CN105944729B - 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法 - Google Patents

水杨酸表面修饰纳米TiO2磁性复合材料及制备方法 Download PDF

Info

Publication number
CN105944729B
CN105944729B CN201610301167.0A CN201610301167A CN105944729B CN 105944729 B CN105944729 B CN 105944729B CN 201610301167 A CN201610301167 A CN 201610301167A CN 105944729 B CN105944729 B CN 105944729B
Authority
CN
China
Prior art keywords
tio
magnetic
salicylic acid
nano
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610301167.0A
Other languages
English (en)
Other versions
CN105944729A (zh
Inventor
黄泱
李顺兴
张茂升
林海彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnan Normal University
Original Assignee
Minnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnan Normal University filed Critical Minnan Normal University
Priority to CN201610301167.0A priority Critical patent/CN105944729B/zh
Publication of CN105944729A publication Critical patent/CN105944729A/zh
Application granted granted Critical
Publication of CN105944729B publication Critical patent/CN105944729B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种水杨酸表面修饰纳米TiO2磁性复合材料及制备方法,采用共还原沉积法制备Fe/Ni双金属纳米颗粒;采用直接包覆法在Fe/Ni磁核上直接包覆SiO2凝胶前体;以SiO2@Fe/Ni为模板采用溶胶‑凝胶法和表面修饰技术合成良好光催化活性的水杨酸表面修饰磁性双金属/SiO2/TiO2核‑壳纳米复合光催化新材料。本发明以Fe/Ni作为磁核,逐层包覆SiO2和TiO2,最后通过表面修饰,使TiO2纳米材料可磁性回收,增大比表面积,提高表面羟基等多基团以利于吸附,通过表面修饰实现其可见光响应,同时通过Fe/Ni抑制电子‑空穴对复合协同增强可见光光催化和吸附能力。

Description

水杨酸表面修饰纳米TiO2磁性复合材料及制备方法
技术领域
本发明属于纳米材料技术领域,尤其涉及一种水杨酸表面修饰纳米TiO2磁性复合材料及制备方法。
背景技术
芳香族污染物(如染料、硝基苯酚)引起的环境问题已成为21世纪影响人类生存与健康的重大问题。这类污染物毒性大、难降解,在低浓度情况下也可对动物和人类产生“三致”效应(致癌、致畸、致突变)和环境激素效应。由于其结构稳定、毒性大,用现有的污染控制技术(如生物技术、物理化学方法)难以处理。砷是水体中常见的污染物,无机砷一般以As(Ⅲ)和As(V)两种形态存在。As(Ⅲ) 的毒性约为As(V)的60倍,且As(Ⅲ)的移动性较As(V)大,因而不易从水体中除去。但是,通过氧化反应将As(Ⅲ)转化为As(V),可增加砷在吸附剂表面的吸附和固定能力,并降低其毒性。
光催化氧化是一种绿色高效的高级氧化技术,是污染控制技术研究的热点和前沿领域,纳米二氧化钛,被认为是最高效、环境友好型的非均相光催化剂,被广泛用于光催化降解各类有机污染物。早期的研究主要集中在悬浮体系即 TiO2粉末上,但悬浮体相TiO2存在分离困难,难以回收利用以及容易造成二次环境效应等缺点,为此负载型TiO2光催化剂的研究应运而生。许多学者将TiO2负载在玻璃、陶瓷及微珠等材料上面。负载型TiO2光催化剂尽管克服了回收困难的问题,但也存在着起作用的催化剂总量减少、光源难于布局、总体效率降低等缺点。因此,许多学者将目光集中在了制备既有粉末态高效率的特点,又兼有回收性能的TiO2光催化剂的研究上。一些研究者采用磁性物质作为载体来负载TiO2,从而制备出能通过磁力进行分离回收的磁性光催化剂。γ-Fe2O3、Fe3O4、CoFe2O4、NiFe2O4等铁的氧化物由于磁性能较好和成本低廉,常被用作上述催化剂的磁性组分。
