体积份一氧化碳。图4是酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯(实线)和商用Pt/C催化剂(点线)通一氧化碳的电流-时间曲线。由图可知,一氧化碳可以使商用Pt/C催化剂中毒,但是对酞菁铁(III)-4,4′,4′′,4′′′-四磺酸修饰石墨烯影响不大,其抗一氧化碳中毒能力远远优于商用Pt/C催化剂。
实施例8
⑴.称取20 mg氧化石墨,加入10 ml甲醇,再加入1 mg酞菁铜,超声分散1 h(400W),得到酞菁铜修饰的氧化石墨烯;
⑵.将上述溶液中加入0.35 g茶多酚,转入到反应釜中100℃下加热5 h,得到酞菁铜修饰的石墨烯;
⑶.将上述产物洗涤干燥,用于氧气还原催化。测试条件与实施例3-7相同,结果显示酞菁铜修饰的石墨烯在不同介质中对氧还原有很好的催化活性,同时显示了很好的电化学稳定性和抗一氧化碳中毒性。
实施例9
⑴.称取20 mg氧化石墨,加入10 ml去离子水,再加入1 mg钴卟啉,超声分散2 h(300W),得到钴卟啉修饰的氧化石墨烯溶液;
⑵.将上述溶液中加入0.2 g抗坏血酸,转入到反应釜中100℃下加热3 h,得到钴卟啉修饰的石墨烯;
⑶.将上述产物洗涤干燥,用于氧气还原催化。测试条件与实施例3-7相同,结果显示钴卟啉修饰的石墨烯在不同介质中对氧还原有很好的催化活性,同时显示了很好的电化学稳定性和抗一氧化碳中毒性。

Claims (6)

1.一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是采用以下方法步骤:
⑴.在质量份为1的天然石墨粉中加入质量份比为5~20:1~3:1~3的浓硫酸、五氧化二磷、过硫酸钾,油浴加热50~100℃,磁力搅拌,降至室温洗涤、干燥,得到预氧化石墨;
⑵.在上述得到的预氧化石墨中加入质量份为20~80的浓硫酸和质量份为3~10的高锰酸钾,控制温度低于20℃,然后30~50℃油浴反应1~10 h,用水稀释,控制整个过程温度不高于50℃;
加入浓度为30%、质量份为3~10的过氧化氢溶液,等溶液变成亮黄色,再加入浓度为12mol/L、质量份为50~100的盐酸溶液,然后装入透析袋透析,透析结束后,将溶液干燥得到氧化石墨;
⑶.将步骤⑵所得的氧化石墨中加入分散剂和大环化合物,超声分散,氧化石墨与大环化合物的质量份比为10~2000:1;
⑷.在步骤⑶得到的溶液中加入绿色还原剂,转移到反应釜中,在50~200℃下反应1~24小时,氧化石墨与绿色还原剂的质量份比为1:10~50;
⑸.将步骤⑷得到的产物洗涤干燥,即得到大环化合物修饰石墨烯氧还原催化剂。
2.根据权利要求1所述的一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是所述大环化合物为酞菁、卟啉及其衍生物、金属配合物的一种或一种以上。
3.根据权利要求2所述的一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是所述金属配合物包括铁、钴、镍、铜、锌或锰的配合物。
4.根据权利要求1所述的一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是所述绿色还原剂为氢碘酸、抗坏血酸、茶多酚、黄酮类、尿酸、谷胱甘肽的一种或一种以上。
5.根据权利要求1所述的一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是所述分散剂为水、甲醇、乙醇、异丙醇、正己烷或十二烷基硫酸钠的水溶液。
6.根据权利要求1所述的一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法,其特征是所述超声分散是指超声时间为1~50h,超声波功率为200~600W,超声温度为室温。
CN201610315594.4A 2016-05-13 2016-05-13 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法 Expired - Fee Related CN105964303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610315594.4A CN105964303B (zh) 2016-05-13 2016-05-13 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610315594.4A CN105964303B (zh) 2016-05-13 2016-05-13 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN105964303A true CN105964303A (zh) 2016-09-28
CN105964303B CN105964303B (zh) 2018-08-17

