CN105951148B - 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法 - Google Patents

在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法 Download PDF

Info

Publication number
CN105951148B
CN105951148B CN201610381284.2A CN201610381284A CN105951148B CN 105951148 B CN105951148 B CN 105951148B CN 201610381284 A CN201610381284 A CN 201610381284A CN 105951148 B CN105951148 B CN 105951148B
Authority
CN
China
Prior art keywords
nanotubes
niti
test specimen
pretreatment
niti alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610381284.2A
Other languages
English (en)
Other versions
CN105951148A (zh
Inventor
杭瑞强
白龙
刘艳莲
张翔宇
黄晓波
唐宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610381284.2A priority Critical patent/CN105951148B/zh
Publication of CN105951148A publication Critical patent/CN105951148A/zh
Application granted granted Critical
Publication of CN105951148B publication Critical patent/CN105951148B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明公开了一种在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法,属于纳米材料制备技术领域,涉及一种新的Ni‑Ti‑O纳米管制备方法。包括如下步骤:首先将NiTi合金试件进行研磨和抛光预处理,然后将预处理的NiTi合金试件浸入含HCl和H2O的乙二醇电解液中,采用阳极氧化法在其表面制备Ni‑Ti‑O纳米管。通过优化制备工艺,纳米管的长度可达160µm,因此在超级电容器、传感器、电催化和生物医学等领域有广阔的应用前景。