但是BEYDOU研究表明:核/壳(Fe3O4/TiO2)复合材料,纳米Fe3O4很容易被氧化,并且热处理会使磁基体纳米Fe3O4和TiO2包覆层之间发生交互作用,使过渡金属离子从磁核部分扩散到光催化活性组分的外层。在光催化过程中 TiO2产生的电子-空穴对容易迁移至磁性材料表面,导致电子-空穴对的复合率高,光量子产率较低,使其光催化活性较低,光利用率低。
此外Fe3O4/TiO2复合材料制备往往需要在400℃以上进行热处理,以获得锐钛矿晶型的TiO2,而γ-Fe2O3和Fe3O4等的热稳定性较差,在400℃或更低温度下即转变为弱磁性的α-Fe2O3。同时超细γ-Fe2O3(或Fe3O4)具有很强的团聚能力。
发明内容
本发明的目的在于提供一种水杨酸表面修饰纳米TiO2磁性复合材料及制备方法,旨在解决催化剂分离困难,难以回收利用以及容易造成二次环境效应,催化剂只能对紫外光催化响应,无法利用可见光,TiO2光催化过程中电子-空穴对易复合,TiO2比表面积小,吸附能力弱,纳米粉体介质中的界面相容性较差, TiO2表面基团少,与污染物特别是重金属离子吸附能力不强的缺陷的问题。
本发明是这样实现的,一种水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,该水杨酸表面修饰纳米TiO2磁性复合材料的制备方法采用共还原沉积法制备Fe/Ni双金属纳米颗粒;采用直接包覆法在Fe/Ni磁核上直接包覆SiO2凝胶前体;以SiO2@Fe/Ni为模板采用溶胶-凝胶法和表面修饰技术合成良好光催化活性的水杨酸表面修饰磁性双金属/SiO2/TiO2核-壳纳米复合光催化新材料。
进一步,所述采用共还原沉积法制备Fe/Ni双金属纳米颗粒具体包括:
首先称取4.17g的FeSO4·7H2O和1.25g的NiCl2·6H2O和1.8g的KBH4,分别溶于一定体积乙醇—水混合体系中(醇/水体积比为1:5);
然后在氮气的保护下,混合搅拌数分钟后,将30mL 1mol/L的KBH4溶液快速滴加到上述体系中,滴加完毕后,在100rad/min转速条件下,继续搅拌,反应30min,得到的黑色产物;
用磁铁分离,并弃去上层液体,再用去离子水和无水乙醇分别洗涤3次,真空抽滤;最后在烘箱中于70℃下,烘干黑色产物,即得所需的纳米Fe/Ni合金,充氮气密封保存,备用。
进一步,所述采用共还原沉积法制备Fe/Ni双金属纳米颗粒反应式如下:
Fe2++2BH4 -+6H2O→Fe0+2B(OH)3+7H2
Ni2++2BH4 -+6H2O→Ni0+2B(OH)3+7H2↑。
进一步,所述采用直接包覆法,通过溶胶-凝胶法在Fe/Ni磁核上直接包覆 SiO2凝胶前体具体包括:
称取0.5gFe/Ni,加入110mL乙醇—水混合体系中(醇/水体积比为100:10) 超声30min后加入5mL正硅酸乙酯、10mL异丙醇、2.0g十六烷基三甲基溴化铵和10mL氨水,在40℃下水浴6h,用磁铁分离,并弃去上层液体,用蒸馏水和无水乙醇洗三遍,抽滤后放到80℃烘箱烘6h;
放到马弗炉以一定温度煅烧2.5小时,密封保存,备用。
进一步,所述以SiO2@Fe/Ni为模板采用水热法合成良好光催化活性的磁性双金属/SiO2/TiO2核-壳纳米复合光催化新材料具体包括:
称取0.1g SiO2@Fe/Ni,加入1ml钛酸正四丁酯和35mL乙醇,超声分散10min 左右,在电动搅拌器的剧烈搅拌下逐滴滴加乙醇—水混合体系中,水/醇体积比为1:5,继续搅拌2h后,得到的产物;
用磁铁分离,并弃去上层液体,再用无水乙醇洗涤数次,真空抽滤,烘干;再将粉末置于500℃的马弗炉中焙烧2h,即得所需的TiO2@SiO2@Fe/Ni核-壳纳米粒子,保存,备用。
进一步,所述磁性纳米TiO2@SiO2@Fe/Ni复合材料表面修饰包括:
用膜透析法将1.0g磁性纳米TiO2@SiO2@Fe/Ni复合材料加入饱和水杨酸溶液中,避光搅拌24h,过滤,将经表面修饰后的纳米复合材料超纯水清洗去除未参与反应的水杨酸,在105℃下烘干至恒重,备用。
进一步,SiO2@Fe/Ni代表SiO2是壳,里面的是核。
本发明的另一目的在于提供一种所述水杨酸表面修饰纳米TiO2磁性复合材料的制备方法制备的水杨酸表面修饰纳米TiO2磁性复合材料,所述水杨酸表面修饰纳米TiO2磁性复合材料以磁性Fe/Ni双金属为核,通过包覆SiO2后,在最外层负载纳米TiO2材料,并采用水杨酸进行表面修饰。
