CN105964278B - 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法 - Google Patents

一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN105964278B
CN105964278B CN201610311075.0A CN201610311075A CN105964278B CN 105964278 B CN105964278 B CN 105964278B CN 201610311075 A CN201610311075 A CN 201610311075A CN 105964278 B CN105964278 B CN 105964278B
Authority
CN
China
Prior art keywords
dimensional
catalyst
solid solution
nano composite
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610311075.0A
Other languages
English (en)
Other versions
CN105964278A (zh
Inventor
王连英
刘改利
王东阳
魏博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610311075.0A priority Critical patent/CN105964278B/zh
Publication of CN105964278A publication Critical patent/CN105964278A/zh
Application granted granted Critical
Publication of CN105964278B publication Critical patent/CN105964278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法。本发明是以锌盐、钴盐和水杨酸盐为原料,首先共沉淀法合成水杨酸根插层的层状双金属氢氧化锌钴前驱体,以该前驱体与H2S气体经气固相反应后,再在惰性气体氛围中焙烧得到一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂。该催化剂稳定性高,并具有较大的比表面积,其中固溶体纳米粒子尺寸均匀,粒径较小,为3‑5nm。用石墨碳来作为基底,维持了材料的一维特性,显著提高了材料的导电性和稳定性。该催化剂具有较强的光催化能力,尤其在可见光下具有显著的光催化活性。与常见的合成方法相比,无需引入模板剂、修饰剂,绿色经济,并且原料易得,成本低廉,适合大规模生产。