Family

ID=56992555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610315594.4A Expired - Fee Related CN105964303B (zh) 2016-05-13 2016-05-13 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN105964303B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878906A (zh) * 2018-06-20 2018-11-23 重庆大学 溶剂热法制备Fe-N-C型碳质氧还原催化剂的方法
CN110803699A (zh) * 2019-11-08 2020-02-18 江苏科技大学 一种用于海水淡化的复合炭材料及其制备方法
CN111342057A (zh) * 2020-02-18 2020-06-26 江苏理工学院 一种金属卟啉修饰的硫掺杂还原氧化石墨烯电催化剂的制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773855A (zh) * 2010-01-19 2010-07-14 华南理工大学 大环化合物修饰石墨烯的氧还原催化剂及其制备方法
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN104409569A (zh) * 2014-11-20 2015-03-11 齐鲁工业大学 三维网络结构石墨烯-银复合材料的绿色制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773855A (zh) * 2010-01-19 2010-07-14 华南理工大学 大环化合物修饰石墨烯的氧还原催化剂及其制备方法
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN104409569A (zh) * 2014-11-20 2015-03-11 齐鲁工业大学 三维网络结构石墨烯-银复合材料的绿色制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878906A (zh) * 2018-06-20 2018-11-23 重庆大学 溶剂热法制备Fe-N-C型碳质氧还原催化剂的方法
CN110803699A (zh) * 2019-11-08 2020-02-18 江苏科技大学 一种用于海水淡化的复合炭材料及其制备方法
CN111342057A (zh) * 2020-02-18 2020-06-26 江苏理工学院 一种金属卟啉修饰的硫掺杂还原氧化石墨烯电催化剂的制备方法与应用

Also Published As

Publication number Publication date
CN105964303B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
Noori et al. V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater
Hu et al. Propagating Fe-N4 active sites with Vitamin C to efficiently drive oxygen electrocatalysis
Ayyaru et al. A non-noble V2O5 nanorods as an alternative cathode catalyst for microbial fuel cell applications
Chen et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery
CN102451727B (zh) 一种m/n-c催化剂及其制备和应用
CN110838588B (zh) 一种可充式锌空电池双功能催化剂及其制备方法与应用
CN105148991B (zh) 一种氮/硫/氯共掺杂多级孔碳催化剂及其制备方法
CN105680060B (zh) 一种氮、硫或氯掺杂三维多孔石墨烯催化剂的制备及应用
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN107335451B (zh) 铂/二硫化钼纳米片/石墨烯三维复合电极催化剂的制备方法
CN107808963A (zh) 一种氧还原/氧析出双功能催化剂制备方法
CN104269566A (zh) 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
CN101773855A (zh) 大环化合物修饰石墨烯的氧还原催化剂及其制备方法
CN107694581A (zh) 杂原子掺杂的多孔碳包覆磷化亚铜复合型催化剂的应用
CN102166523B (zh) 一种镍纳米粒子负载多壁碳纳米管催化剂制备方法
CN106684396A (zh) 一种花生壳制备双功能催化剂的方法
CN109718822A (zh) 一种制备金属-碳复合催化材料的方法及其应用
Xu et al. Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries
Zhu et al. Nickel‐Doped Carbon Dots as an Efficient and Stable Electrocatalyst for Urea Oxidation
Wang et al. A pyridine-Fe gel with an ultralow-loading Pt derivative as ORR catalyst in microbial fuel cells with long-term stability and high output voltage
Gong et al. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range
Chen et al. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode
Xie et al. Metal-organic framework derived Fe3C nanoparticles coupled single-atomic iron for boosting oxygen reduction reaction
CN105964303B (zh) 一种绿色合成大环化合物修饰石墨烯氧还原催化剂的制备方法
Li et al. TEA driven C, N co-doped superfine Fe3O4 nanoparticles for efficient trifunctional electrode materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180817

Termination date: 20190513

CF01 Termination of patent right due to non-payment of annual fee