本发明提供的水杨酸表面修饰纳米TiO2磁性复合材料及制备方法,以Fe/Ni 作为磁核,逐层包覆SiO2和TiO2,最后通过表面修饰,使TiO2纳米材料可磁性回收,增大比表面积,提高表面羟基等多基团以利于吸附,通过表面修饰实现其可见光响应,同时通过Fe/Ni抑制电子-空穴对复合协同增强可见光光催化和吸附能力。
本发明采用三步法制备磁性双金属/SiO2/TiO2核-壳纳米复合新材料。第一步采用共还原沉积法制备Fe/Ni双金属纳米颗粒,工艺简单、设备要求低;第二步采用直接包覆法在Fe/Ni磁核上直接包覆SiO2凝胶前体,在较低的温度热处理后形成具有良好磁性纳米催化剂SiO2@Fe/Ni,避免了高温热处理对催化活性产生的不利影响,既简化了工艺,又保证了复合催化剂具有较高的催化活性以及良好的磁分离回收性能。第三步以SiO2@Fe/Ni为模板采用溶胶-凝胶法合成具有良好光催化活性的磁性双金属/SiO2/TiO2核-壳纳米复合光催化新材料。可以通过控制各个步骤的原料配比和反应条件制备出稳定、超顺磁性复合材料。
本发明Fe/Ni双金属材料作为磁核具有高饱和磁化强度、低矫顽力、高磁导率等独特的软磁材料性能,可解决金属磁性材料的高频损耗大和铁氧体材料饱和磁化强度低的缺点,实现催化剂材料的回收再利用。
本发明Fe/Ni双金属材料具有还原性,可吸收纳米TiO2光催化产生的电子,解决TiO2光催化过程中电子-空穴对易复合的缺陷,提高光生电子和空穴的分离效率,协同提高其·OH(羟基自由基)和O2 -·(超氧离子)产生量,加强其氧化能力,此外Feo在水中可形成FeOOH,有利于对砷的吸附;
本发明过渡层SiO2不仅可以提高磁性纳米粒的稳定性,而且形成的多空隙结构为富集生物及有机分子提供了合适的空间,大大提高了粒子外层的分子结合密度,也相应提高了单位体积纳米粒子的分离效率。
本发明在Fe/Ni纳米颗粒表面包裹SiO2后,可使TiO2和SiO2界面间形成 Ti—O—Si键,增强了TiO2负载的牢固性,同时又减小了磁核对TiO2的不利影响,可使磁性粒子具有良好的抗氧化性、生物相容性及分散稳定性。
本发明通过水杨酸表面修饰,扩大了磁性纳米TiO2对波长响应范围,使光吸收带发生红移,对波长的响应范围扩大到可见光区,实现可见光催化降解。
本发明表面修饰使纳米TiO2表面羟基发生类类酯化反应,并形成稳定性强的六元环化合物,耐酸、碱性程度提高,在磁性纳米TiO2表面联结苯环,提高其对芳香族污染物的亲合力。同时,纳米表面具有羟基、羧基等亲水性基团,改变纳米粉体表面的可润湿性,增强纳米粉体在介质中的界面相容性,提高其在介质中的分散性,避免团聚。
附图说明
图1是本发明实施例提供的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法流程图。
图2是本发明实施例提供的水杨酸表面修饰纳米TiO2磁性复合材料的X射线衍射(XRD)分析示意图。
图3是本发明实施例提供的扫描电子显微镜(SEM/EDS)分析图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明以磁性Fe/Ni双金属为核,通过包覆SiO2后,在最外层负载纳米TiO2材料,并采用水杨酸进行表面修饰。最终制备完成水杨酸表面修饰纳米TiO2@ SiO2@Fe/Ni磁性材料。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法包括以下步骤:
S101:称取一定量的FeSO4·7H2O和NiCl2·6H2O和KBH4,分别溶于一定体积乙醇—水混合体系中,在氮气的保护下,混合搅拌,将KBH4溶液快速滴加到上述体系中搅拌,分离,真空抽滤,烘干黑色产物,得纳米Fe/Ni合金,充氮气密封保存,备用;
S102:称取一定量Fe/Ni,加入一定量乙醇—水混合体系中,包覆法制备 SiO2@Fe/Ni核-壳纳米粒子;
S103:称取一定量SiO2@Fe/Ni,加入1ml钛酸正四丁酯和35mL乙醇,超声分散10min左右,溶胶-凝胶法制备TiO2@SiO2@Fe/Ni核-壳纳米粒子;
S104:用膜透析法将一定量磁性纳米TiO2@SiO2@Fe/Ni复合材料加入饱和水杨酸(SA)溶液中,避光搅拌24h,过滤,将经表面修饰后的纳米复合材料 (SA-FST)超纯水清洗去除未参与反应的水杨酸,在105℃下烘干至恒重,备用。
下面结合具体实施例对本发明的应用原理作进一步的描述。
1.1.1液相还原法制备Fe/Ni磁性纳米粒子