Description

一种一维Zn1-xCoxS固溶体与碳纳米复合光催化剂及其制备 方法
技术领域
本发明属于光催化剂制备技术领域,具体涉及一种一维的Zn1-xCoxS固溶体与碳纳米复合光催化剂及其制备方法。
背景技术
ZnS是具有直接宽带隙的半导体材料,有较大的禁带宽度(3.66eV)。作为一种过渡金属硫化物,ZnS具有许多优异的特性,其中光催化是其独特的性能之一。 ZnS在紫外光照射激发及牺牲剂存在的情况下具有很强的光催化活性,但是ZnS 的宽禁带限制了其对可见光的吸收。由于固溶体能同时调节半导体的价带和导带位置,由其它金属阳离子置换ZnS中的锌离子所形成固溶体纳米粒子,可以缩小其禁带宽度,扩大其对可见光的吸收,从而增强光催化能力。
碳材料(如CNT、CNF、graphene)具有独特的结构和优异的性能,如大的比表面积,良好的化学稳定性和热稳定性,较大的机械强度和电子传输能力等,是一种具有良好发展前景的催化剂载体。将固溶体和碳材料复合在一起,则可以进一步改善其优异的性能。现有的制备方法需用高温高压,条件苛刻,并且由于团聚所导致的大的粒子尺寸(约为100nm),限制了其光催化活性的进一步提高。
发明内容
本发明的目的在于提供一种一维Zn1-xCoxS固溶体与碳纳米复合光催化剂及其制备方法。
本发明是以锌盐、钴盐和水杨酸盐为原料,首先共沉淀法合成水杨酸根插层的层状双金属氢氧化锌钴前驱体,以该前驱体与H2S气体经气固相反应后,再在惰性气体氛围中焙烧得到一维Zn1-xCoxS固溶体与碳纳米复合光催化剂。
本发明合成的一维Zn1-xCoxS固溶体与碳纳米复合光催化剂为一维的纳米棒状,直径为40-60nm,Zn1-xCoxS固溶体均匀的分散在石墨碳基底内;该催化剂的比表面积为96-165m2/g;所述的Zn1-xCoxS固溶体由部分的Co2+置换ZnS晶格中的 Zn2+形成,粒子尺寸为3-5nm,其中Co2+占(Zn2++Co2+)摩尔百分比为5-30%,即x=5-30%。
本发明所述的一维Zn1-xCoxS固溶体与碳纳米复合光催化剂的制备方法,其具体步骤如下:
1)将总浓度为0.1-0.5mol·L-1的无机锌盐和金属钴盐的混合溶液与浓度为 0.2-2.5mol·L-1的水杨酸盐溶液在四口烧瓶中均匀混合,无机锌盐和金属钴盐的摩尔数之和与水杨酸盐的摩尔数之比为1:2-5,其中锌离子和钴离子的摩尔比为 10:0.5-3;然后使用浓度为0.1-0.5mol·L-1的碱溶液调节混合溶液的pH值为5-8, 25-100℃下反应12-36h,产物用去离子水离心洗涤,干燥,得到水杨酸根插层的一维双金属层状氢氧化锌钴前驱体;
2)将制得的水杨酸根插层的一维双金属层状氢氧化锌钴前驱体放置于广口瓶中,以5-100mL·min-1的流速向瓶内通入H2S气体反应1-30分钟,待反应完全后,于管式炉中300-400℃温度下惰性气体氛围中焙烧0.5-8h,得到一维Zn1-xCoxS固溶体与碳纳米复合光催化剂。
步骤1)中所述的无机锌盐选自硝酸锌、氯化锌、硫酸锌中的一种或几种。
步骤1)中所述的金属钴盐选自Co(NO3)2、CoCl2、CoSO4中的一种或几种。
步骤1)中所述的水杨酸盐为水杨酸钠、水杨酸钾中的一种或两种。
步骤1)中所述的碱溶液为NaOH、KOH、或尿素溶液。
步骤2)中所述的惰性气体为氮气、氩气。
本发明的有益效果在于:本发明以有机小分子为碳源,利用原位固相法制备了新型的一维Zn1-xCoxS固溶体与碳纳米复合光催化剂。该催化剂稳定性高,并具有较大的比表面积,其中固溶体纳米粒子尺寸均匀,粒径较小,为3-5nm。用石墨碳来作为基底,维持了材料的一维特性,显著提高了材料的导电性和稳定性。该催化剂具有较强的光催化能力,尤其在可见光下具有显著的光催化活性。与常见的合成方法相比,无需引入模板剂、修饰剂,本发明方法步骤简单可控,绿色经济,并且原料易得,成本低廉,工艺简单,适合大规模生产。
附图说明
图1是400℃下实施例1制得的一维Zn0.8Co0.2S/C纳米复合光催化剂和ZnS/C 的XRD图片,上方曲线为Zn0.8Co0.2S/C,下面的曲线为ZnS/C。
图2是实施例1制得的一维Zn0.8Co0.2S/C纳米复合光催化剂和ZnS/C的(111) 晶面XRD图片,上方曲线为Zn0.8Co0.2S/C,下面的曲线为ZnS/C。
图3是实施例1制得的一维Zn0.8Co0.2S/碳纳米复合光催化剂的SEM图片(上) 和HRTEM图片(下)。
图4是实施例1制得的一维Zn0.8Co0.2S/碳纳米复合光催化剂的拉曼谱图。
图5是实施例1制得的一维Zn0.8Co0.2S/碳纳米复合光催化剂降解亚甲基蓝溶液的浓度变化。
图6为是实施例1制得的一维Zn0.8Co0.2S/碳纳米复合光催化剂的SEM图片。
具体实施方式
实施例1
1)称取4.7598g Zn(NO3)2·6H2O、1.1641g Co(NO3)2·6H2O和6.4044g水杨酸钠,室温下将Zn(NO3)2·6H2O和Co(NO3)2·6H2O溶于100mL去离子水中配制成混合盐溶液,将水杨酸钠溶于150mL去离子水中配制成盐溶液,将配制好的两种盐溶液倒入四口烧瓶中,并开始用电动搅拌器匀速转动,使盐溶液混合均匀;
2)称取2g NaOH溶于100mL去离子水中配制成碱液,以2滴/s的滴速向混合盐溶液中滴加,溶液中开始有粉红色沉淀逐渐析出,调节溶液的pH值为6.8,升高温度至90℃,在此温度下反应24小时,反应结束后,将沉淀物取出,离心分离,用去离子水洗涤3次,产物在50℃下烘干6小时,得到水杨酸根插层的一维双金属层状氢氧化锌钴前驱体。