Description

在NiTi合金表面制备超长Ni-Ti-O纳米管的方法
技术领域
本发明涉及一种在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,属于纳米材料制备技术领域。
背景技术
1999年,Zwilling及其合作者发现在含F离子的电解液中对纯Ti进行阳极氧化,可在其表面制备出有序的TiO2纳米管。随后的研究表明这种独特的纳米管状结构结合TiO2优异的生物相容性、耐腐蚀性和电学性质使其在染料敏化太阳能电池、气体传感、生物传感、光催化制氢、锂离子电池、生物医学涂层等领域具有广泛的应用前景。进一步研究发现,TiO2纳米管的各种性能可通过元素掺杂进一步提高,并有可能赋予其全新的性能。一种最直接和有效的掺杂方法是对Ti和各种掺杂元素的合金进行阳极氧化。已有工作表明,通过合适的阳极氧化工艺,可在TiZr、TiTa、TiPt、TiAu、TiNi、TiRu、TiCu、TiNb、TiW、TiAg、TiMo和TiAl等合金表面制备出有序的纳米管状结构。这些混合氧化物纳米管可提高TiO2纳米管的性能,或具备全新的性能。比如含0.2at%Au掺杂的TiO2纳米管光催化产氢的效率是纯TiO2纳米管的30倍,Ag2O掺杂的TiO2纳米管具有纯TiO2纳米管所不具备的长期抗菌性。
近等原子比的NiTi合金由于具有优良的力学性能、耐腐蚀性、形状记忆效应、超弹性和生物相容性等特性,因而在生物医学等领域具有广阔的发展前景。此外,Ni及其氧化物在超级电容器、电催化、传感器等领域也极具应用潜力。2010年,Kim等在含NH4F和H2O的乙二醇电解液中对NiTi合金进行阳极氧化,首次制备出了高度有序的Ni-Ti-O纳米管。并且发现该纳米管具有快速的充放电性能、优越的循环稳定性和高倍率放电性能,从而可以作为一种性能优异的电极材料应用于超级电容器领域。进一步的研究表明,Ni-Ti-O纳米管在电催化、葡萄糖传感器及生物医学涂层等领域也极具应用潜力。然而,目前制备Ni-Ti-O纳米管所采用的电解液均为含F离子的电解液,由于氟离子具有较强的侵蚀性,使纳米管的长度非常有限,最长只有1.3μm。而很多应用中,纳米管的长度和性能成正比关系,因此制备长度更长的Ni-Ti-O纳米管有望提高其各项性能。
发明内容
基于在含F离子的电解液中制备的Ni-Ti-O纳米管的长度非常有限,本发明旨在提供一种在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,极大地提高了其性能和应用前景。
本发明提供了一种在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,首先将NiTi合金试件进行研磨和抛光预处理,然后将预处理的NiTi合金试件浸入含HCl和H2O的乙二醇电解液中,采用阳极氧化法在其表面制备Ni-Ti-O纳米管。
所述制备超长Ni-Ti-O纳米管的方法,包括以下步骤:
(1) NiTi合金试件预处理:将NiTi合金试件进行机械研磨、抛光,然后依次浸入丙酮、酒精和蒸馏水中超声波清洗10min,得到预处理的NiTi合金试件;
(2) 将含1.0-6.2vol%浓盐酸(质量分数为37%)和2.0-8.0vol%H2O的乙二醇电解液放入到电解池内,将辅助电极和预处理的NiTi合金试件固定在支架上并浸入到电解液内,辅助电极和预处理的NiTi合金试件分别与电源的阴极和阳极连接;
(3)然后打开直流电源对预处理的NiTi合金试件进行阳极氧化处理以制备Ni-Ti-O纳米管,氧化电压为5-15V,氧化时间为5-400min,制得超长Ni-Ti-O纳米管。
上述制备方法中,所述辅助电极为石墨棒。
上述制备方法中,乙二醇电解液中浓盐酸含量为3.0-5.0vol%,H2O含量为4.0-6.0vol%。
上述制备方法中,氧化电压为8-12V,氧化时间为200-400min。
本发明的有益效果:
采用本发明制备的Ni-Ti-O纳米管长度可达160µm,是在含F离子的电解液中制备的纳米管长度的120倍以上,因此在超级电容器、传感器、电催化及生物医学等领域有更加广阔的应用前景。
附图说明
图1为本发明使用的阳极氧化设备示意图;
图2为实施例1中制备的Ni-Ti-O纳米管表面扫描电镜照片;
图3为实施例1中制备的Ni-Ti-O纳米管横截面扫描电镜照片。
图4为实施例2中制备的Ni-Ti-O纳米管表面扫描电镜照片;
图5为实施例2中制备的Ni-Ti-O纳米管横截面扫描电镜照片。
图1中:1- 试件,2- 辅助电极,3- 电解池,4- 支架,5- 直流电源,6- 电解液。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
现对直径为7.5mm、厚度为2mm的含50.8at%Ni的NiTi合金试件1进行试验,将合金试件作为工件极,与石墨棒辅助电极2放置在电解池3中,电解池3内为乙二醇电解液6,工件极与辅助电极通过电解池顶部的支架4固定,分别连接直流电源5的阳极和阴极。
具体操作步骤如下:
(1) NiTi合金试件预处理:将NiTi合金试件进行机械研磨、抛光,然后顺序浸入丙酮、酒精和蒸馏水中超声波清洗10min,得到预处理的NiTi合金试件;
(2) 将含4.2vol%浓盐酸(质量分数为37%)、2vol%H2O的乙二醇电解液6放入电解池3内,将辅助电极2和预处理的NiTi合金试件1固定在支架4上并将下端浸入到电解液6内,然后打开直流电源5对预处理的NiTi合金试件1进行阳极氧化处理以制备Ni-Ti-O纳米管,氧化电压为10V,氧化时间为320min。
经过上述处理,可在NiTi合金试件表面制备出超长的Ni-Ti-O纳米管。经扫描电子显微镜观察测定,纳米管的直径为70±10nm(图2),长度为160±3µm(图3)。
实施例2:
现对直径为7.5mm、厚度为2mm的含50.8at%Ni的NiTi合金试件1进行试验,将合金试件作为工件极,与石墨棒辅助电极2放置在电解池3中,电解池3内为乙二醇电解液6,工件极与辅助电极通过电解池顶部的支架4固定,分别连接直流电源5的阳极和阴极。
具体操作步骤如下:
(1) NiTi合金试件预处理:将NiTi合金试件进行机械研磨、抛光,然后顺序浸入丙酮、酒精和蒸馏水中超声波清洗10min,得到预处理的NiTi合金试件;
(2) 将含4.2vol%浓盐酸(质量分数为37%)、8.0vol%H2O的乙二醇电解液6放入电解池3内,将辅助电极2和预处理的NiTi合金试件1固定在支架4上并将下端浸入到电解液6内,然后打开直流电源5对预处理的NiTi合金试件1进行阳极氧化处理以制备Ni-Ti-O纳米管,氧化电压为10V,氧化时间为260min。
经过上述处理,可在NiTi合金试件表面制备出超长的Ni-Ti-O纳米管。经扫描电子显微镜观察测定,纳米管的直径为64±8nm(图4),长度为136±2µm(图5)。