称取一定量的FeSO4·7H2O和NiCl2·6H2O和KBH4,分别溶于一定体积乙醇—水混合体系中,然后在氮气的保护下,混合搅拌数分钟后,将一定量的KBH4溶液快速滴加到上述体系中,滴加完毕后,在100rad/min转速条件下,继续搅拌,反应一段时间,得到的黑色产物,用磁铁分离,并弃去上层液体,再用去离子水和无水乙醇分别洗涤3次,真空抽滤;最后在烘箱中于70℃下,烘干黑色产物,即得所需的纳米Fe/Ni合金,充氮气密封保存,备用。
反应式如下:
Fe2++2BH4 -+6H2O→Fe0+2B(OH)3+7H2
Ni2++2BH4 -+6H2O→Ni0+2B(OH)3+7H2
1.1.2包覆法制备Multi-SiO2@Fe/Ni核-壳纳米粒子
称取一定量Fe/Ni,加入一定量乙醇—水混合体系中(醇/水体积比为100:10) 超声一定时间后加入一定量正硅酸乙酯、异丙醇、十六烷基三甲基溴化铵 (CTAB)和氨水,水浴6h,用磁铁分离,并弃去上层液体,用蒸馏水和无水乙醇洗三遍,抽滤后放到80℃烘箱烘6h,最后放到马弗炉以一定温度煅烧2.5小时。密封保存,备用。重复此步骤即可进行二次或多次包覆,以调节SiO2包覆层的厚度及颗粒的大小。
1.1.3溶胶-凝胶法制备TiO2@SiO2@Fe/Ni核-壳纳米粒子
称取一定量SiO2@Fe/Ni,加入1ml钛酸正四丁酯和35mL乙醇,超声分散 10min左右,在电动搅拌器的剧烈搅拌下逐滴滴加一定量乙醇—水混合体系中 (水/醇体积比为1:5),继续搅拌2h后,得到的产物,用磁铁分离,并弃去上层液体,再用无水乙醇洗涤数次,真空抽滤,烘干;再将粉末置于一定温度的马弗炉中焙烧2h,即得所需的TiO2@SiO2@Fe/Ni(缩写:FST)核-壳纳米粒子,保存,备用。
1.1.4磁性纳米TiO2@Multi-SiO2@Fe/Ni复合材料表面修饰
用膜透析法将一定量磁性纳米TiO2@SiO2@Fe/Ni复合材料加入饱和水杨酸 (SA)溶液中,避光搅拌24h,过滤,将经表面修饰后的纳米复合材料(SA-FST) 超纯水清洗去除未参与反应的水杨酸,在105℃下烘干至恒重,备用。
下面结合实验对本发明的应用效果作详细的描述。
1纳米SA-TiO2@SiO2@Fe/Ni(SA-FST)材料表面性质研究
通过XRD、SEM、BET、FT-IR等方法对SA-FST核-壳纳米复合光材料进行表征。结果如下:
1.1磁性分析(VSM)
通过的磁滞迴线研究,该材料饱和磁化强度为42emu/g,矫顽约为15Oe,强度相对较小,可以认为该样品具有超顺磁性。材料在磁场中易磁化,除去外磁场后无净磁力残留,不仅具有较好的磁分离性,而且回收后剩磁小,不影响重复使用。
1.2红外光谱分析(FT-IR)
通过对催化剂的傅里叶红外谱图分析,~1600cm-1为-C=O振动吸收峰,~1380cm-1为O-H振动吸收峰,500-800cm-1为Ti-O-Ti振动吸收峰,~1085cm-1为Si-O-S或Ti–O–Si的振动吸收峰,表明TiO2与SiO2通过Ti–OH和Si–OH化学键合在一起。~1580cm-1为苯环吸收峰,证明水杨酸表面修饰于TiO2
1.3扫描电子显微镜(SEM/EDS)分析
如图3:从SEM图中可看SA-FST纳米粒子粒径约在300-400nm左右,近似卵形,或聚集在一起形成大颗粒,或以多个小颗粒的形态分散在颗粒之中。 TiO2负载在颗粒表层(表层细小颗粒物)。通过EDS测定可看到,颗粒物中含有Fe、Ni、Ti、C和O元素,且Ti、C、O分别占22.7%、16.52%和36.34%,证明水杨酸表面修饰的TiO2负载于颗粒表面。
1.4X射线衍射(XRD)分析
如图2所示,从XRD分析可知,谱线在30°~40°范围内出现了较为明显的尖晶石型Fe/Ni(部分NiFe2O4)衍射峰;同时在20°~30°范围内出现了SiO2特征峰包及锐钛矿型TiO2衍射峰。
1.5固体紫外漫反射光谱(UV-Vis)分析
通过UV-vis分析,锐钛矿型TiO2对光的吸收范围≤380nm,主要集中在紫外区域,对超过400nm的可见光几乎没有吸收。SA-FST纳米材料的吸收光谱范围相比锐钛矿型TiO2发生了明显红移,不仅在200~400nm范围内有强的吸收峰,在400~800nm可见光范围内也有较强的吸收,使该材料在太阳光照射下就可以被激发,有利于开发可见光型催化剂。
1.6比表面积及孔结构(BET)分析
通过测试SA-FST纳米材料的氮吸附/脱附曲线,可得其比表面积及孔结构数据。材料比表面积为89.5m2/g,平均孔径为2.13nm,总孔体积为0.48cm3/g。可见SA-FST是一种多微孔材料,这种多孔的结构是由TiO2颗粒之间团聚和SiO2的多空隙结构形成的。微孔结构有利于各种反应物的迅速扩散,也允许光催化反应产物迅速扩散,从而提高光催化反应速率。
2水杨酸表面修饰纳米TiO2@multi-SiO2@Fe/Ni磁性核-壳纳米材料对芳香族污染物的去除研究
以芳香族类污染物罗丹明B为研究对象,研究SA-FST光催化降解行为,结果表明:在高压汞灯照射下,3.0g/L的SA-FST纳米粒子80min内对pH=2.0, 5mg/l罗丹明B的去除率可达到86.64%。升温有利于罗丹明B的去除;氧化剂对降解过程有促进作用,影响顺序为:(NH4)2S2O8>H2O2>KBrO4。SA-FST 纳米粒子在重复4次回收利用后,罗丹明B的去除率高于80%。
3水杨酸表面修饰纳米TiO2@multi-SiO2@Fe/Ni磁性核-壳纳米材料对砷离子的去除研究
以As(V)(砷酸根)和As(III)(亚砷酸根)为研究对象,研究SA-FST光催化降解和吸附行为,结果表明:在高压汞灯照射下,0.5g/L的SA-FST纳米粒子在 60min内,pH=4.0,5.0mg/l As(III)100%转化为As(V),总As去除率为95.8%。证明光催化有利于将毒性更强的As(III)转换为毒性较低的As(V),同时由于表面的多孔性,有利于As的吸附去除,升温有利于As的去除;在重复5次回收利用后,总AS去除率高于85%。饱和吸附量As(III)(81.9mg/g)和As(V) (92.6mg/g)。离子对降解过程有削弱作用,影响顺序为:PO4 3->SiO3 2->SO4 2->CO3 2-
SiO2@Fe/Ni代表SiO2是壳,里面的是核。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述水杨酸表面修饰纳米TiO2磁性复合材料的制备方法采用共还原沉积法制备Fe/Ni双金属纳米颗粒;采用直接包覆法在Fe/Ni磁核上直接包覆SiO2凝胶前体;以SiO2@Fe/Ni为模板采用溶胶-凝胶法合成良好光催化活性的磁性双金属/SiO2/TiO2核-壳纳米复合光催化材料;
所述采用共还原沉积法制备Fe/Ni双金属纳米颗粒具体包括:
首先称取一定量的FeSO4·7H2O和NiCl2·6H2O和KBH4,分别溶于一定体积乙醇—水混合体系中;
然后在氮气的保护下,混合搅拌数分钟后,将一定量的KBH4溶液快速滴加到上述体系中,滴加完毕后,在100rad/min转速条件下,继续搅拌,反应一段时间,得到的黑色产物;
用磁铁分离,并弃去上层液体,再用去离子水和无水乙醇分别洗涤3次,真空抽滤;最后在烘箱中于70℃下,烘干黑色产物,即得所需的纳米Fe/Ni合金,充氮气密封保存,备用。
2.如权利要求1所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述采用共还原沉积法制备Fe/Ni双金属纳米颗粒反应式如下:
Fe2++2BH4 -+6H2O→Fe0+2B(OH)3+7H2
Ni2++2BH4 -+6H2O→Ni0+2B(OH)3+7H2↑。
3.如权利要求1所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述采用直接包覆法,通过溶胶-凝胶法在Fe/Ni磁核上直接包覆SiO2凝胶前体具体包括:
称取一定量Fe/Ni,加入一定量乙醇—水混合体系中超声一定时间后加入一定量正硅酸乙酯、异丙醇、十六烷基三甲基溴化铵和氨水,醇/水体积比为100:10,水浴6h,用磁铁分离,并弃去上层液体,用蒸馏水和无水乙醇洗三遍,抽滤后放到80℃烘箱烘6h;
放到马弗炉以一定温度煅烧2.5小时,密封保存,备用。
4.如权利要求1所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述称取一定量Fe/Ni为称取0.5g Fe/Ni。
5.如权利要求1所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述以SiO2@Fe/Ni为模板采用溶胶-凝胶法合成良好光催化活性的磁性双金属/SiO2/TiO2核-壳纳米复合光催化材料具体包括:
称取一定量SiO2@Fe/Ni,加入1ml钛酸正四丁酯和35mL乙醇,超声分散10min,在电动搅拌器的剧烈搅拌下逐滴滴加乙醇—水混合体系中,水/醇体积比为1:5,继续搅拌2h后,得到的产物;
用磁铁分离,并弃去上层液体,再用无水乙醇洗涤数次,真空抽滤,烘干;再将粉末置于一定温度的马弗炉中焙烧2h,即得所需的TiO2@SiO2@Fe/Ni核-壳纳米粒子,保存,备用。
6.如权利要求5所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述将SiO2@Fe/Ni粉末置于一定温度的马弗炉中焙烧2h中一定温度为500℃。
7.如权利要求1所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,所述磁性纳米TiO2@SiO2@Fe/Ni复合材料表面修饰包括:
用膜透析法将一定量磁性纳米TiO2@SiO2@Fe/Ni复合材料加入饱和水杨酸溶液中,避光搅拌24h,过滤,将经表面修饰后的纳米复合材料超纯水清洗去除未参与反应的水杨酸,在105℃下烘干至恒重,备用。
8.如权利要求7所述的水杨酸表面修饰纳米TiO2磁性复合材料的制备方法,其特征在于,用膜透析法将1.0g磁性纳米TiO2@SiO2@Fe/Ni复合材料加入饱和水杨酸溶液中。
9.一种如权利要求1所述水杨酸表面修饰纳米TiO2磁性复合材料的制备方法制备的水杨酸表面修饰纳米TiO2磁性复合材料,其特征在于,所述水杨酸表面修饰纳米TiO2磁性复合材料以磁性Fe/Ni双金属为核,通过包覆SiO2后,在最外层负载纳米TiO2材料,并采用水杨酸进行表面修饰。
CN201610301167.0A 2016-05-09 2016-05-09 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法 Expired - Fee Related CN105944729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610301167.0A CN105944729B (zh) 2016-05-09 2016-05-09 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610301167.0A CN105944729B (zh) 2016-05-09 2016-05-09 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN105944729A CN105944729A (zh) 2016-09-21
CN105944729B true CN105944729B (zh) 2019-02-01

Family

ID=56914093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610301167.0A Expired - Fee Related CN105944729B (zh) 2016-05-09 2016-05-09 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN105944729B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964350B (zh) * 2017-03-15 2019-08-23 武汉理工大学 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法
CN106861638A (zh) * 2017-04-10 2017-06-20 成都优科玛环保技术有限公司 一种多孔纳米硅酸盐颗粒吸附剂、其制备方法及应用
CN114322339A (zh) * 2021-12-31 2022-04-12 江南大学 一种太阳能选择性吸收Ni@SiO2纳米微球的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430410A (zh) * 2011-12-31 2012-05-02 上海大学 TiO2/SiO2/NiFe2O4磁性复合光催化剂的制备方法
CN102921435A (zh) * 2012-10-31 2013-02-13 湖北大学 一种磁性Fe3O4/SiO2/TiO2/量子点复合纳米光催化剂及其制备方法和应用
CN103288202A (zh) * 2013-06-27 2013-09-11 江南大学 一种以铁-镍磁性复合材料为催化剂的臭氧化水处理方法
JP2013220405A (ja) * 2012-04-19 2013-10-28 National Institute Of Advanced Industrial Science & Technology 化学物質分解方法
CN104722308A (zh) * 2015-04-03 2015-06-24 西安石油大学 一种Gd-TiO2-SiO2-NiFe2O4复合磁性材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430410A (zh) * 2011-12-31 2012-05-02 上海大学 TiO2/SiO2/NiFe2O4磁性复合光催化剂的制备方法