3)将步骤2)制得的水杨酸根插层的一维层状前驱体放置于反应装置中,室温下通入流速为20mL·min-1的H2S气体反应10分钟,然后通入N2气体1小时除去残余的H2S气体。
4)将步骤3)制得的样品放置于管式炉中,在400℃条件下,在氮气气氛下焙烧2h得到钴掺杂的一维Zn0.8Co0.2S固溶体与碳纳米复合光催化剂。
5)称取步骤4)制得的光催化剂30mg分散到盛有50mL 20mg/L的亚甲基蓝溶液的双层光催化反应容器中,暗箱中搅拌30min,使其达到吸脱附平衡。在持续搅拌的条件下,将光催化反应器放置于可见光灯下,并通入循环水保持恒温。然后每隔半个小时移取2ml溶液,用紫外分光光度计测定亚甲基蓝溶液的浓度变化,来评价该纳米复合光催化剂的光催化活性。
从图1可以看出,XRD衍射峰除了立方晶相ZnS(111)、(220)、(311)的三个明显晶面衍射峰外,还有石墨碳(120)的衍射峰,没有其他杂相峰,且掺入Co2+后仍保持ZnS的立方晶相结构,说明该纳米复合材料主要由单相固溶体纳米粒子和碳组成。
从图2中(111)晶面衍射峰的偏移可以明显看出ZnS中Co2+置换了Zn2+,是由于Co2+离子半径比Zn2+ 的离子半径稍小,会导致晶格常数的稍微变化。
从图3(上)可以看出,Zn0.8Co0.2S固溶体与碳纳米复合光催化剂为一维纳米棒状结构,表面粗糙,直径约为50nm,测其比表面积为162.326m2/g。从图3(下) HRTEM照片可以看出固溶体纳米粒子均匀的分布在碳基底内,结合谢乐公式和 (111)晶面的半峰宽,计算所得纳米粒子的尺寸为4.12nm。层间距为0.308nm,略小于ZnS(JCPDF 05-0566)的0.312nm。这是由于离子半径稍小的Co2+离子置换了Zn2+离子,导致了层间距的减小,与XRD结果相一致。
从图4拉曼谱图可以看出,Zn0.8Co0.2S固溶体与碳纳米复合光催化剂在 1590cm-1处有一处宽峰出现而在2900cm-1处有突起,1590cm-1处为石墨碳G峰的特征峰,出峰宽且强度不高,证明有少量石墨层出现,2900cm-1处为石墨碳的2D 峰。
从图5可以看出,Zn0.8Co0.2S固溶体与碳纳米复合光催化剂与在相同条件下制得的纯ZnS/碳纳米复合光催化剂相比,于可见光下降解染料亚甲基蓝的速率明显增大,4小时后降解率达到96.55%,几乎降解完全,光催化效果显著。
实施例2
1)称取5.3548g Zn(NO3)2·6H2O、0.5821g Co(NO3)2·6H2O和9.6066g水杨酸钠,室温下将Zn(NO3)2·6H2O和Co(NO3)2·6H2O溶于100mL去离子水中配制成混合盐溶液,将水杨酸钠溶于150mL去离子水中配制成盐溶液,将配制好的两种盐溶液倒入四口烧瓶中,并开始用电动搅拌器匀速转动,使盐溶液混合均匀;
2)称取2g NaOH溶于100mL去离子水中配制成碱液,以2滴/s的滴速向混合盐溶液中滴加,溶液中开始有粉红色沉淀逐渐析出,调节溶液的pH值为6.7,升高温度至90℃,在此温度下反应24小时,反应结束后,将沉淀物取出,离心分离,用去离子水洗涤3次,产物在50℃下烘干6小时,得到一维层状双金属氢氧化锌镍前驱体。
3)将步骤2)制得的水杨酸根插层的一维层状前驱体放置于反应装置中,室温下通入流速为20mL·min-1的H2S气体反应10分钟,然后通入N2气体中1小时除去残余的H2S气体。
4)将步骤3)制得的样品放置于管式炉中,在300℃条件下,在氮气气氛下焙烧2h得到钴掺杂的一维Zn0.9Co0.1S固溶体与碳纳米光催化剂。
5)称取步骤4)制得的光催化剂30mg分散到盛有50mL 20mg/L的亚甲基蓝溶液的双层光催化反应容器中,暗箱中搅拌30min,使其达到吸脱附平衡。在持续搅拌的条件下,将光催化反应器放置于可见光灯下,并通入循环水保持恒温。然后每隔半个小时移取2ml溶液,用紫外分光光度计测定亚甲基蓝溶液的浓度变化,来评价该纳米复合光催化剂的光催化活性。
实施例3
1)称取4.1649g Zn(NO3)2·6H2O、1.7462g Co(NO3)2·6H2O和9.6066g水杨酸钠,室温下将Zn(NO3)2·6H2O和Co(NO3)2·6H2O溶于100mL去离子水中配制成混合盐溶液,将水杨酸钠溶于150mL去离子水中配制成盐溶液,将配制好的两种盐溶液倒入四口烧瓶中,并开始用电动搅拌器匀速转动,使盐溶液混合均匀;
2)称取2g NaOH溶于100mL去离子水中配制成碱液,以2滴/s的滴速向混合盐溶液中滴加,溶液中开始有粉红色沉淀逐渐析出,调节溶液的pH值为6.7,升高温度至90℃,在此温度下反应24小时,反应结束后,将沉淀物取出,离心分离,用去离子水洗涤3次,产物在50℃下烘干6小时,得到一维层状双金属氢氧化锌镍前驱体。
3)将步骤2)制得的水杨酸根插层的一维层状前驱体放置于反应装置中,室温下通入流速为20mL·min-1的H2S气体反应10分钟,然后通入N2气体中1小时除去残余的H2S气体。
4)将步骤3)制得的样品放置于管式炉中,在300℃条件下,在氮气气氛下焙烧2h得到钴掺杂的一维Zn0.7Co0.3S固溶体与碳纳米光催化剂。
5)称取步骤4)制得的光催化剂30mg分散到盛有50mL 20mg/L的亚甲基蓝溶液的双层光催化反应容器中,暗箱中搅拌30min,使其达到吸脱附平衡。在持续搅拌的条件下,将光催化反应器放置于可见光灯下,并通入循环水保持恒温。然后每隔半个小时移取2ml溶液,用紫外分光光度计测定亚甲基蓝溶液的浓度变化,来该评价纳米复合光催化剂的光催化活性。