Claims (4)

1.一种在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,其特征在于:首先将NiTi合金试件进行研磨和抛光预处理,然后将预处理的NiTi合金试件浸入含HCl和H2O的乙二醇电解液中,采用阳极氧化法在其表面制备Ni-Ti-O纳米管;
所述方法具体包括以下步骤:
(1) NiTi合金试件预处理:将NiTi合金试件进行机械研磨、抛光,然后依次浸入丙酮、酒精和蒸馏水中超声波清洗10min,得到预处理的NiTi合金试件;
(2) 将含1.0-6.2vol%浓盐酸和2.0-8.0vol%H2O的乙二醇电解液放入到电解池内,将辅助电极和预处理的NiTi合金试件固定在支架上并浸入到电解液内,辅助电极和预处理的NiTi合金试件分别与直流电源的阴极和阳极连接;
(3)打开直流电源对预处理的NiTi合金试件进行阳极氧化处理以制备Ni-Ti-O纳米管,氧化电压为5-15V,氧化时间为5-400min,制得超长Ni-Ti-O纳米管。
2.根据权利要求1所述的在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,其特征在于:所述辅助电极为石墨棒。
3.根据权利要求1所述的在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,其特征在于:乙二醇电解液中浓盐酸含量为3.0-5.0vol%,H2O含量为4.0-6.0vol%;其中浓盐酸的质量分数为37%。
4.根据权利要求1所述的在NiTi合金表面制备超长Ni-Ti-O纳米管的方法,其特征在于:氧化电压为8-12V,氧化时间为200-400min。
CN201610381284.2A 2016-06-01 2016-06-01 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法 Expired - Fee Related CN105951148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610381284.2A CN105951148B (zh) 2016-06-01 2016-06-01 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610381284.2A CN105951148B (zh) 2016-06-01 2016-06-01 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法

Publications (2)

Publication Number Publication Date
CN105951148A CN105951148A (zh) 2016-09-21
CN105951148B true CN105951148B (zh) 2017-11-03

Family

ID=56908232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610381284.2A Expired - Fee Related CN105951148B (zh) 2016-06-01 2016-06-01 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法

Country Status (1)

Country Link
CN (1) CN105951148B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557841A (zh) * 2017-09-01 2018-01-09 哈尔滨工业大学 一种利用气相扩渗法在Ni‑Ti‑O纳米管上负载碳的方法
CN107723778B (zh) * 2017-09-06 2020-01-07 太原理工大学 一种在NiTi合金表面制备Ni-Ti-O富Ni纳米孔的方法
CN109440181B (zh) * 2018-12-10 2020-10-13 太原理工大学 一种去除NiTi合金表面阳极氧化Ni-Ti-O纳米孔无序层的方法
CN111334837A (zh) * 2020-02-21 2020-06-26 天津大学 一种镍掺杂二氧化钛纳米管修饰锡锑电极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554593A (en) * 1978-10-12 1980-04-21 Tanaka Kenji Anodic oxidation treating method of magnesium and magnesium alloy
CN102021628A (zh) * 2009-09-11 2011-04-20 中国科学院兰州化学物理研究所 一种金属钛或钛合金超疏油表面的制备方法
CN102051615A (zh) * 2009-11-02 2011-05-11 中国科学院兰州化学物理研究所 一种防爬行防腐蚀钛或钛合金材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554593A (en) * 1978-10-12 1980-04-21 Tanaka Kenji Anodic oxidation treating method of magnesium and magnesium alloy
CN102021628A (zh) * 2009-09-11 2011-04-20 中国科学院兰州化学物理研究所 一种金属钛或钛合金超疏油表面的制备方法
CN102051615A (zh) * 2009-11-02 2011-05-11 中国科学院兰州化学物理研究所 一种防爬行防腐蚀钛或钛合金材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effect of the solvent on growth of titania nanotubes prepared by anodization of Ti in HCl;F.M.B. Hassan等;《 Electrochimica Acta 》;20101231;第55卷;第3130-3137页 *
Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications;Ruiqiang Hang等;《SCIENTIFIC REPORTS》;20141218;第4卷;第1-9页 *
Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes;Nageh K. Allam 等;《J. Mater. Chem.》;20080220;第18卷;第2341–2348页 *
形状记忆合金表面纳米管阵列的制备与表征;秦锐 等;《微纳电子技术》;20110331;第48卷(第3期);第159-163页 *

Also Published As

Publication number Publication date
CN105951148A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105951148B (zh) 在NiTi合金表面制备超长Ni‑Ti‑O纳米管的方法
Naseri et al. Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro-and nanoscale
Zare et al. Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting
Wu et al. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition
Zhang et al. Hierarchical CuCo 2 O 4 nanowire@ NiCo 2 O 4 nanosheet core/shell arrays for high-performance supercapacitors
Chen et al. Electrochemically reduced graphene oxide on well-aligned titanium dioxide nanotube arrays for betavoltaic enhancement
KR101140367B1 (ko) 이산화망간/탄소나노튜브/종이를 기반으로 하는 수퍼캐패시터 전극 및 그 제조 방법
Xing et al. Influence of substrate morphology on the growth and properties of TiO2 nanotubes in HBF4-based electrolyte
Yoon et al. Metal-free carbon-based nanomaterial coatings protect silicon photoanodes in solar water-splitting
Gao et al. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance
Ghasemi et al. Cu2O-Cu (OH) 2-graphene nanohybrid as new capacitive material for high performance supercapacitor
Du et al. Electrochemical reduction and capacitance of hybrid titanium dioxides—nanotube arrays and “nanograss”
Huang et al. Interfacial effect of oxygen-doped nanodiamond on CuO and micropyramidal silicon heterostructures for efficient nonenzymatic glucose sensor
Allam et al. Ternary Ti–Mo–Ni mixed oxide nanotube arrays as photoanode materials for efficient solar hydrogen production
Cheong et al. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization
Ahn et al. Co (OH) 2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors
Waikar et al. PANINFs synthesized electrochemically as an electrode material for energy storage application
Shin et al. Highly transparent dual-sensitized titanium dioxide nanotube arrays for spontaneous solar water splitting tandem configuration
Lucas-Granados et al. Influence of electrolyte temperature on the synthesis of iron oxide nanostructures by electrochemical anodization for water splitting
Tali et al. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes
Zhang et al. Preparation of boron-doped diamond nanospikes on porous Ti substrate for high-performance supercapacitors
Khanna et al. Fabrication of silicon nanohorns via soft lithography technique for photoelectrochemical application
CN101265602A (zh) 一种自支撑通孔氧化铝膜的制备方法
CN108483389A (zh) 一种银纳米电极及其制备方法
Jadhav et al. Electrochemical properties of anodized copper hydroxide nanostructures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171103

Termination date: 20210601