JP2013220405A (ja) * 2012-04-19 2013-10-28 National Institute Of Advanced Industrial Science & Technology 化学物質分解方法
CN102921435A (zh) * 2012-10-31 2013-02-13 湖北大学 一种磁性Fe3O4/SiO2/TiO2/量子点复合纳米光催化剂及其制备方法和应用
CN103288202A (zh) * 2013-06-27 2013-09-11 江南大学 一种以铁-镍磁性复合材料为催化剂的臭氧化水处理方法
CN104722308A (zh) * 2015-04-03 2015-06-24 西安石油大学 一种Gd-TiO2-SiO2-NiFe2O4复合磁性材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Surface modification of nanometer size TiO2 with salicylic acid for photocatalyticdegradation of 4-nitrophenol;Li Shun-Xing等;《Journal of Hazardous Materials》;20060119;第B135卷;全文
Synthesis and Characterization of Magnetic TiO2/SiO2/NiFe2O4 Composite Photocatalysts;YUAN Jin等;《CHEM. RES. CHINESE UNIVERSITIES》;20101231;第26卷(第2期);全文
水杨酸和5-磺基-水杨酸表面修饰纳米TiO2吸附去除对硝基苯酚;郑凤英等;《环境科学学报》;20070131;第27卷(第1期);第64-68页

Also Published As

Publication number Publication date
CN105944729A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
Hassani et al. Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes
Khan et al. Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst
CN108101114B (zh) 一种双壳层结构的纳米铁氧体复合材料及其制备方法
Yu et al. Superparamagnetic γ-Fe2O3@ SiO2@ TiO2 composite microspheres with superior photocatalytic properties
Zhang et al. Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@ C@ TiO2 nanocomposites with core–shell nanostructure
Liu et al. Preparation of magnetic and thermal dual-responsive zinc-tetracarboxyl-phthalocyanine-g-Fe3O4@ SiO2@ TiO2-g-poly (N-isopropyl acrylamide) core-shell green photocatalyst
Pang et al. Fabrication of Magnetite/Silica/Titania Core‐Shell Nanoparticles
Thomas et al. Enhanced synergetic effect of Cr (VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso–macroporous nanospheres
Rabbani et al. Synthesis of TCPP/ZnFe2O4@ ZnO nanohollow sphere composite for degradation of methylene blue and 4-nitrophenol under visible light
Zhou et al. Au decorated Fe 3 O 4@ TiO 2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol
Guo et al. Sol-gel synthesis of new ZnFe2O4/Na-bentonite composites for simultaneous oxidation of RhB and reduction of Cr (VI) under visible light irradiation