Claims (6)

1.一种一维Zn1-xCoxS固溶体与碳纳米复合光催化剂,其特征在于,该催化剂为一维的纳米棒状,直径为40-60nm,Zn1-xCoxS固溶体均匀的分散在石墨碳基底内;该催化剂的比表面积为96-165m2/g;所述的Zn1-xCoxS固溶体由部分的Co2+置换ZnS晶格中的Zn2+形成,固溶体粒子尺寸为3-5nm,其中Co2+占(Zn2+ + Co2+)摩尔百分比为5-30%,即x=5-30%。
2.一种一维Zn1-xCoxS固溶体与碳纳米复合光催化剂的制备方法,其特征在于,其具体步骤如下:
1)将总浓度为0.1-0.5mol·L-1的无机锌盐和金属钴盐的混合溶液与浓度为0.2-2.5mol·L-1的水杨酸盐溶液在四口烧瓶中均匀混合,无机锌盐和金属钴盐的摩尔数之和与水杨酸盐的摩尔数之比为1:2-5,其中锌离子和钴离子的摩尔比为10:0.5-3;然后使用浓度为0.1-0.5mol·L-1的碱溶液调节混合溶液的pH值为5-8,25-100℃下反应12-36h,产物用去离子水离心洗涤,干燥,得到水杨酸根插层的一维双金属层状氢氧化锌钴前驱体;
2)将制得的水杨酸根插层的一维双金属层状氢氧化锌钴前驱体放置于广口瓶中,以5-100 mL·min-1 的流速向瓶内通入H2S气体反应1-30分钟,待反应完全后,于管式炉中300-400℃温度下惰性气体氛围中焙烧0.5-8h,得到一维Zn1-xCoxS固溶体与碳纳米复合光催化剂。
3.根据权利要求2所述的制备方法,其特征在于,步骤1)中所述的无机锌盐选自硝酸锌、氯化锌、硫酸锌中的一种或几种。
4.根据权利要求2所述的制备方法,其特征在于,步骤1)中所述的金属钴盐选自Co(NO3)2、CoCl2、CoSO4中的一种或几种。
5.根据权利要求2所述的制备方法,其特征在于,步骤1)中所述的水杨酸盐为水杨酸钠、水杨酸钾中的一种或两种。
6.根据权利要求2所述的制备方法,其特征在于,步骤2)中所述的惰性气体氛围为氮气、氩气。
CN201610311075.0A 2016-05-11 2016-05-11 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法 Active CN105964278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610311075.0A CN105964278B (zh) 2016-05-11 2016-05-11 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610311075.0A CN105964278B (zh) 2016-05-11 2016-05-11 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105964278A CN105964278A (zh) 2016-09-28
CN105964278B true CN105964278B (zh) 2018-02-13