Ma et al. Facile synthesis of novel Fe3O4@ SiO2@ mSiO2@ TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance
CN101579628B (zh) 一种铁酸镍基磁载型二氧化钛光催化剂的制备方法
Yang et al. Photocatalytic activity of magnetically anatase TiO2 with high crystallinity and stability for dyes degradation: Insights into the dual roles of SiO2 interlayer between TiO2 and CoFe2O4
CN105944729B (zh) 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法
Vo et al. Facile synthesis of magnetic framework composite MgFe2O4@ UiO-66 (Zr) and its applications in the adsorption–photocatalytic degradation of tetracycline
CN104190422A (zh) 一种异相光芬顿催化剂及其用途
He et al. In-situ growth of lepidocrocite on Bi2O3 rod: a perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation
Xiao et al. Hollow-structured Fe2O3/Au/SiO2 nanorods with enhanced and recyclable photo-Fenton oxidation for the remediation of organic pollutants
Hongfei et al. Porous TiO2-coated magnetic core-shell nanocomposites: preparation and enhanced photocatalytic activity
Wang et al. Magnetic NiFe2O4 3D nanosphere photocatalyst: Glycerol-assisted microwave solvothermal synthesis and photocatalytic activity under microwave electrodeless discharge lamp
CN105728051A (zh) 一种可见光响应的磁性复合光催化材料及其制备方法
Mazhari et al. Preparation and characterization of Fe3O4@ SiO2@ TiO2 and Ag/Fe3O4@ SiO2@ TiO2 nanocomposites for water treatment: process optimization by response surface methodology
Ghasemy-Piranloo et al. Synthesis of core/shell/shell Fe3O4/SiO2/ZnO nanostructure composite material with cubic magnetic cores and study of the photo-degradation ability of methylene blue
Kamel Attar Kar et al. Structural, Optical, and Isothermic Studies of CuFe2O4 and Zn‐Doped CuFe2O4 Nanoferrite as a Magnetic Catalyst for Photocatalytic Degradation of Direct Red 264 Under Visible Light Irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190201

CF01 Termination of patent right due to non-payment of annual fee