Family

ID=56991610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610311075.0A Active CN105964278B (zh) 2016-05-11 2016-05-11 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN105964278B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611658B (zh) * 2018-05-03 2020-04-28 北京化工大学 一种一维多孔纳米复合材料及其制备方法和在电解水中的应用
CN109806888B (zh) * 2019-02-23 2021-03-30 华南理工大学 1T-MoS2改性的ZnCoS固溶体空心十二面体纳米复合材料及其制备方法与应用
CN111266114A (zh) * 2020-03-17 2020-06-12 北京化工大学 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159254A (zh) * 2013-03-18 2013-06-19 新疆大学 一种固相制备硫化镉/氧化石墨复合材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137598A (ja) * 1996-11-15 1998-05-26 Catalysts & Chem Ind Co Ltd 水素化処理触媒の硫化方法およびそれを用いた炭化水素油の水素化処理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159254A (zh) * 2013-03-18 2013-06-19 新疆大学 一种固相制备硫化镉/氧化石墨复合材料的方法

Also Published As

Publication number Publication date
CN105964278A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Huang et al. ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction
Zhang et al. Metal-organic framework-derived multifunctional photocatalysts
Yu et al. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation
Balachandran et al. The simple, template free synthesis of a Bi 2 S 3–ZnO heterostructure and its superior photocatalytic activity under UV-A light
Song et al. Photocatalytic activities of Cd-doped ZnWO4 nanorods prepared by a hydrothermal process
Chen et al. Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator
Liu et al. Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods
Lam et al. Investigation on visible-light photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites
Bak et al. Facile fabrication of pseudo-microspherical ZnO/CdS core-shell photocatalysts for solar hydrogen production by water splitting
Lin et al. Ag3PO4 quantum dots sensitized AgVO3 nanowires: A novel Ag3PO4/AgVO3 nanojunction with enhanced visible-light photocatalytic activity
Gong et al. Controlled synthesis of bismuth-containing compounds (α-, β-and δ-Bi 2 O 3, Bi 5 O 7 NO 3 and Bi 6 O 6 (OH) 2 (NO 3) 4· 2H 2 O) and their photocatalytic performance
Xu et al. New insights into Ag-doped BiVO 4 microspheres as visible light photocatalysts
CN103950969B (zh) 一种多级多孔金属氧化物纳米材料的制备方法
Qin et al. Photocatalytic degradation of 2-Mercaptobenzothiazole by a novel Bi2WO6 nanocubes/In (OH) 3 photocatalyst: Synthesis process, degradation pathways, and an enhanced photocatalytic performance mechanism study
Alzamly et al. Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts
CN105540733A (zh) 一种TiO2-还原石墨烯复合材料及其制备方法和在人工海水体系中的应用
CN105964278B (zh) 一种一维Zn1‑xCoxS固溶体与碳纳米复合光催化剂及其制备方法
Song et al. Enhanced photocatalytic decomposition of an organic dye under visible light with a stable LaFeO3/AgBr heterostructured photocatalyst
Xing et al. Facile one-pot synthesis and photocatalytic properties of hierarchically structural BiVO 4 with different morphologies
Xia et al. Optimal rare-earth (La, Y and Sm) doping conditions and enhanced mechanism for photocatalytic application of ceria nanorods
Liang et al. One-step introduction of metallic Bi and non-metallic C in Bi 2 WO 6 with enhanced photocatalytic activity
CN105879884A (zh) 一维ZnS/CdS-C纳米复合材料及其制备方法
Liu et al. Synthesis and characterization of the efficient visible-light-induced photocatalyst AgBr and its photodegradation activity
Salari et al. Enhanced visible light photocatalytic activity of nano-BiOCl/BiVO4/Zeolite pn heterojunction and Ag/BiOCl/BiVO4 hybrid
Sun et al. Flower-like spherical ZnCdS/Bi2WO6/ZnAl-LDH with dual type II heterostructure as a photocatalyst for efficient photocatalytic degradation and hydrogen production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant